E®
 UNUSUAL SPONTANEOUS $\alpha \rightarrow \beta$ ISOMERIZATION OF UNSYMMETRICAL BENZOINS

Andrey Alexandrovich Anishchenko ${ }^{[a]}$, Vasiliy Georgievich Shtamburg ${ }^{[b]}$, Victor Vasilievich Shtamburg ${ }^{[c]}$, Alexander Vladimirovich Mazepa ${ }^{[d]}$

Keywords: benzoins, arylglyoxals, isomerization
α-Mixed aryl(furyl)benzoins undergo spontaneous thermal isomerization to β-isomers in the absence of a base. It is facilitated by two structural features viz. the presence of a para-halogen substituent in the aryl moiety and of a $\mathrm{Me}_{2} \mathrm{NN}=\mathrm{CH}$-substituent at 5-position of the furan ring.

* Corresponding Authors

Fax: +380-68-410-41-79
E-Mail: Koloxai@gmail.com
[a] Dnepropetrovsk Olesya Ghonchara National University, Dnepropetrovsk, Armeyskaya st. 22 " b ", 49010. Ukraine.
[b] Ukrainian State Chemico-Technologycal University, Dnepropetrovsk, Mostovaya st., 2/6,. 49038. Ukraine, E mail stamburg@gmail.com, Tel: +380-68-415-73-93
[c] National Technical University "Kharkov Polytechnical Institute, Kharkov, Moskovsky pr., 31/56. 61050. Ukraine E-mail: polytehnik@ gmail.com, Tel: +380-68-414-82-76
[d] A.V. Bogatsky Physiko-Chemical Institute of NAS of Ukraine. Odessa, Armeyskaya st. 21.107. 65063. Ukraine. E mail almazepa@rambler.ru +380-50-390-96-32

Introduction

Earlier we had reported that phenylglyoxal reacted with 2-R-furanes ($\mathrm{R}=\mathrm{CH}=\mathrm{NNMe} 2$ or Me) selectively yielding unsymmetrical α-benzoins, such as 2 -furyl-1-arylethan-1-ones $1,{ }^{1-4}$ which cannot be synthesized by the usual way. There are two kinds of isomeric benzoins, α benzoins and β-benzoins. ${ }^{5} \alpha$-Benzoins are the lowermelting, less stable isomers, whereas β-benzoins are the higher-melting, more stable isomers. ${ }^{5}$ The higher stability of β-benzoins is explained by the possibility of conjugation between the electron donor and the electron acceptor substituents via the aryl or heteroaryl ring. For example, anisbenzoin is α-benzoin and benzanisoin is β benzoin. ${ }^{5}$

Scheme 1.

In the presence of a base α-benzoins are known to isomerize ${ }^{[5]}$ to more stable β-benzoins, in which electron donor substituent of aryl moiety can conjugated with carbonyl group. It was found that α-benzoins $\mathbf{1}$ isomerized to 2-aryl-1-furylethan-1-ones 2 (β-benzoins) by the action of triethylamine ${ }^{[2-4]}$ (Scheme 2). This isomerization may occur via the formation of the common anion \mathbf{A}.

Scheme 2.
α-Benzoins 1 was synthesized by the interaction of phenylglyoxal with suitable furans. ${ }^{2-4}$ But the reaction of these furans with other arylglyoxals has not been studied.

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian VXP-300 spectrometer (300 MHz , internal standard $-\mathrm{Me}_{4} \mathrm{Si}$, chemical shifts in δ-scale (ppm), coupling constants in Hz). Mass spectra were recorded on a VG-70EQ 770 mass spectrometer in FAB mode (FAB).

