ISSN 2063-5346

Solid state PhI(OAc)₂-Al₂O₃ Mediated Efficient Synthesis and Characterization of series 2-[1, 8] naphthyridin-3-yl)-5-(substituted -(thiophen-2-yl)--1,3,4-oxadiazoles

	Raju M ^{a b} , Kavitha Siddoju ^{a;}	٤
Article History: Received: 10.05.2023	Revised: 29.05.2023	Accepted: 09.06.2023

Abstract

Reaction in between 1,8-naphthyridine-3-carbohydrazide 1 and thiophene-2-carbaldehyde 2 with *p*-TSA was ground by pestle and mortar to give hydrazones 3. Furthermore, hydrazones 3 on oxidative cyclization with PhI(OAc)₂-Al₂O₃ in the solid state at RT under grinding conditions afforded the respective 2-(2-substituted [1,8]-naphthyridin-3-yl)-5-(thiophen-2-yl)-1,3,4-oxadiazoles 4a-h in good yields (Scheme I).

Keywords: 1,8-Naphthyridines, *p*-TSA, solid PhI(OAc)₂-Al₂O₃

^a Department of Chemistry, Chaitanya (Deemed to be University), Hanamkonda, Telnagana 506001

^b Department of Chemistry, University Arts & Science College (Autonomous), Hanamkonda, Telnagana 506001

*Email: kavithavbr@gmail.com

DOI:10.48047/ecb/2023.12.9.148

Introduction

Pyridine-like analog to naphthalene, the first naphthyridine derivative was synthesized and named by Arnold Reassert[1-3]. The name "naphthyridine" was exclusively designated to the fused-ring system resulting from the fusion of twopyridine rings through two adjacent carbon atoms, with each ring containing only one nitrogen atom. Also known with other names, such as diazanaphthalenes or pyridopyridines, "naphthyridine" remains the most commonly used name for this classof compounds. Various review articles summarize the synthesis, structure, physicochemical properties, and pharmacological role of naphthyridines [4–10]. Six different isomeric forms of naphthyridines are described based on the position of the nitrogens in the bicyclicsystem (Shown in Fig I & II).

Fig. I Structures of isomers of Naphthyridines

Herein, we have synthesized the Solid state PhI(OAc)₂-Al₂O₃ mediated synthesis and characterization of new series2-[1,8] naphthyridin-3-yl)-5-(substituted -(thiophen-2-yl)--1,3,4-oxadiazoles in accordingly systematic protocols reference cited. [11–24]

Experimental section

Melting points were determined using a Cintex melting point apparatus and are uncorrected. TLC was performed by using Merck silica gel 60F254 precoated plates (0.25 mm) and column chromatography was performed by using Silica gel (particle size 100-200 mesh). Proton nuclear Magnetic Resonance (400 MHz) and Carbon Nuclear Magnetic Resonance (100 MHz) spectrums were logged on Bruker AC-300spectrophotometer in CHCl₃with *TMS* as reference. Mass spectrum was documented on JEOL SX-102 spectrophotometer. All the chemicals and reagents used in present investigation were purchased from Sigma- Aldrich Chemical Company.

I General procedure for the Synthesis of 2-Methyl-N'-(thiophen-2-ylmethylene)-1,8-naphthyridine-3-carbohydrazides 3

A mixture of 1,8-naphthyridine-3-carbohydrazide 1 (0.01 mole), thiophene-2carbaldehyde 2 (0.01 mole) and *p*-TSA (0.015 mole) was ground by pestle and mortar at RT. On completion of the reaction (monitored by TLC), the reaction-mixture was treated with ice-cold water. The solid thus obtained was filtered, washed with water and purified by recrystallization from ethanol to give **3**.

II General procedure for the synthesis 2-(2-methyl-1,8- naphthyridin-3-yl)-5-(thiophen-2-yl)-1,3,4-oxadiazoles 4

A mixture of a finely powdered appropriate hydrazone **3** (0.01 mole) and PhI(OAc)₂-Al₂O₃ (0.01 mole) was ground in a mortar by pestle at RT for specified time. After completion of the reaction (indicated by TLC), the reaction mixture was treated with cold water. The resultant product was filtered, washed with water and purified byrecrystallization from ethanol to furnish **4**.

