PELL GRACEFUL LABELING OF FEW SPECIFIC TREES AND BOUNDS ON PELL GRACEFUL NUMBER

S. Mangaleswaran ${ }^{1 *}$, R. Ganapathyraman ${ }^{2}$

Abstract

Pell graceful labeling was introduced in [1]. In this paper, pell graceful labeling of few families of trees are found. We introduce a new concept pell graceful edge number and the same is found for few standard graphs, also bounds are found in some cases.

AMS Subject Classification: 05C78.
Keywords: Pell graceful edge number, Pell graceful vertex nuber.

[^0]DOI: 10.48047/ecb/2023.12.si10.00438

1 Introduction

Graph theory is now a key branch of applied mathematics as well as research that involves multiple disciplines such as computer science, operations research and other sciences. Because of its broad spectrum of applications in all areas of life science, a graph is a very useful discrete structure. Euler attempted to solve the Konigsberg seven bridges problem in the $18^{\text {th }}$ century and established graph theory. Over 200 variants of graph labeling have been introduced and studied over the last 60
years, with nearly 2500 research articles published [2]. Under specific conditions, graph labeling is the assignment of integers to vertices, edges or both. In this paper pell graceful labeling are exhibited for some tree graphs and a new graph parameter has been introduced and found for few graphs. As labeled graphs are widely used mathematical models for a variety of applications, we made this study. This paper exhibits few new results on graph labeling. Throughout this paper we follow the notations as in [4].

2 Pell Graceful Labeling

Definition 2.1 (Pell sequence of numbers). Pell numbers are numbers that look like Fibonacci numbers and are generated by the formula $P_{n+1}=2 P_{n}+P_{n-1}(n \geq 1)$ with $P_{0}=0, P_{1}=1$. The first few Pell numbers
are

$$
0,1,2,5,12,29,70,169,408,985,2378, \ldots
$$

Also, P_{n} can be given as $P_{n}=\frac{(1+\sqrt{2})^{n}-(1-\sqrt{2})^{n}}{2 \sqrt{2}}$

Definition 2.2 (Pell graceful graph - PGG). $G(V, E)$ be a graph of order m and size $n(\geq 1)$. An injection $\sigma: V(G) \rightarrow\left\{0,1,2, \ldots, P_{n}\right\}$ where P_{n} is the $n^{\text {th }}$ pell number in the pell sequence is said to be pell graceful, if the induced edge labeling $\sigma^{\wedge}: E \rightarrow$ $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ given by $\sigma^{\wedge}\left(v_{1} v_{2}\right)=\left|\sigma\left(v_{1}\right)-\sigma\left(v_{2}\right)\right|$ is a bijective function from E onto the set $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$.

A graph is a Pell graceful graph if it admits pell graceful labeling.

Definition 2.3 (m-star $\operatorname{St}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$). [3] The m $\operatorname{star} \operatorname{St}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ is a disconnected graph with mcomponents $K_{1, \alpha 1}, K_{1, \alpha 2}, \ldots, K_{1, \alpha m}$ where $K_{1, n}$ denotes a star on $(n+1)$ vertices. Example: $\operatorname{St}(2,3,4)$

Figure 1: It is a 3-star.
Theorem 2.4. The m-star $\operatorname{St}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ is a Pell graceful graph.
Proof. Let v_{i} denote the central vertex and $w_{i j}, j=1,2, \ldots, \alpha_{i}$ denote end vertices of the star $K_{1, \alpha i}, i=1,2, \ldots, m$. Clearly

$$
\begin{gathered}
\left|V\left(S t\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)\right)\right|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}+m \\
\left|E\left(\operatorname{St}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)\right)\right|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}
\end{gathered}
$$

Define σ :

$$
V\left(S t\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)\right) \rightarrow\left\{0,1,2, \ldots, P_{\alpha 1+\alpha 2+\cdots+\alpha m}\right\}
$$

where

$$
\operatorname{Pr}+1=2 P r+\operatorname{Pr}-1(r \geq 1)
$$

As

$$
\begin{aligned}
\sigma\left(v_{i}\right) & =i-1, \quad i=1,2, \ldots, m \\
\sigma\left(w_{11}\right) & =P_{1} \\
\sigma\left(w_{1} \alpha_{1}\right) & =P_{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}}
\end{aligned}
$$