2-Hydroxy-2-(2''-N,N-dimethylhydrazonyl-5' '-furyl)-1-(2'-thienyl)ethanone-1 (3a). A solution of N, N dimethylhydrazone of 2-furanecarbaldehyde (10.0 mmol , $1.38 \mathrm{~g})$ in benzene (4 ml) was added to the 2 thienylglyoxal ($10,0 \mathrm{mmol}, 1.40 \mathrm{~g}$) solution in $\mathrm{PhH}(14$ ml), the reaction mixture was kept at $20^{\circ} \mathrm{C}$ for 35 h , the precipitate was then filtered off and washed by benzene (4 ml), dried in vacuo, yielding $2.11 \mathrm{~g}(75.9 \%)$ of 2-hydroxy-2-(2"-N,N-dimethylhydrazonyl-5"-furyl)-1-(2'-thienyl)ethanone-1 3a, yellow crystals, m.p. $119-120^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$): 2.83 (s, $6 \mathrm{H}, \mathrm{NMe}_{2}$), $4.98\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CHOH},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}\right), 5.92\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CHOH},{ }^{3} \mathrm{~J}\right.$ $=6.6 \mathrm{~Hz}), 6.31\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {Fur }}{ }^{3},{ }^{3} J=3.3 \mathrm{~Hz}\right), 6.47(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\text {Fur }}{ }^{4},{ }^{3} \mathrm{~J}=3.3 \mathrm{~Hz}\right), 7.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.16\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Th}}{ }^{4}\right.$, $\left.{ }^{3} J=5.1 \mathrm{~Hz}\right), 7.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Th}}{ }^{5}{ }^{3} J=5.1 \mathrm{~Hz}\right), 7.91(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}_{\mathrm{Th}}{ }^{3},{ }^{3} \mathrm{~J}=3.4 \mathrm{~Hz}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$): 2.86 (s, 6H, NMe 2), $5.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CHOH},{ }^{3} J=6.0 \mathrm{~Hz}\right), 6.26(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{CHOH},{ }^{3} J=6.0 \mathrm{~Hz}\right), 6.39\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Fur}}{ }^{3},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}\right)$, $6.49\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {Fur }}{ }^{4},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}\right), 7.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.23$ $\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Th}}{ }^{4},{ }^{3} J=4.2 \mathrm{~Hz}\right), 8.02\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Th}}{ }^{3},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}\right)$,
$8.031\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Th}}{ }^{5},{ }^{3} \mathrm{~J}=4.2 \mathrm{~Hz}\right)$. IR $\left(\mathrm{v}, \mathrm{cm}^{-1}\right): 3430(\mathrm{OH})$, 1690 (C=O), 1578 (C=N). MS (EI, m/z, $I_{\text {rel. }}, \%$): 279 $[\mathrm{M}+\mathrm{H}]^{+}(0.58), 278, \mathrm{M}^{+},(5.76), 277[\mathrm{M}-\mathrm{H}]^{+}(3.8), 276$ (22.2), 167 (21.7), 166 (13.6), 165 (100), 151 (51.6), 111 (94.1). MS (FAB, m/z, $I_{\text {rel }}, \%$): $279[\mathrm{M}+\mathrm{H}]^{+}(42), 278$, M^{+}, (52), $261\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(30), 167$ (100), 111 (21). Found (\%): C 56.25, H 5.17, N 9.98. Calc. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (\%): C 56.10, H 5.07, N 10.06.