Preparation of alumina-supported iodobenzene diacetate [PhI(OAc)₂- Al₂O₃]²⁵

Iodobenzene diacetate (0.01 mole) per gram of neutral alumina is ground using a pestle and mortar; the recovered alumina after removal of the products is reused without any loss of activity.

Results and discussions

I Synthesis of N'-(thiophen-2ylmethylene)-1,8-naphthyridine-3- carbohydrazides 3

Condensation of 2-substituted-1,8-naphthyridine-3-carboxylic acid hydrazides 1 with thiophene-2-carbaldehyde 2 in the presence of catalytic amount of PTSA insolvent-free grinding conditions at RT furnished the corresponding *N'*-(thiophen-2ylmethylene)-1,8-naphthyridine-3- carbohydrazide 3 in excellent yields.

In a typical case, an equimolar mixture of 2-methyl-1,8-naphthyridine-3-carboxylic acid hydrazide **1a** (R^1 =CH₃),2-furaldehyde **2** (R^2 =H) and PTSA wasground in mortar by pestle at RT for 2.0min. Aftercompletion of the reaction(monitored by TLC) the reaction mixturewas treated with ice-cold water. After usualwork-up 2-methyl-*N*'- (thiophen-2-ylmethylene)-1,8-naphthy-ridine-3- carbohydrazide **3a** (R^1 =CH₃; R^2 =H) was obtained in 94% yield.

The above condensation reaction was found to be general one and proceeded smoothly with thiophene-2-carbaldehydes giving the respective N'3-[1-(substituted 2-furyl) methylidene]- 2-sustituted [1,8] naphthyridine-3 carbohydrazides **3b-h** [(R¹=CH₃; R²= NO₂), (R¹=CF₃; R²= H), (R¹=CF₃; R²= NO₂), (R¹=C₆H₅; R²= H), (R¹=C₆H₅; R²= NO₂), (R¹=4-NO₂C₆H₄; R²= H), (R¹=4-NO₂C₆H₄; R²= NO₂)].

II Synthesis of 2-(2-substituted [1, 8]naphthyridin-3-yl)-5-(thiophen-2-yl)-1,3,4-oxadiazoles 4

The hydrazones **3** on oxidative cyclization with PhI(OAc)₂-Al₂O₃ in the solid state at RT under grinding conditions afforded the respective 2-(2-substituted [1,8]-naphthyridin-3-yl)-5-(thiophen-2-yl)-1,3,4- oxadiazoles **4** in good yields (**Scheme I**). Reactions are not consuming and the yieldsof the products are good. The reaction conditions and work-up procedures are mild, simple, convenient and efficient. The products were obtained with high purity by this procedure. The process isenvironmentally benign. The experimental procedure is very simple and avoids sophistication.

In a typical case, a mixture of 2-methyl-*N*'-(thiophen-2-ylmethylene)-1,8- naphthyridine-3-carbohydrazide **3a** (R^1 =CH₃; R^2 =H) and PhI(OAc)₂-Al₂O₃ was ground in a mortar by pestle at RT for 5-7 min. On completion of the reaction (indicated by TLC), the reaction mixture istreated with cold water followed by simple processing afforded 2methyl-(2- substituted [1,8]naphthyridin-3-yl)-5-(thiophen-2-yl)-1,3,4oxadiazole **4a** (R^1 =CH₃; R^2 =H) in 86% yield. The generality of the facile oxidative transformation was established by treating other hydrazones 3b-h with PhI(OAc)₂- Al₂O₃ under solid state grinding conditionsto get the corresponding 2-(2-substituted [1,8]naphthyridin-3-yl)-5-(thiophen-2-yl)-1,3,4oxadiazoles **4b-h** in 82-85% yields.

The structures of compounds **4a-h** wereestablished on the basis of their elemental analyses and spectral (IR, ¹H NMR ¹³CNMR and MS) data. The simple operation, high purity of the products, good yields, mild reaction conditions and nontoxicity of the reagent are notable advantages of this protocol.

