

UNUSUAL SPONTANEOUS $\alpha \rightarrow \beta$ ISOMERIZATION OF

UNSYMMETRICAL BENZOINS

Andrey Alexandrovich Anishchenko ^[a], Vasiliy Georgievich Shtamburg ^[b], Victor Vasilievich Shtamburg ^[c], Alexander Vladimirovich Mazepa ^[d]

Keywords: benzoins, arylglyoxals, isomerization

 α -Mixed aryl(furyl)benzoins undergo spontaneous thermal isomerization to β -isomers in the absence of a base. It is facilitated by two structural features viz. the presence of a *para*-halogen substituent in the aryl moiety and of a Me₂NN=CH-substituent at 5-position of the furan ring.

* Corresponding Authors Fax: +380-68-410-41-79

- E-Mail: Koloxai@gmail.com
- [a] Dnepropetrovsk Olesya Ghonchara National University, Dnepropetrovsk, Armeyskaya st. 22 "b", 49010. Ukraine.
- [b] Ukrainian State Chemico-Technologycal University, Dnepropetrovsk, Mostovaya st., 2/6., 49038. Ukraine. E mail stamburg@gmail.com. Tel: +380-68-415-73-93
- E mail <u>stamburg@gmail.com</u>, Tel: +380-68-415-73-93
 [c] National Technical University "Kharkov Polytechnical Institute, Kharkov, Moskovsky pr., 31/56. 61050. Ukraine E-mail: polytehnik@gmail.com, Tel: +380-68-414-82-76
 [d] A.V. Bogatsky Physiko-Chemical Institute of NAS of
- [d] A.V. Bogatsky Physiko-Chemical Institute of NAS of Ukraine. Odessa, Armeyskaya st. 21 .107. 65063. Ukraine. E mail <u>almazepa@rambler.ru</u> +380-50-390-96-32

Introduction

Earlier we had reported that phenylglyoxal reacted with 2-R-furanes (R= CH= NNMe2 or Me) selectively yielding unsymmetrical α -benzoins, such as 2-furyl-1-arylethan-1-ones 1,¹⁻⁴ which cannot be synthesized by the usual way. There are two kinds of isomeric benzoins, α -benzoins and β -benzoins.⁵ α -Benzoins are the lower-melting, less stable isomers, whereas β -benzoins are the higher-melting, more stable isomers.⁵ The higher stability of β -benzoins is explained by the possibility of conjugation between the electron donor and the electron acceptor substituents via the aryl or heteroaryl ring. For example, anisbenzoin is α -benzoin and benzanisoin is β -benzoin.⁵

Scheme 1.

In the presence of a base α -benzoins are known to isomerize^[5] to more stable β -benzoins, in which electron donor substituent of aryl moiety can conjugated with carbonyl group. It was found that α -benzoins 1 isomerized to 2-aryl-1-furylethan-1-ones 2 (β -benzoins) by the action of triethylamine ^[2-4] (Scheme 2). This isomerization may occur via the formation of the common anion **A**.

Scheme 2.

 α -Benzoins **1** was synthesized by the interaction of phenylglyoxal with suitable furans.²⁻⁴ But the reaction of these furans with other arylglyoxals has not been studied.

Experimental

¹H NMR spectra were recorded on a Varian VXP-300 spectrometer (300 MHz, internal standard – Me₄Si, chemical shifts in δ -scale (ppm), coupling constants in Hz). Mass spectra were recorded on a VG-70EQ 770 mass spectrometer in FAB mode (FAB).

2-Hydroxy-2-(2"-N,N-dimethylhydrazonyl-5"-furyl)-1-(2'-thienyl)ethanone-1 (3a). A solution of N,Ndimethylhydrazone of 2-furanecarbaldehyde (10.0 mmol, 1.38 g) in benzene (4 ml) was added to the 2thienvlglyoxal (10,0 mmol, 1.40 g) solution in PhH (14 ml), the reaction mixture was kept at 20 °C for 35 h, the precipitate was then filtered off and washed by benzene (4 ml), dried in vacuo, yielding 2.11 g (75.9 %) of 2hydroxy-2-(2"-N,N-dimethylhydrazonyl-5"-furyl)-1-(2'thienyl)ethanone-1 3a, yellow crystals, m.p. 119 - 120°C. ¹H NMR (300 MHz, (CD₃)₂CO): 2.83 (s, 6H, NMe₂), 4.98 (d, 1H, <u>CHOH</u>, ${}^{3}J$ = 6.6 Hz), 5.92 (d, 1H, CH<u>OH</u>, ${}^{3}J$ = 6.6 Hz), 6.31 (d, 1H, H_{Fur}^3 , ${}^3J = 3.3$ Hz), 6.47 (d, 1H, H_{Fur}^{4} , ${}^{3}J = 3.3 Hz$), 7.01 (s, 1H, CH=N), 7.16 (t, 1H, H_{Th}^{4} , ${}^{3}J = 5.1$ Hz),7.90 (d, 1H, H_{Th}⁵, ${}^{3}J = 5.1$ Hz), 7.91 (d, 1H, H_{Th}^{3} , ${}^{3}J = 3.4$ Hz). ${}^{1}H$ NMR (300 MHz, (CD₃)₂SO): 2.86 (s, 6H, NMe₂), 5.90 (d, 1H, <u>CH</u>OH, ${}^{3}J$ = 6.0 Hz), 6.26 (d, 1H, CH<u>OH</u>, ${}^{3}J = 6.0$ Hz), 6.39 (d, 1H,H_{Fur} 3 , ${}^{3}J = 3.0$ Hz), 6.49 (d, 1H, H_{Fur}^4 , ${}^{3}J = 3.0$ Hz), 7.10 (s, 1H, CH=N), 7.23 (t, 1H, H_{Th}^4 , ${}^{3}J = 4.2$ Hz), 8.02 (d, 1H, H_{Th}^3 , ${}^{3}J = 3.0$ Hz), 8.031 (d, 1H, H_{Th}^{5} , ${}^{3}J$ = 4.2 Hz). IR (v, cm⁻¹): 3430 (OH), 1690 (C=O), 1578 (C=N). MS (EI, m/z, $I_{rel.}$, %): 279 [M+H]⁺ (0.58), 278, M⁺, (5.76), 277 [M-H]⁺ (3.8), 276 (22.2), 167 (21.7), 166 (13.6), 165 (100), 151 (51.6), 111 (94.1). MS (FAB, m/z, $I_{rel.}$, %): 279 [M+H]⁺ (42), 278, M⁺, (52), 261 [M+H-H₂O]⁺ (30), 167 (100), 111 (21). Found (%): C 56.25, H 5.17, N 9.98. Calc. for C₁₃H₁₄N₂O₃S (%): C 56.10, H 5.07, N 10.06.