$\sigma\left(w_{1 j}\right)=P_{j}, \quad 2 \leq j \leq \alpha_{1}-1$
$\sigma\left(w_{2 j}\right)=P_{\alpha_{1}+j-1}+1, \quad 1 \leq j \leq \alpha_{2}$
$\sigma\left(w_{3 j}\right)=P_{\alpha_{1}+\alpha_{2}+j-1}+2, \quad 1 \leq j \leq \alpha_{3}$
$\vdots \quad \vdots \quad \vdots$
$\sigma\left(w_{r j}\right)=P_{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{r-1}+j-1}+(r-1), \quad 1 \leq j \leq \alpha_{r}$
$\vdots \quad \vdots \quad \vdots$
$\sigma\left(w_{m j}\right)=P_{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m-1}+j-1}+(m-1), \quad 1 \leq j \leq \alpha_{m}$

By definition of σ, it is an injection and the induced function on the edge set $\sigma^{\wedge}: E(\operatorname{St}(\alpha 1, \alpha 2, \ldots, \alpha m)) \rightarrow$ $\{P 1, P 2, \ldots, P \alpha 1+\alpha 2+\cdots+\alpha m\}$ is a bijection defined by

Example 2.5. Pell graceful labeling of 3-star St (3,3,4)

Figure 2:
$\sigma^{\wedge}\left(v_{i} w_{i j}\right)=\left|\sigma\left(v_{i}\right)-\sigma\left(w_{i j}\right)\right|, \forall i, j$ σ^{\wedge} gives a pell graceful labeling for $\operatorname{St}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$. Therefore $\operatorname{St}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ is a pell graceful graph.

Here, $m=3 ; \alpha_{1}=3 ; \alpha_{2}=3 ; \alpha_{3}=4$

Figure 3:

Definition 2.6 (Tree t_{n}). The tree $t_{n}, n \geq 1$ is tree obtained by adding n pendent edges to each pendent vertices of star graph $K_{1,2}$ and $\left|V\left(t_{n}\right)\right|=$ $2 n+3,\left|E\left(t_{n}\right)\right|=2 n+2$.

Theorem 2.7. Trees $t_{n}(n \geq 3)$ are Pell graceful graphs.
Proof. t_{n} be the tree as defined in 2.6.
Then $\left|V\left(t_{n}\right)\right|=2 n+3,\left|E\left(t_{n}\right)\right|=2 n+2$.

$$
\begin{aligned}
& V\left(t_{n}\right)=\left\{\begin{array}{ll}
v_{i}^{\prime} & 0 \leq i \leq 2 \\
w_{j}^{\prime} & 1 \leq j \leq n ; u_{k}^{\prime}, 1 \leq k \leq n
\end{array}\right\} \\
& E\left(t_{n}\right)=\left\{\begin{array}{ll}
v_{0}^{\prime} v_{i}^{\prime} & 1 \leq i \leq 2 \\
v_{1}^{\prime} w_{j}^{\prime} & 1 \leq j \leq n ; \quad v_{2}^{\prime} u_{k}^{\prime}, 1 \leq k \leq n
\end{array}\right\}
\end{aligned}
$$

Define
$\sigma: V\left(t_{n}\right) \rightarrow\left\{0,1,2, \ldots, P_{2 n+2}\right\}$ where $P_{2 n+2}=2 P_{2 n+1}+$ $P_{2 n}$ and $P_{0}=0 ; P_{1}=1$
as $\sigma\left(v_{0}{ }^{\prime}\right)=0 \sigma\left(v_{1}{ }^{\prime}\right)=P_{1}$
$\sigma\left(v 2^{\prime}\right)=P 2 n+2$
$\sigma\binom{w_{j}^{\prime}}{j}=P_{j+1}+1,1 \leq j \leq n \sigma\left(u^{\prime} k\right)=P 2 n+2-k+$ $P 2 n+2,1 \leq k \leq n$

This injection σ will induce a bijection from $E(G)$ to $\left\{P_{1}, P_{2}, \ldots, P_{2 n+2}\right\}$ defined by ${ }^{\wedge} \sigma(u v)=|\sigma(u)-\sigma(v)|$, $\forall u v \in E\left(t_{n}\right)$. This ${ }^{\wedge} \sigma$ gives a pell graceful labeling of t_{n}.
Therefore trees t_{n} are Pell graceful graphs.