Scheme I

Fig. III Structures of compounds 3a-h

396

357

402

402

416

3d

3e

3f

3g

3h

CF₃

 C_6H_5

 C_6H_5

 $4-NO_2C_6H_4$

 $4-NO_2C_6H_4$

naphthyridine-	-3-carboh	ydrazides (3a-f)				
				v_{max} in cm ⁻	1	MS (ESI)
Entry	\mathbb{R}^1	\mathbb{R}^2	NH	C=O	C=N	$\begin{bmatrix} [M+H]^+ \\ m/z \end{bmatrix}$
3 a	CH ₃	Н	3469	1660	1616	297
3 b	CH ₃	NO_2	3442	1675	1619	342
3c	CF ₃	Н	3471	1661	1618	351

3448

3458

3454

3452

3427

1675

1655

1699

1644

1664

1617

1615

1618

1620

1617

 NO_2

 NO_2

 NO_2

Η

Η

Table I – IR and mass spectral data of 2-methyl-N'-(thiophen-2-ylmethylene)-1,8-naphthyridine-3-carbohydrazides (3a-f)

Table II - ¹H NMR spectral data of 2-methyl-*N*'-(thiophen-2-ylmethylene)-1,8-naph-thyridine-3-carbohydrazides (3a-f)

Entry	\mathbb{R}^1	\mathbb{R}^2	¹ H NMR (300 MHz, CDCl ₃) (δ, ppm)
3 a	CH ₃	Н	2.78(s, 3H, CH ₃), 8.16(m, 1H, C ₆ -H), 8.51 (m, 2H, C ₄ -H, C ₅ -H), 9.14 (m, 1H, C ₇ -H), 8.62(s, 1H, N=CH), 7.42-8.05 (m, 3H, C ₃ -H, C ₄ -H, C ₅ -H of furan), 12.55(s, 1H, NH).
3b	CH ₃	NO ₂	2.76(s, 3H, CH ₃), 8.15(m, 1H, C ₆ -H), 8.43 (m, 2H, C ₄ -H, C ₅ -H), 9.06 (m, 1H, C ₇ -H), 8.57(s, 1H, N=CH), 7.58(d, 1H, C ₃ -H of furan), 7.90(d, 1H, C ₄ -H of furan), 12.12(s, 1H, NH).
3с	CF ₃	Н	7.78(m, 1H, C ₆ -H), 8.20 (m, 2H, C ₄ -H, C ₅ -H), 9.10 (m, 1H, C ₇ -H), 8.87(s, 1H, N=CH), 7.23-7.42 (m, 3H, C ₃ -H, C ₄ -H, C ₅ -H of furan), 12.43(s, 1H, NH).
3d	CF ₃	NO ₂	7.94 (m, 1H, C ₆ -H), 8.25 (m, 2H, C ₄ -H, C ₅ -H), 9.18 (m, 1H, C ₇ -H), 8.66(s, 1H, N=CH), 7.62(d, 1H, C ₃ -H of furan), 8.10(d, 1H, C ₄ -H of furan), 12.46 (s, 1H, NH).

3e	C ₆ H ₅	Η	7.83(m, 1H, C ₆ -H), 8.22 (m, 2H, C ₄ -H, C ₅ -H), 9.20 (m, 1H, C ₇ -H), 8.78(s, 1H, N=CH), 6.40-7.22 (m, 3H, C ₃ -H, C ₄ -H, C ₅ -H of furan), 7.48-7.80 (m, 5H, Ar-H), 12.25(s, 1H, NH).
3f	C ₆ H ₅	NO ₂	7.77 (m, 1H, C ₆ -H), 8.60 (m, 2H, C ₄ -H, C ₅ -H), 9.22 (m, 1H, C ₇ -H), 8.73(s, 1H, N=CH), 7.24(d, 1H, C ₃ -H of furan), 7.40(d, 1H, C ₄ -H of furan), 7.47-7.74(m, 5H, Ar-H), 12.42(s, 1H, NH).
3g	4-NO ₂ C ₆ H ₄	Н	7.86(m, 1H, C ₆ -H), 8.58 (m, 2H, C ₄ -H, C ₅ -H), 9.20 (m, 1H, C ₇ -H), 8.80(s, 1H, N=CH), 6.52-7.30 (m, 3H, C ₃ -H, C ₄ -H, C ₅ -H of furan), 7.72-7.84(m, 4H, Ar-H), 12.35(s, 1H, NH).
3h	4-NO ₂ C ₆ H ₄	NO ₂	7.92 (m, 1H, C ₆ -H), 8.30 (m, 2H, C ₄ -H, C ₅ -H), 9.15 (m, 1H, C ₇ -H), 8.82(s, 1H, N=CH), 7.20(d, 1H, C ₃ -H of furan), 7.62(d, 1H, C ₄ -H of furan), 7.68-7.87(m, 4H, Ar-H), 12.40(s, 1H, NH).