2-Hydroxy-2-(5''-methyl-2'-furyl)-1-(2'-thienyl)-

ethanone-1 (3b). The solution of 2-thienylglyoxal (10.0 $\mathrm{mmol}, 1.40 \mathrm{~g}$) and 2-methylfurane ($27.77 \mathrm{mmol}, 2.28 \mathrm{~g}$) in $\mathrm{PhH}(9 \mathrm{ml})$ was kept in sealed tube at $18-20^{\circ} \mathrm{C}$ for 44 days, the precipitate was then filtered off and washed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, yielding $1.65 \mathrm{~g}(74.0 \%)$ of 2-hydroxy-2-(5"-methyl-2"-furyl)-1-(2'-thienyl)ethanone-1 3b, colourless crystals, m.p. 141-142 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2.24 (s, $3 \mathrm{H}, \mathrm{Me}$), 4.26 (br.s., $1 \mathrm{H}, \underline{\mathrm{CHOH}), 5.75 \mathrm{c}(1 \mathrm{H} \text {, }}$ $\mathrm{CHOH}), 5.94\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {Fur }}{ }^{4},{ }^{3} J=3.3 \mathrm{~Hz}\right), 6.31(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\text {Fur }}{ }^{3},{ }^{3} J=3.3 \mathrm{~Hz}\right), 7.1\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Th}}{ }^{4},{ }^{3} J=4.3 \mathrm{~Hz}\right), 7.67(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{Th}}{ }^{3},{ }^{3} \mathrm{~J}=4.3 \mathrm{~Hz}\right), 7.71\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Th}}{ }^{5},{ }^{3} J=3.4 \mathrm{~Hz}\right)$. MS (FAB, m/z, $I_{\text {rel. }}, \%$): $223[\mathrm{M}+\mathrm{H}]^{+}(6), 205[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}(90), 111$ (100). MS (FAB, $\mathrm{Na}^{+}, \mathrm{m} / \mathrm{z}, I_{\text {rel }}, \%$): 245 $[\mathrm{M}+\mathrm{Na}]^{+}(100), 205\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(11), 111 (29). Found (\%): C 59.52, H 4.41. Calc. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~S}$ (\%): C 59.44, H 4.53.