2-Hydroxy-2-(5"-methyl-2"-furyl)-1-(2'-thienyl)-

ethanone-1 (3b). The solution of 2-thienylglyxal (10.0 mmol, 1.40 g) and 2-methylfurane (27.77 mmol, 2.28 g) in PhH (9 ml) was kept in sealed tube at 18-20 °C for 44 days, the precipitate was then filtered off and washed by CH₂Cl₂, yielding 1.65 g (74.0 %) of 2-hydroxy-2-(5"-methyl-2"-furyl)-1-(2'-thienyl)ethanone-1 **3b**, colourless crystals, m.p. 141-142 °C. ¹H NMR (300 MHz, CDCl₃): 2.24 (s, 3H, Me), 4.26 (br.s., 1H, <u>CHOH</u>), 5.75 c (1H, CH<u>OH</u>), 5.94 (d, 1H, H_{Fur}⁴, ³J = 3.3 Hz), 7.1 (t, 1H, H_{Th}⁴, ³J = 4.3 Hz), 7.67 (d, 1H, H_{Th}³, ³J = 4.3 Hz), 7.71 (d, 1H, H_{Th}⁵, ³J = 3.4 Hz). MS (FAB, m/z, *I_{rel}*, %): 223 [M+H]⁺ (6), 205 [M+H-H₂O]⁺ (90), 111 (100). MS (FAB, Na⁺, m/z, *I_{rel}*, %): 245 [M+Na]⁺ (100), 205 [M+H-H₂O]⁺ (11), 111 (29). Found (%): C 59.52, H 4.41. Calc. for C₁₁H₁₀O₃S (%): C 59.44, H 4.53.

2-Hydroxy-1-(4"-methoxyphenyl)-2-(5'-N,N-di-

methylhydrazonylfuryl-2')-ethanone-1 (4). A solution of N,N-dimethylhydrazone of 2-furanecarbaldehyde (1.712 mmol, 0.236 g) in PhH (2 ml) was added to a solution of 4-methoxyphenylglyoxal (1.8043 mmol, 0.2962 g) in PhH (3 ml) at -30°C. The reaction mixture was kept at 20°C for 11 days, and then filtered. The filtrate was evaporated in vacuo 30 Torr. The residue was washed by hexane (5 ml), dried in vacuo 7 Torr, yielding 0.444 g (85.7%) of 2-hydroxy-1-(4"-methoxyphenyl)-2-(5'-N,N-dimethylhydrazonylfuryl-2')-ethanon-1 4, yellow crystals, m.p. 79-81 °C. ¹H NMR (300 MHz, CDCl₃): 2.94 (s, 6H, Me₂N), 3.886 (s, 3H, OMe), 5.98 (s, 1H, CH), 6.25 (d, 1H, H_{Fur}^{3} , ${}^{3}J = 3.3$ Hz), 6.33 (d, 1H, H_{Fur}^{4} , ${}^{3}J =$ 3.3 Hz), 6.89 (d, 2H, $H_{C6H4}^{3.5}$, ${}^{3}J = 9.0$ Hz), 7.01 (s 1H, CH=N), 7.96 (d, 2H, $H_{C6H4}^{2.6}$, ${}^{3}J = 9.0$ Hz). MS (FAB, m/z, Irel., %): 302 M⁺ (35), 285 [M+H-H₂O]⁺ (24), 167 (100), 135 (56). Found (%): C 63.64, H 6.28, N 9.31. Calc. for C₁₆H₁₈N₂O₄ (%): C 63.57, H 6.00, N 9.27. The process of synthesis of 2-Hydroxy-1-(4"-diphenyl)-2-(5'-*N*,*N*-dimethylhydrazonylfuryl-2')-ethanone-1 (5) was similar to that of compound 4, yield 90%, yellow crystals, m.p. 108 - 109 °C (PhH). ¹H NMR (300 MHz, CDCl₃): 2.95 (s, 6H, NMe₂), 6.07 (s, 1H, CH), 6.31 (d, 1H, H_{Fur}^{3} , ${}^{3}J = 3.3$ Hz), 6.35 (d, 1H, H_{Fur}^{4} , ${}^{3}J = 3.3$ Hz), 7.03 (s, 1H, CH=N), 7.36 (s, 1H, OH), 7.43 (t, 1H, H_{Ph}⁴ ${}^{3}J = 6.6$ Hz), 7.47 (t, 2H, H_{Ph} $^{3',5'}$, ${}^{3}J = 6.6$ Hz), 7.60 (d, 2H, $H_{Ph}^{2^{\circ},6^{\circ}}$, ${}^{3}J = 6.6$ Hz), 7.65 (d, 2H, $H_{C6H4}^{3,5}$, ${}^{3}J = 8.4$ Hz), 8.05 (d, 2H, $H_{C6H4}^{2,6}$, ${}^{3}J = 8.4$ Hz). MS (FAB, H⁺, m/z, $I_{\text{отн.}}$, %): 349 [M+H]⁺ (36), 348 M⁺ (40), 331 [M+H- H_2O]⁺ (29), 181 PhC₆H₄C(O)⁺ (29), 167 (100). Found (%): C 72.35, H 6.08, N 8.31. Calc. for C₂₁H₂₀N₂O₃ (%): C 72.40, H 5.79, N 8.04.