Table III – IR and mass spectral data of 2-(2-substituted [1,8]-naphthyridin-3-yl)-5-(thiophen-2-yl)-1,3,4-oxadiazoles 4a-h

Entry	R^1	\mathbb{R}^2	v _{max} in cm ⁻¹	MS (ESI) - [M+H] ⁺ m/7
4 a	CH ₃	Н	1600	295
4 b	CH ₃	NO ₂	1602	340
4 c	CF ₃	Н	1603	349
4d	CF ₃	NO_2	1601	394
4e	C_6H_5	Н	1604	357
4f	C_6H_5	NO_2	1605	402
4g	$4-NO_2C_6H_4$	Н	1603	402
4h	$4-NO_2C_6H_4$	NO_2	1601	416

Table IV -1H NMR spectral data of 2-(2-substituted [1,8]-naphthyridin-3-yl)-5-(thiophen-2-yl)-1,3,4-oxadiazoles4a-h

Entry	\mathbb{R}^1	R ²	¹ H NMR (300 MHz, CDCl ₃) (δ, ppm)
4 a	CH ₃	Н	3.10(s, 3H, CH ₃), 8.02(m, 1H, C ₆ -H), 8.63 (m, 1H, C ₅ -H), 8.35 (s, 1H, C ₄ -H), 9.18 (m, 1H, C ₇ -H), 7.23-7.80 (m, 3H, C ₃ -H, C ₄ -H, C ₅ -H of furan).
4b	CH ₃	NO ₂	3.12(s, 3H, CH ₃), 8.10(m, 1H, C ₆ -H), 8.70(m, 1H, C ₅ -H), 8.42 (s, 1H, C ₄ -H), 9.22 (m, 1H, C ₇ -H), 7.43 (d, 1H, C ₃ -H of furan), 8.02(d, 1H, C ₄ -H of furan).
4c	CF ₃	Н	8.12(m, 1H, C ₆ -H), 8.68 (m, 1H, C ₅ -H), 8.46 (s, 1H, C ₄ -H), 9.20(m, 1H, C ₇ -H), 7.27-7.82 (m, 3H, C ₃ -H, C ₄ -H, C ₅ -H of furan).
4d	CF ₃	NO ₂	7.97 (m, 1H, C ₆ -H), 8.82 (m, 1H, C ₅ -H), 8.95 (s, 1H, C ₄ -H), 9.20 (m, 1H, C ₇ -H), 7.40(d, 1H, C ₃ -H of furan), 7.97(d, 1H, C ₄ -H of furan).
4 e	C ₆ H ₅	Η	8.06(m, 1H, C ₆ -H), 8.45 (m, 1H, C ₅ -H), 8.65 (s, 1H, C ₄ -H), 9.25 (m, 1H, C ₇ -H), 7.30-7.87 (m, 3H, C ₃ -H, C ₄ -H, C ₅ -H of furan), 7.52-7.95(m, 5H, Ar-H).
4f	C ₆ H ₅	NO ₂	8.10 (m, 1H, C ₆ -H), 8.65 (m, 1H, C ₅ -H), 8.72(s, 1H, C ₄ -H), 9.28 (m, 1H, C ₇ -H), 7.35(d, 1H, C ₃ -H of furan), 7.58 (d, 1H, C ₄ -H of furan), 7.50-7.84(m, 5H, Ar-H).
4g	4-NO ₂ C ₆ H ₄	Н	7.88(m, 1H, C ₆ -H), 8.72 (m, 1H, C ₅ -H), 8.98 (s, 1H, C ₄ -H), 9.23 (m, 1H, C ₇ -H), 7.40-7.60 (m, 3H, C ₃ -H, C ₄ -H, C ₅ -H of furan), 7.65-7.80 (m, 4H, Ar-H).
4h	4-NO ₂ C ₆ H ₄	NO ₂	8.30 (m, 1H, C ₆ -H), 8.78 (m, 1H, C ₅ -H), 9.08 (s, 1H, C ₄ -H), 9.24 (m, 1H, C ₇ -H), 7.17(d, 1H, C ₃ -H of furan), 7.65(d, 1H, C ₄ -H of furan), 7.70-7.90(m, 4H, Ar-H).