2-Hydroxy-1-(4',-methoxyphenyl)-2-(5'-N,N-di-

 methylhydrazonylfuryl-2')-ethanone-1 (4). A solution of N, N-dimethylhydrazone of 2-furanecarbaldehyde $(1.712 \mathrm{mmol}, 0.236 \mathrm{~g})$ in $\mathrm{PhH}(2 \mathrm{ml})$ was added to a solution of 4-methoxyphenylglyoxal (1.8043 mmol, $0.2962 \mathrm{~g})$ in $\mathrm{PhH}(3 \mathrm{ml})$ at $-30^{\circ} \mathrm{C}$. The reaction mixture was kept at $20^{\circ} \mathrm{C}$ for 11 days, and then filtered. The filtrate was evaporated in vacuo 30 Torr. The residue was washed by hexane (5 ml), dried in vacuo 7 Torr, yielding 0.444 g (85.7%) of 2-hydroxy-1-(4''-methoxyphenyl)-2(5^{\prime} - N, N-dimethylhydrazonylfuryl-2')-ethanon-1 4, yellow crystals, m.p. $79-81{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.94\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}_{2} \mathrm{~N}\right), 3.886(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 5.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, $6.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Fur}}{ }^{3},{ }^{3} J=3.3 \mathrm{~Hz}\right), 6.33\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {Fur }}{ }^{4},{ }^{3} J=\right.$ $3.3 \mathrm{~Hz}), 6.89\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{C} 6 \mathrm{H}^{3,5}}{ }^{3},{ }^{3} J=9.0 \mathrm{~Hz}\right), 7.01(\mathrm{~s} 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{N}), 7.96\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{C} 6 \mathrm{H}}{ }^{2,6},{ }^{3} \mathrm{~J}=9.0 \mathrm{~Hz}\right) . \mathrm{MS}(\mathrm{FAB}$, $\left.\mathrm{m} / \mathrm{z}, I_{\text {rel }}, \%\right): 302 \mathrm{M}^{+}(35), 285\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(24), 167$ (100), 135 (56). Found (\%): C 63.64, H 6.28, N 9.31. Calc. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ (\%): C 63.57, H 6.00, N 9.27. The process of synthesis of 2-Hydroxy-1-(4''-diphenyl)-2(5^{\prime} - N, N-dimethylhydrazonylfuryl-2')-ethanone- 1 (5) was similar to that of compound $\mathbf{4}$, yield 90%, yellow crystals, m.p. $108-109{ }^{\circ} \mathrm{C}(\mathrm{PhH}) .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): 2.95$ (s, $6 \mathrm{H}, \mathrm{NMe}_{2}$), $6.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.31(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{Fur}}{ }^{3},{ }^{3} J=3.3 \mathrm{~Hz}\right), 6.35\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Fur}}{ }^{4},{ }^{3} J=3.3 \mathrm{~Hz}\right)$, $7.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.43\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}{ }^{4}\right.$, $\left.{ }^{3} J=6.6 \mathrm{~Hz}\right), 7.47\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}{ }^{3}, 5^{\prime},{ }^{3} J=6.6 \mathrm{~Hz}\right), 7.60(\mathrm{~d}, 2 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{Ph}}{ }^{2}, 6^{\prime},{ }^{3} J=6.6 \mathrm{~Hz}\right), 7.65\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{C} 644^{3,5}},{ }^{3} J=8.4 \mathrm{~Hz}\right)$, 8.05 (d, 2H, $\mathrm{H}_{\mathrm{C} 6 \mathrm{H}}{ }^{2,6},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}$). MS (FAB, $\mathrm{H}^{+}, \mathrm{m} / \mathrm{z}$, $I_{\text {отн }}, \%$): $349[\mathrm{M}+\mathrm{H}]^{+}(36), 348 \mathrm{M}^{+}(40), 331[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}(29), 181 \mathrm{PhC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})^{+}$(29), 167 (100). Found (\%): C 72.35, H 6.08, N 8.31. Calc. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ (\%): C 72.40, H 5.79, N 8.04.2-Hydroxy-2-(4''-chlorophenyl)-1-(5'-N,N-dimethyl-hydrazonylfuryl-2')-ethanone-1 (6). A solution of $\mathrm{N}, \mathrm{N}-$ dimethylhydrazone of 2-furanecarbaldehyde (31.59 mmol , 4.365 g) in $\mathrm{PhH}(5 \mathrm{ml})$ was added to a solution of 4 -
chlorophenylglyoxal ($38.53 \mathrm{mmol}, 6.500 \mathrm{~g}$) in PhH (20 ml). The reaction mixture was kept at $20^{\circ} \mathrm{C}$ for 4 days, the precipitate was then filtered off, washed by $\mathrm{PhH}(7 \mathrm{ml}), i$ $\mathrm{PrOH}(15 \mathrm{ml})$, dried in vacuo, yielding $5.90 \mathrm{~g}(60.9 \%)$ of 2-hydroxy-2-(4'"-chlorophenyl)-1-(5'-N,N-dimethylhyd-razonofuryl-2')-ethanone-1 6, red crystals, m.p. 150-151 ${ }^{\circ} \mathrm{C}(i-\mathrm{PrOH}) .{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): 3.00(\mathrm{~s}, 6 \mathrm{H}$, NMe_{2}), $5.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CHOH},{ }^{3} J=5,1 \mathrm{~Hz}\right), 6.18(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{CHOH},{ }^{3} J=5.1 \mathrm{~Hz}\right), 6.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Fur}^{4}},{ }^{3} \mathrm{~J}=3.9 \mathrm{~Hz}\right), 7.10$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), $7.39\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{C} 6 \mathrm{H}^{3,5}}{ }^{3}{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}\right), 7.49(\mathrm{~d}$, $\left.2 \mathrm{H}, \mathrm{H}_{\mathrm{C} 6 \mathrm{H} 4}{ }^{2,6},{ }^{3} J=8.4 \mathrm{~Hz}\right), 7.68\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Fu}}{ }^{3},{ }^{3} J=3.9 \mathrm{~Hz}\right)$. IR ($\mathrm{v}, \mathrm{cm}^{-1}$): $3415(\mathrm{OH}) ; 1635(\mathrm{C}=\mathrm{O}) ; 1555(\mathrm{C}=\mathrm{N}) . \mathrm{MS}$ (EI, m/z, $I_{\text {rel }}, \%$): $308 \mathrm{M}^{+}(0,5) ; 306 \mathrm{M}^{+}$, $\left[\mathrm{M}-\mathrm{H}_{2}\right]^{+}(4.9)$, $304\left[\mathrm{M}-\mathrm{H}_{2}\right]^{+}(7.1), 166$ (12.2), 165 (100), 143 (0.5), 141 (14.8), 139 (40.6), 113 (70.0), 111 (20.4), 109 (20.4). Found (\%): C 58.84, H 4.72, N 9.02. Calc. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{3}$ (\%): C 58.73, H 4.93, N 9.13.