2-Hydroxy-2-(4''-chlorophenyl)-1-(5'-*N*,*N*-**dimethyl-hydrazonylfuryl-2')-ethanone-1 (6)**. A solution of *N*,*N*-dimethylhydrazone of 2-furanecarbaldehyde (31.59 mmol, 4.365 g) in PhH (5 ml) was added to a solution of 4-

chlorophenylglyoxal (38.53 mmol, 6.500 g) in PhH (20 ml). The reaction mixture was kept at 20°C for 4 days, the precipitate was then filtered off, washed by PhH (7 ml), *i*-PrOH (15 ml), dried in vacuo, yielding 5.90 g (60.9 %) of 2-hydroxy-2-(4"-chlorophenyl)-1-(5"-N,N-dimethylhydrazonofuryl-2')-ethanone-1 6, red crystals, m.p. 150-151 °C (*i*-PrOH). ¹H NMR (300 MHz, (CD₃)₂SO): 3.00 (s, 6H, NMe₂), 5.72 (d, 1H, <u>CH</u>OH, ${}^{3}J = 5,1$ Hz), 6.18 (d, 1H, CH<u>OH</u>, ${}^{3}J = 5.1$ Hz), 6.56 (d, 1H, H_{Fur}⁴, ${}^{3}J = 3.9$ Hz), 7.10 (s, 1H, CH=N), 7.39 (d, 2H, $H_{C6H4}^{3.5}$, ${}^{3}J = 8.4$ Hz), 7.49 (d, 2H, $H_{C6H4}^{2,6}$, ${}^{3}J = 8.4$ Hz), 7.68 (d, 1H, H_{Fur}^{3} , ${}^{3}J = 3.9$ Hz). IR (v, cm⁻¹): 3415 (OH); 1635 (C=O); 1555 (C=N). MS (EI, m/z, I_{rel} , %): 308 M⁺(0,5); 306 M⁺, [M-H₂]⁺ (4.9), 304 [M-H₂]⁺(7.1), 166 (12.2), 165 (100), 143 (0.5), 141 (14.8), 139 (40.6), 113 (70.0), 111 (20.4), 109 (20.4). Found (%): C 58.84, H 4.72, N 9.02. Calc. for C₁₅H₁₅ClN₂O₃ (%): C 58.73, H 4.93, N 9.13.

2-Hydroxy-2-(4"-bromophenyl)-1-(5'-N,N-dimethylhydrazonylfuryl-2')-ethanon-1 (7). A solution of N,Ndimethylhydrazone of 2-furanecarbaldehyde (2.70 mmol, 0.373 g) in PhH (2 ml) was added to a solution of 4bromophenylglyoxal (2.70 mmol, 0,580 g) in PhH (20 ml). The reaction mixture was kept at 20°C for 4 days, and then evaporated in vacuo. The residue was dissolved in CH₂Cl₂ and precipitated by an addition of hexane (10ml). The precipitate was filtered off and dried, yielding 0.51 g (54,0 %) of 2-hydroxy-2-(4"bromophenyl)-1-(5'-N,N-dimethylhydrazonylfuryl-2')ethanone-1 7, brown crystals, m.p. 127 - 129°C (with decomp.). ¹H NMR (300 Hz, CDCl₃): 3.08 (s, 6H, NMe₂), 5.79 (br. S, 1H, CHOH), 6.92 (br. s, 1H, CHOH,), 6.46 (d, 1H, H_{Fur}^4 , ${}^3J = 3.9$ Hz), 7.20 (d, 1H, H_{Fur}^3 , ${}^3J = 3.9$ Hz), 7.32 (s, 1H, CH=N), 7.35 (d, 2H, $H^{3,5}_{C6H4r}$, ${}^{3}J = 8,4$ Hz), 7,45 (d, 2H, H^{2,6}_{C6H4}, ${}^{3}J$ = 8.4 Hz). MS (EI, m/z, $I_{\text{отн-}}$, %): 186 Br-C₆H₄C⁺H(OH) (30); 351 $M^{+}(28);$ 165 Me₂NN=CH-C₄H₂O-C⁺=O (100). Found (%): C 51.02, H 4.64, N 8.17. Calc. for C15H15BrN2O3 (%): C 51.30; H 4.31; N 7.98.