Table V — Physical and analytical data of N'-(thiophen-2-ylmethylene)-1,8-naphthyridine-3-carbohydrazides 3a-h

time (min)°C (%) C H N 3a CH3H 2.0 210 94 $C_{15}H_{12}N_4OS$ 64.41 4.34 20.0 (64.28 3b CH3NO2 1.5 253 93 $C_{15}H_{11}N_5O_3S$ 55.51 3.42 21.5 (55.39 3c CF3H 2.5 230 95 $C_{15}H_9F_3N_4OS$ 54.04 2.73 16.3 (53.90 3d CF3NO2 2.0 238 92 $C_{15}H_9F_3N_5O_3S$ 47.63 2.14 18.3 (47.51 3d CF3NO2 2.0 248 94 $C_{20}H_{14}N_4OS$ 70.31 4.14 16.4 (70.17 3d C_6H5H 2.0 248 94 $C_{20}H_{13}N_5O_3S$ 62.15 3.39 18.3 (62.02 3g $4-NO_2C_6H_4$ H 2.5 283 93 $C_{20}H_{13}N_5O_3S$ 62.16 3.40 18.3 (62.02 3h $4-NO_2C_6H_4$ NO2 2.0 276 92 $C_{20}H_{12}N_6O_5S$ 55.69 2.81 19.4 (55.56	Entry	\mathbb{R}^1	\mathbb{R}^2	Reaction	m.p.	Yield	Mol. formula	Found	(%) (0	Calcd)
3a CH3 H 2.0 210 94 C15H12N4OS 64.41 4.34 20.4 3b CH3 NO2 1.5 253 93 C15H11N5O3S 55.51 3.42 21.5 3c CF3 H 2.5 230 95 C15H9F3N4OS 54.04 2.73 16.3 3d CF3 H 2.5 230 95 C15H9F3N4OS 54.04 2.73 16.7 3d CF3 NO2 2.0 238 92 C15H8F3N5O3S 47.63 2.14 18.4 3e C6H5 H 2.0 248 94 C20H14N4OS 70.31 4.14 16.4 3f C6H5 H 2.0 248 94 C20H14N4OS 70.31 4.14 16.3 3g 4-NO2C6H4 H 2.5 283 93 C20H13N5O3S 62.15 3.39 18.5 3g 4-NO2C6H4 H 2.5 283 93 C20H13N5O3S 62.16 3.40 18.5 3b 4-NO2C6H4 NO2				time (min)	°C	(%)		С	Η	N
3b CH3 NO2 1.5 253 93 C15H11N5O3S 55.51 3.42 21.5 3c CF3 H 2.5 230 95 C15H9F3N4OS 54.04 2.73 16.3 3d CF3 H 2.5 230 95 C15H9F3N4OS 54.04 2.73 16.7 3d CF3 NO2 2.0 238 92 C15H8F3N5O3S 47.63 2.14 18.3 3e C6H5 H 2.0 248 94 C20H14N4OS 70.31 4.14 16.4 3f C6H5 NO2 1.5 174 92 C20H13N5O3S 62.15 3.39 18.3 3g 4-NO2C6H4 H 2.5 283 93 C20H13N5O3S 62.16 3.40 18.3 3h 4-NO2C6H4 NO2 2.0 276 92 C20H13N5O3S 62.16 3.40 18.3 3h 4-NO2C6H4 NO2 2.0 276 92 C20H12N6O5S 55.69 2.81 19.4	3a	CH ₃	Н	2.0	210	94	$C_{15}H_{12}N_4OS$	64.41 (64.28	4.34 4.32	20.03 19.99)