Example 2.8. Pell graceful labeling of tree t_{4}

Figure 4:
Definition 2.9 (Tree $K_{1, n, n}(n \geq 1)$). The graph $K_{1, n, n}(n \geq 1)$ having $(2 n+1)$ vertices and $2 n$ edges as shown in below figure is called a multi star graph.

Figure 5:

Theorem 2.10. The tree $K_{1, n, n}$ is a Pell graceful graph.
Proof. This tree $K_{1, n, n}$ is of order $(2 n+1)$ and size $2 n$.
$V\left(K_{1, n, n}\right)=\left\{v_{i}^{\prime} / 0 \leq i \leq n, w_{k}^{\prime} / n+1 \leq k \leq 2 n\right\}$
$E\left(K_{1, n, n}\right)=\left\{v_{0}^{\prime} v_{i}^{\prime} / 1 \leq i \leq n\right\} \cup\left\{v_{i}^{\prime} w_{n+i}^{\prime} / 1 \leq i \leq n\right\}$

Define

$\sigma: V\left(K_{1, n, n}\right) \rightarrow\left\{0,1,2, \ldots, P_{2 n}\right\}$ where $P_{2 n}=2 P_{2 n-1}+$ $P_{2 n-2}$ and $P_{0}=0 ; P_{1}=1$
as $\sigma\left(v_{0}^{\prime}\right)=0 \sigma\left(v_{i}^{\prime}\right)=P_{i}, 1 \leq i \leq n \sigma\left(w n^{\prime}+i\right)=P i+$ $P i+n, 1 \leq i \leq n$

This injection σ induces a pell graceful labeling ${ }^{\wedge} \sigma$ from $E\left(K_{1, n, n}\right)$ to
$\{P 1, P 2, \ldots, P 2 n\}$ as ${ }^{`} \sigma\left(v i^{\prime} v j^{\prime}\right)=\left|\sigma\left(v i^{\prime}\right)-\sigma\left(v j^{\prime}\right)\right|, \forall$ $v i^{\prime} v j^{\prime} \in E(K 1, n, n)$. Thus $K_{1, n, n}$ admits a pell graceful labeling.
$K_{1, n, n}$ is a Pell graceful graph.

Example 2.11. Pell graceful labeling of $K_{1,3,3}$

Figure 6:

3 Pell Graceful Edge Number

Definition 3.1 (Pell graceful edge number (PGEN)). Pell graceful edge number of a graph G is defined as the least number of edges whose removal from the graph G makes the resulting graph pell graceful and it is denoted by $\operatorname{PGEN}(G)$.

Observation 3.2. It is proved C_{3} is not a Pell graceful graph in [1]. Also it is proved in [1] that all paths P_{n} are Pell graceful for $n \geq 3$. We observe that $\left(C_{3}-e\right)$ is a Pell graceful graph.

Figure 7:
Thus, $P G E N\left(C_{3}\right)=1$ and in general Pell graceful number of any cycle $C_{n}(n \geq 3)$ is given by $\operatorname{PGEN}\left(C_{n}\right) \leq 1$.

Also, it is proved in [1] that complete graph K_{n} is not a Pell graceful graph for all $n \geq 3$ which motivates us to find $P G K N\left(K_{n}\right)$.
$K_{3}=C_{3}$ is not a Pell graceful graph. Hence $\operatorname{PGEN}\left(K_{3}\right)=1$ we give a bound by the following theorem.

Theorem 3.3. The Pell graceful edge number $\operatorname{PGEN}\left(K_{n}\right)$ of a complete graph is atmost $\frac{n^{2}-3 n+2}{2}$ for $n \geq 3$.

Proof. It is clear that complete graph K_{n} is not a Pell graph for all $n \geq 3$.