The filtrate was evaporated *in vacuo* yielding 0.20 g (22.0 %) of 2-(4''-bromophenyl)-1-(5'-*N*,*N*-dimethyl-hydrazonylfuryl-2')-ethandione-1,2 **8**, red-brown solid. ¹H NMR (300 MHz, CDCl₃): 3.00 (s, 6H, NMe₂), 6.60 (d. 1H, H⁴_{Fur}, ³*J* = 3.6 Hz), 7.06 (s, 1H, CH=N), 7.48 (d, 1H, H³_{Fur}, ³*J* = 3.6 Hz), 7.74 (d, 2H, H^{3.5}_{C6H4}, ³*J* = 8.7 Hz), 7.81 (d, 2H, H^{2.6}_{C6H4}, ³*J* = 8.7 Hz). MS (FAB, H⁺, m/z, *I*_{rel}, %): 350 [M+H]⁺ (7.8), 348 [M-H]⁺ (8.3), 165 (100).

2-Hydroxy-2-(5'-methylfuryl-2')-1-(4"-chlorophenyl)-ethanone-1 (9) A solution of 4-chlorophenylglyoxal (1.174 mmol, 0.198 g) and 2-methylfuran (4.215 mmol, 0.346 g) in CH₂Cl₂ (9 ml) in a sealed tube was kept at 20 - 23 °C in dark for 120 h, then the reaction mixture was concentrated in vacuo 30 Torr to 1 ml volume and hexane (5 ml) was added. After keeping at 5°C for 4 days, the precipitate was filtered off and dried yielding 0.269 g (91.0 %) of 2-hydroxy-2-(5'-methylfuryl-2')-1-(4''chlorophenyl)ethanone-1 9, yellow crystals, m.p. 86 - 88 °C (hexane). ¹H NMR (300 MHz, CDCl₃): 2.22 (s, 3H, Me), 4.31 (d, 1H, CHOH, ${}^{3}J = 6.0$ Hz), 5.90 (d and br. s, 2H, H_{Fur}^4 and OH, ${}^{3}J = 3.0$ Hz), 6.21 (d, 1H, H_{Fur}^3 , ${}^{3}J =$ 3.0 Hz), 7.41 (d, 2H, $H_{C6H4}^{3,5}$, ${}^{3}J = 8.1$ Hz), 7.90 (d, 2H, $H_{C6H4}^{2,6}$, ${}^{3}J = 8.1$ Hz). IR (v, cm⁻¹): 3437 (OH), 1695 (C=O). MS (FAB, K⁺, m/z, I_{rel.},%): 291 [M+K]⁺ (20), 289 $\begin{array}{l} [M+K]^{+} \ (49), \ 235 \ [M+H-H_2O]^{+} \ (45), \ 233 \ [M+H-H_2O]^{+} \\ (100), \ 141 \ [ClC_6H_4C(O)^{+}] \ (14), \ 139 \ [ClC_6H_4C(O)^{+}] \ (38). \\ Found \ (\%): \ C \ 62.10, \ H \ 4.55. \ Calc. \ for \ C_{13}H_{11}ClO_3 \ (\%): \ C \ 62.29, \ H \ 4.42. \end{array}$

2-Hydroxy-2-(5'-methylfuryl-2')-1-(4''-bromophe-

nyl)ethanone-1 (10) was synthesized in a manner similar to that for compound **9**, yield 63 %, yellow crystals, m.p. 69 – 70 °C (CH₂Cl₂ - hexane). ¹H NMR (300 MHz, CDCl₃): 2.22 (s, 3H, Me), 4.30 (br. s, 1H, <u>CH</u>OH), 5.90 (br. s, 2H, H_{Fur}⁴ and OH), 6.21 (d, 1H, H_{Fur}³, ³*J* = 3.0 Hz), 7.58 (d, 2H, H_{C6H4}^{3.5}, ³*J* = 8.7 Hz), 7.82 (d, 2H, H_{C6H4}^{2.6}, ³*J* = 8.7 Hz). IR (v, cm⁻¹): 3440 (OH), 1700 (C=O). MS (FAB, H⁺, m/z(I_{rel},%): 297 [M+H]⁺ (2), 295 [M+H]⁺ (6), 293 [M-H]⁺ (4), 279 [M+H-H₂O]⁺ (84), 277 [M+H-H₂O]⁺ (82), 111 Me-C₄H₃O-CH⁺(OH) (100). MS (FAB, K⁺, m/z(I_{rel},%): 335 [M+K]⁺ (50), 333 [M+K]⁺ (60), 279 [M+H-H₂O]⁺ (21), 277 [M+H-H₂O]⁺ (28), 111 Me-C₄H₃O-CH⁺(OH) (58), 39 K⁺(100). Found (%): C 53.08, H 3.82. Calc. For C₁₃H₁₁BrO₃ (%): C 52.91, H 3.76.