$3c$ CF_3 H 2.5 230 95 $C_{15}H_9F_3N_4OS$ 54.04 2.73 16.3 $3d$ CF_3 NO_2 2.0 238 92 $C_{15}H_8F_3N_5O_3S$ 47.63 2.14 18.4 $3e$ C_6H_5 H 2.0 248 94 $C_{20}H_14N_4OS$ 70.31 4.14 16.4 $3f$ C_6H_5 H 2.0 248 94 $C_{20}H_{13}N_5O_3S$ 62.15 3.39 18.3 $3g$ $4-NO_2C_6H_4$ H 2.5 283 93 $C_{20}H_{13}N_5O_3S$ 62.16 3.40 18.4 $3h$ $4-NO_2C_6H_4$ NO2 2.0 276 92 $C_{20}H_{13}N_5O_3S$ 62.16 3.40 18.4 $3h$ $4-NO_2C_6H_4$ NO2 2.0 276 92 $C_{20}H_{13}N_5O_3S$ 62.16 3.40 18.4 $3h$ $4-NO_2C_6H_4$ NO2 2.0 276 92 $C_{20}H_{13}N_5O_3S$ 62.16 3.40 18.4 $3h$ $4-NO_2C_6H_4$ NO2 2.0 276 92 $C_{20}H_{12}N_6O_5S$ 55.69 2.81 19.4	3b	CH ₃	NO ₂	1.5	253	93	$C_{15}H_{11}N_5O_3S$	55.51 (55.39	3.42 3.41	21.58 21.53)
3d CF_3 NO_2 2.023892 $C_{15H_8F_3N_5O_3S}$ 47.63 $(47.512.1418.12.133eC_6H_5H2.024894C_{20H_14N_4OS}70.31(70.17)4.1416.44.123fC_6H_5NO_21.517492C_{20H_13N_5O_3S}62.15(62.02)3.3918.1(62.02)3g4-NO_2C_6H_4H2.528393C_{20H_13N_5O_3S}62.16(62.02)3.4018.2(18.2)3h4-NO_2C_6H_4NO22.027692C_{20H_12N_6O_5S}55.692.8119.4(19.4)$	3c	CF ₃	Н	2.5	230	95	$C_{15}H_9F_3N_4OS$	54.04 (53.90	2.73 2.71	16.80 16.76)
$3e$ C_6H_5 H 2.0 248 94 $C_{20}H_{14}N_4OS$ 70.31 4.14 16.4 $3f$ C_6H_5 NO_2 1.5 174 92 $C_{20}H_{13}N_5O_3S$ 62.15 3.39 18.7 $3g$ $4-NO_2C_6H_4$ H 2.5 283 93 $C_{20}H_{13}N_5O_3S$ 62.16 3.40 18.7 $3h$ $4-NO_2C_6H_4$ NO_2 2.0 276 92 $C_{20}H_{12}N_6O_5S$ 55.69 2.81 19.5 $3h$ $4-NO_2C_6H_4$ NO_2 2.0 276 92 $C_{20}H_{12}N_6O_5S$ 55.69 2.81 19.5	3d	CF ₃	NO ₂	2.0	238	92	$C_{15}H_8F_3N_5O_3S$	47.63 (47.51	2.14 2.13	18.52 18.47)
3f C_6H_5 NO_2 1.5 174 92 $C_{20}H_{13}N_5O_3S$ 62.15 3.39 18.7 3g $4-NO_2C_6H_4$ H 2.5 283 93 $C_{20}H_{13}N_5O_3S$ 62.16 3.40 18.7 3h $4-NO_2C_6H_4$ NO_2 2.0 276 92 $C_{20}H_{12}N_6O_5S$ 55.69 2.81 19.5 (55.56) 2.80 19.4	3e	C ₆ H ₅	Н	2.0	248	94	C ₂₀ H ₁₄ N ₄ OS	70.31 (70.17	4.14 4.12	16.41 16.37)
$3g$ $4-NO_2C_6H_4$ H 2.5 283 93 $C_{20}H_{13}N_5O_3S$ 62.16 3.40 18.7 $3h$ $4-NO_2C_6H_4$ NO_2 2.0 276 92 $C_{20}H_{12}N_6O_5S$ 55.69 2.81 19.5 $(55.56$ 2.80 19.4	3f	C ₆ H ₅	NO ₂	1.5	174	92	$C_{20}H_{13}N_5O_3S$	62.15 (62.02	3.39 3.38	18.13 18.08)
3h 4-NO ₂ C ₆ H ₄ NO ₂ 2.0 276 92 C ₂₀ H ₁₂ N ₆ O ₅ S 55.69 2.81 19.4 $(55.56 \ 2.80 \ 19.4)$	3g	4-NO ₂ C ₆ H ₄	Н	2.5	283	93	$C_{20}H_{13}N_5O_3S$	62.16 (62.02	3.40 3.38	18.12 18.08)
	3h	4-NO ₂ C ₆ H ₄	NO ₂	2.0	276	92	$C_{20}H_{12}N_6O_5S$	55.69 (55.56	2.81 2.80	19.50 19.44)