Thus, $P G E N\left(K_{n}\right) \geq 1$. Also, $\left|E\left(K_{n}\right)\right|=n C_{2}$. The deletion of $\frac{n^{2}-3 n+2}{2}$ edges from K_{n} gives a path of length $(n-1)$ which is a pell graceful graph.

$$
\text { Thus, } P G E N\left(K_{n}\right) \leq \frac{n^{2}-3 n+2}{2}
$$

Theorem 3.4. The Pell graceful edge number $P G E N\left(W_{n}\right)$ of a wheel graph is atmost n for $n \geq 3$. Proof. It is clear that wheel graph W_{n} is not a pell graph for all $n \geq 3$.

Thus, $P G E N\left(W_{n}\right) \geq 1$. Also, $\left|E\left(W_{n}\right)\right|=2 n$.
The deletion of all the n edges on the outer cycle of W_{n} results in a star graph $K_{1, n}$ which is a Pell graceful graph. Thus $P G E N\left(W_{n}\right) \leq n$.

Illustration 3.5.

Figure 8:
Wheel W_{3} is not a pell graceful graph proved in [1]. When the three edges on the outer cycle $u_{2} u_{3}, u_{3} u_{4}, u_{2} u_{4}$ are removed, it becomes $W_{3}-3 e$.

Figure 9:
Which has pell graceful labeling as given below. Define $\sigma: V(G) \rightarrow\left\{0,1, \ldots, 5\left(P_{3}\right)\right\}$ as $f\left(u_{1}\right)=0 f\left(u_{i}\right)$ $=P_{i-1}, 2 \leq i \leq 4$

Figure 10:
In general,

Figure 11:

Define
$\sigma\left(u_{1}\right)=0$
$\sigma: V\left(W_{n}\right) \rightarrow\left\{0,1,2, \ldots, P_{n}\right\}$
$\sigma(u i)=P i-1$,
$2 \leq i \leq n+1$ Thus the induced function
$\sigma^{\wedge}: E(G) \rightarrow\left\{P_{1}, P_{2}, \ldots, P_{n}\right\} \hat{\sigma^{\wedge}}\left(u_{1} u_{i}\right)=P_{i-1}$,
$\leq i \leq n+1$
is a bijection.
Hence $W_{n}-$ ne is a pell graceful graph.

4 Pell Graceful Vertex Number

Definition 4.1 (Pell graceful vertex number (PGVN)). Pell graceful vertex number of a graph G is defined as the minimum number of vertices whose removal from the graph G makes it pell graceful and it is denoted by PGVN.

Theorem 4.2. Pell graceful vertex number of a wheel graph $W_{n}(n \geq 3)$ is $P V G N\left(W_{n}\right)=2$.
Proof. Let W_{n} be a wheel with n spokes. Then
$\left|V\left(W_{n}\right)\right|=n+1$
$\left|E\left(W_{n}\right)\right|=2 n$
Let

$$
V\left(W_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n+1}\right\}
$$

Let u_{1} be the centre of W_{n} and
$E\left(W_{n}\right)=\left\{u_{1} u_{j} ; 2 \leq i \leq n+1\right\} \cup\left\{u_{i} u_{i+1} ; 2 \leq i \leq n+1\right\}$
Now, a new graph from W_{n} by omitting u_{1} and any other $u_{i}, 2 \leq I \leq n+1$. The resulting graph G is a path which is a pell graceful graph as all paths are pell graceful. Since, removal of minimum of two vertices from W_{n} makes the resulting graph as pell graceful. Hence $P V G N\left(W_{n}\right)=2$.

Illustration 4.3. W_{3} is not pell graceful

Figure 12:
Graph G is obtained from W_{3} by omitting u_{1} and u_{2} or u_{3} or u_{4} with loss of generality let it be u_{3}. Then G is

Figure 13:
Define $\sigma:\left\{u_{2}, u_{4}\right\} \rightarrow\{0,1,2\}$ by $\sigma\left(u_{2}\right)=0 \sigma\left(u_{4}\right)=1$

[^0]: ${ }^{1 *}$ Assistant Professor, Department of Mathematics R.V. Government Arts College, Chengalpattu-1
 ${ }^{2}$ Assistant Professor, Department of Mathematics Pachaiyappa's College, Chennai-30
 *Corresponding Author: S. Mangaleswaran
 Assistant Professor, Department of Mathematics R.V. Government Arts College, Chengalpattu-1, mangaleswaran75@gmail.com