2-Hydroxy-2-(5'-methylfuryl-2')-1-(4''-fluorophe-

nyl)ethanone-1 (11) was synthesized in a manner similar to that for compound **9**, yield 84%, yellow crystals, m.p. 90 - 92 °C (CH₂Cl₂ – hexane). ¹H NMR (300 MHz, CDCl₃): 2.22 (s, 3H, Me), 4.34 (br. s, 1H, <u>CHOH</u>), 5.91 (br. s, 2H, H_{Fur}⁴ and OH), 6.21 (d, 1H, H_{Fur}³, ³*J* = 3.0 Hz), 7.11 (dd, 2H, H_{C6H4}^{3,5}, ³*J* = 8.4 Hz, ^{H-F}*J* = 8.4 Hz), 8.00 (dd, 2H, H_{C6H4}^{2,6}, ³*J* = 8.4 Hz, ^{H-F}*J* = 8.4 Hz). IR (v, cm⁻¹): 3440 (OH), 1698 (C=O). MS (EI, m/z (I_{rel},%)): 123 [FC₆H₄C(O)⁺] (100). MS (FAB, K⁺, m/z(I_{rel},%): 273 [M+K]⁺ (16), 217 [M+H-H₂O]⁺ (100), 123 [FC₆H₄C(O)⁺] (53). Found (%): C 66.31, H 4.93. Calc for C₁₃H₁₁FO₃ (%): C 66.66, H 4.73.

2-Hydroxy-1-(4"-chlorophenyl)-2-(5'-N,N-dimeth-

ylhydrazonylfuril-2')-ethanon-1 (12).N.N-Dimethylhydrazone of 2-furanecarbaldehyde (3.90 mmol, 0.539 g) was added to a cooled (-20°C) solution of 4chlrophenylglyoxal (3.90 mmol, 0.650 g) in Et₂O (20 ml). The reaction mixture was kept for a week at -20°C, and then evaporated in vacuo. The residue was washed by hexane and dried in vacuo 2 Torr, yielding 0.74 g (62 %) 2-hydroxy-1-(4"-chlorophenyl)-2-(5'-N,N-dimethylof hydrazonofuryl-2')ethanon-1 12, yellow viscous oil. ¹H NMR (300 MHz, (CD₃)₂SO): 2.85 (s, 6H, NMe₂), 6.13 (br. s, 2H, CHOH), 6.35 (d, 1H, H_{Fur}^{3} , ${}^{3}J = 3.3$ Hz), 6.42 (d, 1H, H_{Fur}^4 , ${}^3J = 3.3$ Hz), 7.07 (s, 1H, CH=N), 7.58 (d, 2H, $H_{Ar}^{3,5}$, ${}^{3}J = 8.1$ Hz), 8.01 (d, 2H, $H_{Ar}^{2,6}$, ${}^{3}J = 8.1$ Hz). ¹H NMR (300 MHz, CDCl₃): 2.96 (s, 6H, NMe₂), 6.01 (s, 1H, CH); 6.29 (d, 1H, H_{Fur}^3 , ${}^{3}J = 3.3$ Hz), 6.34 (d, 1H, H_{Fur}^4 , ${}^{3}J = 3.3$ Hz), 7.01 (s, 1H, CH=N), 7.15 (br. s, 1H, OH), 7.42 (d, 2H, $H_{C6H4}^{3.5}$, ${}^{3}J = 8.7$ Hz), 7.93 (d, 2H, $H_{C6H4}^{2,6}$, ${}^{3}J = 8.7$ Hz). MS (FAB, m/z, I_{OTH} , %): 309 $[M+H]^+$ (5), 307 $[M+H]^+$ (16), 291 $[M+H-H_2O]^+$ (6), 289 $[M+H-H_2O]^+$ (20), 167 Me₂NN=CH-C₄H₂O-CH⁺(OH) (100), 141 Cl-C₆H₄-C⁺=O (13), 139 Cl-C₆H₄-C⁺=O (33). Found (%): C 58.91, H 4.70, N 9.11. Calc. for C₁₅H₁₅ClN₂O₃ (%): C 58.73, H 4.93, N 9.13.

2-Hydroxy-1-(4''-bromophenyl)-2-(5'-N,N-dimethylhydrazonylfuril-2')-ethanone-1 (13). N,N-Dimethylhydrazone of 2-furanecarbaldehyde (2.30 mmol, 0.318 g) was added to the a solution of 4bromophenylglyoxal (2.30 mmol, 0.480 g) in Et₂O (20

ml) at -20° C, the reaction mixture was kept at -20° C for a week, and then evaporated in vacuo 1 Torr at 10° C. The residue was washed by hexane and dried in vacuo 1 Torr, yielding 0.72 g (86 %) of 2-hydroxy-1-(4"bromophenyl)-2-(5'-N,N-dimethylhydrazonylfuril-2')ethanone-1 13, dark brown viscous oil. ¹H NMR (300 MHz, CDCl₃): 2.96 (s, 6H, NMe₂), 6.00 (s, 1H, CH), 6.29 (d, 1H, H_{Fur}^{3} , ${}^{3}J = 3.3$ Hz), 6.34 (d, 1H, H_{Fur}^{4} , ${}^{3}J = 3.3$ Hz), 7.00 (s, 1H, CH=N), 7.58 (d, 2H, $_{C6H4}^{3.5}$, $^{3}J = 8.7$ Hz), 7.84 (d, 2H, $H_{C6H4}^{2,6}$, ${}^{3}J = 8.7$ Hz). MS (FAB, m/z, $I_{\text{rel.}}$ %): 353 [M+H]⁺ (21), 352 M⁺ (23), 351 [M+H]⁺ (28), 350 M⁺ (24), 335 [M+H-H₂O]⁺ (23), 333 [M+H-H₂O]⁺ (23), 167 Me₂NN=CH-C₄H₂O-CH⁺(OH) (100). 185 Br- C_6H_4 -C⁺=O (30). 183 Br-C₆H₄-C⁺=O (30). Found (%): C 52.01, H 4.55, N 7.82. Calc. for C₁₅H₁₅BrN₂O₃ (%): C 51.30, H 4.31, N 7.98.