Table VI — Physical and analytical data of 2-(2-substituted [1,8]-naphthyridin-3-yl)-5-
(thiophen-2-yl)-1,3,4-oxadiazoles 4a-h

Entry	\mathbb{R}^1	\mathbb{R}^2	Reaction	m.p.	Yield	Mol. formula	Found	d (%) (C	alcd)
			time (min)	°C	(%)		С	Н	N
4 a	CH ₃	Н	6.5	300	86	$C_{15}H_{10}N_4OS \\$	64.82	3.64	20.18
							(64.74	3.62	20.13)
4b	CH ₃	NO_2	6.0	214	84	$C_{15}H_9N_5O_3S$	55.86	2.83	21.70
							(55.73	2.81	21.66)
4c	CF ₃	Н	6.0	302	85	$C_{15}H_7F_3N_4OS$	54.36	2.14	16.91
							(54.23	2.12	16.86)
4d	CF ₃	NO ₂	5.5	192	84	$C_{15}H_{6}F_{3}N_{5}O_{3}$	47.90	1.61	18.60
						S	(47.76	1.60	18.56)
4 e	C ₆ H ₅	Н	6.5	263	85	$C_{20}H_{12}N_4OS$	70.71	3.57	16.53
							(70.58	3.55	16.48)
4 f	C ₆ H ₅	NO ₂	6.0	233	84	C ₂₀ H ₁₁ N ₅ O ₃ S	62.49	2.90	18.22
							(62.34	2.88	18.17)
4g	$4-NO_2C_6H_4$	Н	7.0	218	84	C ₂₀ H ₁₁ N ₅ O ₃ S	62.47	2.89	18.23
8							(62.34	2.88	18.17)
4h	4-NO2C2H4	NOa	65	257	87	$C_{21}H_{12}N_{5}O_{2}S$	55 9/	236	19 57
711	110200114	1102	0.5	231	02	C211113113030	(55.82	2.30	19.57

Entry	¹³ C NMR chemical shift data (δ)
4a	160.28, 159.57, 156.60, 152.70, 150.17, 137.50, 131.98, 131.30, 130.53, 130.04, 127.40, 126.92, 119.88, 114.65, 23.54.
4b	160.53, 159.57, 156.60, 153.41, 152.70, 150.17, 137.23, 133.49, 131.98, 126.92, 121.22, 119.88, 114.65, 23.54.
4c	160.28, 156.79, 151.98, 141.92, 141.71, 141.50, 141.28, 137.28, 131.30, 130.57, 130.04, 129.18, 127.40, 126.46, 124.36, 122.27, 121.68, 120.17, 115.81.
4d	160.53, 156.79, 153.41, 151.93, 141.71, 137.28, 133.49, 130.40 (s), 129.18, 126.46, 124.36, 122.27, 121.68, 121.22, 120.17, 115.81
4e	160.28, 156.75, 153.07, 152.41, 137.72, 137.28, 136.16, 131.30, 131.07, 130.53, 130.04, 128.75, 128.58, 127.40, 121.64, 115.81.
4f	160.53, 156.75, 153.41, 153.07, 152.41, 151.98, 137.72, 136.16, 133.49, 131.07, 128.75, 128.58, 121.68, 121.22, 115.81
4g	160.28, 156.75, 153.07, 152.41, 151.98, 149.98, 141.21, 137.28, 130.53, 127.40, 124.09, 121.64, 115.81.
4h	160.53, 156.75, 153.07, 151.98, 149.98, 143.32, 141.21, 137.72, 137.28, 136.47, 131.65, 130.85, 125.14, 124.09, 121.64, 115.81, 16.83.