2-Hydroxy-1-(4"-fluorophenyl)-2-(5"-N,N-dimethylhydrazonylfuril-2")-ethanone-1 (14).

(i) A solution of N,N-dimethylhydrazone of 2furancarbaldehyde (1.404 mmol, 0.194 g) and 4fluorophenylglyoxal (1.615 mmol, 0.245 g) in PhH (12 ml) under argon was kept in a sealed tube at 40°C for 9h and at 24°C for 80 h, and then evaporated in vacuo to a volume of 3 ml and hexane (10 ml) was added. The separated oil was extracted by CCl₄ (10 ml), the extract was evaporated in vacuo 2 Torr, yielding 0.302 g (74.3%) 2-hydroxy-1-(4"-fluorophenyl)-2-(5"-N,N-dimethylhydrazonylfuril-2')-ethanone-1 14, red semi-solid substance. ¹H NMR (300 MHz, CDCl₃): 2.94 (s, 6H, NMe₂), 6.00 (s, 1H, <u>CHOH</u>), 6.28 (d, 1H, H_{Fur}^{3} , ${}^{3}J = 3.6$ Hz), 6.33 (d, 1H, H_{Fur}^{4} , ${}^{3}J = 3.6$ Hz), 7,00 (s, 1H, CH=N), 7.15 (dd, 2H, $H_{C6H4}^{2,6}$, ${}^{3}J = 8.7$ Hz, J = 8.7 Hz), 8.01 (dd, 2H, $H_{C6H4}^{3,5}$, ${}^{3}J = 8.7 \ \Gamma u$, ${}^{\text{F-H}}J = 5.25 \ \text{Hz}$). MS (EI, m/z, I_{rel}(%)): 290 M⁺ (24), 167 Me₂N-N+CH-C₄H₂O-C⁺H(OH) (83), 123 $FC_6H_4C(O)^+$ (100). MS (FAB, H⁺, m/z, I_{rel.}(%)): 291 [M+H]⁺ (39), 290 M⁺(38), 273 [M+H-H₂O]⁺ (35), 167 $Me_2N-N+CH-C_4H_2O-C^+H(OH)$ (100), 123 $F-C_6H_4-C^+=O$ (54). Found (%): C 62.11, H 4.80, N 9.72. Calc. for C₁₅H₁₅FN₂O₃ (%): C 62.06, H 5.21, N 9.65.

From the hexane phase, 0.066 g (16.1%) 1-(5'-N,Ndimethylhydrazonylfuril-2')-2-(4''-fluorophenyl)-ethandione-1,2 15 was isolated by crystallization as black-red solid. ¹H NMR (300 MHz, CDCl₃): 3.12 (s, 6H, NMe₂), 6.63 (d, 1H, H⁴_{Fur}, ${}^{3}J$ = 3.9 Hz), 7.03 (s, 1H, CH=N), 7.18 (dd, 2H, H_{C6H4}^{2,6}, ${}^{3}J$ = 8.7 Hz, ${}^{\text{F-H}}J$ = 8.55 Hz), 7.40 (d, 1H, H ${}^{3}_{\text{Fur}}$, ${}^{3}J$ = 3.9 Hz), 8.12 (dd, 2H, H_{C6H4}^{3,5}, ${}^{3}J$ = 8.7 Hz, ${}^{\text{F-}}$ ^HJ = 5.55 Hz). MS (EI, m/z, I_{rel}.(%)): 288 M⁺ (27); 165 $Me_2NN=CH-C_4H_2O-C^+=O$ (100), 123 $FC_6H_4C(O)^+$ (25). Found (%): N 9.70. Calc. for C₁₅H₁₃FN₂O₃ (%):N 9.72. (ii) N,N-Dimethylhydrazone of 2-furancarbaldehyde (0.800 mmol, 0.110 g) was added to a solution of 4fluorophenylglyoxal (0.800 mmol, 0.121 g) in Et₂O (20 ml) at -20°C, the reaction mixture was kept at -20°C for 4 days and then evaporated in vacuo 3 Torr, yielding 0.190 (81.8%) 2-hydroxy-1-(4"-fluorophenyl)-2-(5"-*N*,*N*g dimethylhydrazonylfuril-2')-ethanone-1 14, identified by ¹H NMR.

(iii) A solution of *N*,*N*-dimethylhydrazone of 2furancarbaldehyde (1.615 mmol) and 4fluorophenylglyoxal (1.717 mmol) in PhH (10 ml) was kept at 20°C in a sealed tube for 7 days and then evaporated *in vacuo*. The residue was washed by hexane and dried *in vacuo*, yielding 0.464 g (99%) of 2-hydroxy-1-(4^{**}-fluorophenyl)-2-(5^{*}-*N*,*N*-dimethylhydrazonylfuril-2^{*})-ethanone-1 **14**, identified by ¹H NMR.

2-Hydroxy-2-(4"-fluorophenyl)-1-(5'-N,N-dimethylhydrazonylfuryl-2')-ethanone-1 (16). A sample of 2hydroxy-1-(4"-fluorophenyl)-2-(5'-5'-N,N-dimethylhydrazonylfuryl-2'-)-ethanone-1 14 was kept at 10°C in dark for 4 months. A quantitative isomerization took place to 2-hydroxy-2-(4"-fluorophenyl)-1-(5'-N,N-dimethylhydrazonylfuryl-2')-ethanon-1 16, red solid, m.p. 117-120°C (with decomp.). ¹H NMR (300 MHz, CDCl₃): 3.08 (s, 6H, NMe₂), 5.73 (s, 1H, CH), 6.47 (d, 1H, H_{Fur}^{4} , ³*J* = 3.9 Hz), 6.93 (s, 1H, CH=N), 7.02 (dd, 2H, $H_{Ar}^{2,6}$, ${}^{3}J = 8.7$ Hz, J =8.7 Hz), 7.19 (d, 1H, H_{Fur}^{3} , ${}^{3}J = 3.9$ Hz), 7.42 (dd, 2H, $H_{Ar}^{3,5}$, ${}^{3}J = 8.7$ Hz, ${}^{F-H}J = 5.25$ Hz). IR (v, cm⁻¹): 1640 (C=O), 1600 (C=N). MS (EI, m/z, I_{rel}(%)): 290 M⁺ (10); 166 Me₂NN=CH-C₄H₂O-CH=O^{+.} (81). 124FC₆H₄CH(=O)^{+.} (100). MS (FAB, H⁺, m/z, I_{rel.}(%)): 289 [M+H]⁺ (58), 245 (38), 165 (76), 154 (100), 136 (80), 123 (53). Found (%): C 62.25, H 5.42. Calc. for C₁₅H₁₅FN₂O₃ (%): C 62.06, H 5.21.

Results and Discussion

By the investigating the reaction of arylglyoxal with the 2-R-furanes, we have established that the 4-R'phenylglyoxales (R'=OMe, Ph,) and 2-thienylglyoxal react in similar manner with *N*,*N*-dimethylhydrazone of 2-furancarbaldehyde and 2-methylfurane yielding α benzoins, such as 2-furyl-1-arylethan-1-ones **3-5**, at room temperature (Scheme 3).

Scheme 3

However, it was found that 4-chlorophenylglyoxal and 4-bromophenylglyoxal react with *N*,*N*-dimethylhydrazone of 2-furancarbaldehyde yielding β -benzoins, such as 2-aryl-1-furylethan-1-ones **6**,**7** if this reaction carries out at room temperature (18 - 28°C) in dichloromethane or benzene solution. This reaction also yielded some 1,2-diketone **8** in the last case. Under the similar conditions 4-X-phenylglyoxals (X=Cl, Br, F) react with 2-methylfuran yielding only α -benzoins, 2-furyl-1-arylethan-1-ones **9-11** (Scheme 4).

This unusual formation of 2-aryl-1-furylethan-1-ones 6,7 from 4-chloro- and 4-bromophenylglyoxals must have arisen from the formation of α -benzoins, 2-furyl-1-arylethan-1-ones 12,13, in the first stage. IN the second

stage, α -benzoins **12**, **13** spontaneously isomerize into β -benzoins **6**, **7** at room temperature (Scheme 5).

Scheme 4

Scheme 5.

Actually, it was found that at $-23 - -20^{\circ}$ C, 4-chloro- and 4-bromophenylglyoxals react with *N*,*N*-dimethylhydrazone of 2-furancarbaldehyde selectively yielding unstable 2-furyl-1-arylethan-1-ones **12**,**13**, which spontaneously isomerize in 2-aryl-1-furylethan-1-ones **6**,**7** at room temperature. The unstable α -benzoins **12**,**13** had been characterized by ¹H NMR and MS spectra.

4-Fluorophenylglyoxal reacts with *N*,*N*-dimethylhydrazone of 2-furancarbaldehyde at $20-40^{\circ}$ C range yielding mainly α -benzoin **14** (Scheme 6). At 40° C some 1,2-diketone **15** is also formed.

Scheme 6

Compound		Resonance, σ, ppm				
Number	X in 4-X-C ₆ H ₄	H _{Furane}		C ₆ H ₄		Me ₂ N
		H ³ Fur	H^{4} Fur	H ^{3,5}	H ^{2,6}	
α- 3a *	2-thienyl	6.31	6.47	-	-	2.83
α- 3a**	2-thienyl	6.39	6.49	-	-	2.86
α-4	OMe	6.27	6.35	6.91	7.98	2.96
α-5	Ph	6.31	6.35	7.65	8.05	2.95
α-12**	Cl	6.35	6.42	7.58	8.01	2.85
α-12	Cl	6.29	6.34	7.42	7.93	2.96
α-13	Br	6.29	6.34	7.58	7.84	2.96
α-14	F	6.28	6.33	7.15	8.01	2.94
β -6**	Cl	6.56	7.68	7.39	7.49	3.00
β -7	Br	6.46	7.20	7.35	7.45	3.08
β-16	F	6.47	7.19	7.42	7.02	3.08

Table 1. The characteristic ¹H NMR chemical shifts of α -benzoins **3a**,**4**,**5**,**12-14** and β -benzoins **6**,**7**,**16** in CDCl₃

*) in (CD₃)₂CO, **) in (CD₃)₂SO

Mixed α -benzoin 14 is more stable than mixed α benzoins 12,13 and can exist for 1-2 months at 20°C. However, after that period α -benzoin 14 spontaneously isomerizes to β -benzoin 16 in solid state as well as in solution. On storing at 5-6°C for 4–5 months, α -benzoin 14 isomerizes into β -benzoin 16.