Table VII— ¹³C NMR spectral data of 2-(2-substituted [1,8]-naphthyridin-3-yl)-5-(thiophen-2-yl)-1,3,4-oxadiazoles4a-h

Conclusion

Herein, we have reported an efficient synthesis of (2-substituted [1,8]-naphthyridin-3-yl)-5-(thiophen-2-yl)-1,3,4-oxadiazoles under Solid state mediated PhI(OAc)₂-Al₂O₃.

Acknowledgments

We, the authors, express our sincere gratitude to Department of Chemistry, Chaitanya (Deemed to be University), Hanamkonda for the laboratory facilities provided to conduct this research work.

References

- [1] A. Reissert, Berichte **1893**, 26, 2137.
- [2] C. F. H. Allen, *Chem. Rev.* **1950**, 47, 275–305.
- [3] W. Czuba, *Chem. Heterocycl. Compd.* **1979**, 15, 1–13.

- [4] A. S. Noravyan, E. G. Paronikyan, S. A. Vartanyan, *Pharm. Chem. J.* 1985, 19, 439–448.
- [5] V. P. Litvinov, S. V. Roman, V. D. Dyachenko, *Russ. Chem. Rev.* 2000, 69, 201–220.
- [6] G. Y. Lesher, E. J. Bailey, R. P. Brundage, J. Med. Pharm. Chem. 1962, 5, 1063–1065.
- [7] Farooqui M, Ragesh B & Patil C R, *Eur J Med Chem*, 44, **2009**, 794.
- [8] Farshori N N, Bandy N M, Khan A U & Rauf A, *Bioorg Med Chem Lett*, 20, 2010, 1933.
- [9] Desai N C, Bhatt N, Somani H & Trivedi A, *Eur J Med Chem*, 67, 2013, 54.
- [10] Manera C, Saccomanni G, Adinolfi B, Benetti V, Ligresti A, Cascio M G, Tuccinardi &
- Ferrarini P L, *J Med Chem*, 52(12), **2009**, 3644.

- [11] Massari S, Daelemans D, Barreca M L, Knezevich A, Sabatini S, Cecchetti V, Marcello A,
- Pannecouque C & Tabarrini O, *J Med Chem*, 53(2), **2010**, 641.
- [12] Madsen-Duggan C B, Debenham J S, Walsh T F, Yan L, Huo P, Wang J, Tong X, Lao J,
- Strack A M, Goulet M T, Hale J, J, Bioorg Med Chem Lett, 20, **2010**, 3750.
- [13] Kumar P, Sharma D, Judge V, Narang R, *Eur J Med Chem*, 44, **2009**, 1853
- [14] Cui Z, Li Y, Huang J, Cui J, Wang R & Tang X, Eur J Med Chem, 45, 2010, 5576.
- [15] Wang F, Sun J R, Huang M Y, Lin J & Chen W M, Eur J Med Chem, 72, 2014, 35.
- [16] Prakash O, Saini N & Sharma P K, Synlet (Account), 1994, 221.

- [17] Stang P T & Zhdankin V V, *Chem Rev*, 96, **1996**, 1123.
- [18] Mariarity R M & Prakash O, *Adv Het Chem*, 69, **1998**, 1.
- [19] Tota F, Synlett (Account), **1993**, 303.
- [20] Tanaka K & Tota F, *Chem Rev*, 100, **2000**, 1025.
- [21] Krchnak V & Halladay M W, *Chem Rev*, **2002**, 61.
- [22] Chary M T, Mogilaiah K, Swamy B & Sreenivasulu B, *Sulfur Lett*, 8, 1988, 79.
- [23] Rao G R, Mogilaiah K & Sreenivasulu B, Indian J Chem, 35B,1996, 339.
- [24] Mogilaiah K, Rao R B & Reddy K N, *Indian J Chem*, 38B, **1999**, 818.
- [25] Varma R S, Dahiya R & Saini R K, *Tetrahedron Lett*, 38, **1997**, 7029.