On the other hand, α -benzoins 1a, 3a,b, 4,5 and 9-11 remained unchanged after storing at 5°C for more than five years.

The structures of the compounds **3-16** were confirmed by data of ¹H NMR spectrometry and MS data. ¹H NMR spectra of α -benzoins **3a**,**4**,**5**,**12-14** and β -benzoins **6**,**7**,**16** are given in the Table 1.

Scheme 7 (EI)

For β -benzoins **6**,**7**,**16** the differences of chemical shifts of H⁴- and H³ furan protons are substantial more, 0.72-1.12 ppm, whereas that for α -benzoins **3a**,**4**,**5**,**12-14**, is 0.04-0.16 ppm. That is caused by the possibility of the conjugation of Me₂N-moiety with carbonyl group in β benzoins. In α -benzoins this possibility is absent. The other consequence of this conjugation is some low field shift of the resonance of Me₂N-group protons for β benzoins **6**,**7**,**16**.

Scheme 8 (FAB)

Conversely, the difference of the chemical shifts of H^{2,6} and ^{3,5}H of *para*-substituted benzene ring for α -benzoins **4,5,12-14** is substantially more, 0.40-1.07 ppm (but for α -benzoin **13** – only 0.26 ppm), whereas that for β -benzoins **6,7** is only 0.10 ppm (excluding β -benzoin **16** – 0.40 ppm). This phenomenon is caused by the possibility of the conjugation of *para*-substituent with carbonyl group in α -benzoins. In β -benzoins this possibility is absent.

Scheme 9 (EI)

d β- An alternative mechanisn

Mass spectra may also differentiate between α - and β benzoins as was shown ealier for α -benzoin **1a** and β benzoin **1b**^[2]. For α -benzoins, in mass spectra the furan "benzylic' ions with m/z 167 and and *para*-substituted aroyl cations dominate (Scheme 7,8,9). Similar fragmentation was observed for unsubstituted α -benzoin **1a**.²

On the other hand, MS spectrum of β -benzoin **6** is dominated by the furoyl cation with m/z 165 (Scheme 10). Similar fragmentation was observed for unsubstituted β -benzoin **1b**^[2].

Scheme 10. (EI)

Only one case of the $\alpha \rightarrow \beta$ benzoin isomerization by heating has been reported earlier^[6]. Anisbenzoin isomerizes to benzanisoin by heating the former above its melting point (89°C) or by distillation in vacuum^[6]. But the spontaneous $\alpha \rightarrow \beta$ benzoin isomerization at the room temperature was not reported.

Therefore, it may be supposed that this spontaneous $\alpha \rightarrow \beta$ benzoins rearrangement of these mixed aryl(furyl)benzoins is caused by two reasons. First, the presence of a *para*-halogen substituent in the aryl moiety and secondly the presence of Me₂NN=CH-substituent at 5-position of furan ring. This spontaneous $\alpha \rightarrow \beta$ benzoins rearrangement takes place in the absence of bases. The Me₂N-group of β -benzoins 6,7,16 cannot been regarded as base center because it presence in α -benzoins 1a, 3a,b, 4,5 and 9-11 does not cause their spontaneous $\alpha \rightarrow \beta$ rearrangement.

An alternative mechanism for the spontaneous $\alpha \rightarrow \beta$ benzoins isomerisation of α -benzoins which does not involve the formation of the intermediate anion A is depicted in Scheme 11.

Probably, intramolecular hydroxyl group protonation of the oxygen atom of carbonyl group increases the electron density on σ^*_{C-H} orbital. The H-atom becomes intramolecular nucleophilic center. The latter causes the synchronous 1,2-hydride shift as nucleophilic attack on carbonyl group finally yielding β -benzoins 6,7,16.

Scheme 11.

Thus, the new kind of $\alpha \rightarrow \beta$ benzon isomerization was found. It is independent of base catalyst and takes place at temperature growth from -20°C to room temperature.

References

- ¹Shtamburg, V. G., Anishchenko, A. A., Ivonin, S. P., *Chemistry of Nitrogen Containing Heterocycles - 2000*, Thesis, **2000**, Kharkiv, 117.
- ²Ivonin, S. P., Anishchenko, A. A., Samucha, A. V., Lapandin, A. V., Serduk, V. N., Pleshkova, A. P., Shtamburg, V,G., *Visnyk Dnipropetrovsk. Univ., Khim.*, **2000**, 5(5), 27-32.
- ³Ivonin, S. P., Lapandin, A. V., Anishchenko, A. A., Shtamburg, V. G., Synth. Commun., **2004**, *34*, 451-461.
- ⁴Ivonin, S. P., Lapandin, A. V., Anishchenko, A. A., Shtamburg V. G., *Eur. J. Org. Chem.*, **2004**, 4688-4693.
- ⁵Ide, W: S., Buck, J. S., in: *Organic Reactions*, R. Adams (Ed.), Wiley, New York, **1948**, *4*, 269-304.

⁶Julian, P. L., Passler, W., J. Am. Chem. Soc., 1932, 54, 4756.

Received: 02.02.2013. Accepted: 08.02.2013.