2-Hydroxy-2-(4''-bromophenyl)-1-(5'-N,N-dimeth-

 ylhydrazonylfuryl-2')-ethanon-1 (7). A solution of N, N dimethylhydrazone of 2-furanecarbaldehyde $(2.70 \mathrm{mmol}$, $0.373 \mathrm{~g})$ in $\mathrm{PhH}(2 \mathrm{ml})$ was added to a solution of 4bromophenylglyoxal ($2.70 \mathrm{mmol}, 0,580 \mathrm{~g}$) in PhH (20 $\mathrm{ml})$. The reaction mixture was kept at $20^{\circ} \mathrm{C}$ for 4 days, and then evaporated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and precipitated by an addition of hexane (10 ml). The precipitate was filtered off and dried, yielding $0.51 \mathrm{~g} \quad(54,0 \quad \%)$ of 2-hydroxy-2-(4'’-bromophenyl)-1-(5'-N,N-dimethylhydrazonylfuryl-2')-ethanone-1 7, brown crystals, m.p. $127-129^{\circ} \mathrm{C}$ (with decomp.). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{~Hz}, \mathrm{CDCl}_{3}$): 3.08 (s, $6 \mathrm{H}, \mathrm{NMe}_{2}$), 5.79 (br. S, 1H, $\underline{\mathrm{CHOH}}$), 6.92 (br. s, $1 \mathrm{H}, \mathrm{CHOH}$,), 6.46 (d, $\left.1 \mathrm{H}, \mathrm{H}^{4}{ }_{\mathrm{Fur}},{ }^{3} \mathrm{~J}=3.9 \mathrm{~Hz}\right), 7.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}{ }_{\mathrm{Fur}},{ }^{3} \mathrm{~J}=3.9 \mathrm{~Hz}\right)$, $7.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.35\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{3,5} \mathrm{C}_{6} \mathrm{H} 4 \mathrm{r},{ }^{3} \mathrm{~J}=8,4 \mathrm{~Hz}\right)$, $7,45\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{2,6}{ }_{66 \mathrm{H} 4,}{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}\right.$). MS (EI, m/z, $I_{\text {отн }}$, $\%$): $351 \quad \mathrm{M}^{+}(28) ; 186 \quad \mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}^{+} \mathrm{H}(\mathrm{OH}) \quad$ (30); 165 $\mathrm{Me}_{2} \mathrm{NN}=\mathrm{CH}-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}-\mathrm{C}^{+}=\mathrm{O}$ (100). Found (\%): C 51.02, H 4.64, N 8.17. Calc. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{3}$ (\%): C 51.30; H 4.31; N 7.98 .The filtrate was evaporated in vacuo yielding 0.20 g (22.0 \%) of 2-(4''-bromophenyl)-1-(5'-N,N-dimethyl-hydrazonylfuryl-2')-ethandione-1,2 8 , red-brown solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 3.00 (s, $6 \mathrm{H}, \mathrm{NMe}_{2}$), 6.60 (d. $\left.1 \mathrm{H}, \mathrm{H}^{4}{ }_{\text {Fur }}{ }^{3} J=3.6 \mathrm{~Hz}\right), 7.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.48(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}^{3}{ }_{\text {Fur }},{ }^{3} \mathrm{~J}=3.6 \mathrm{~Hz}\right), 7.74\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{3,5}{ }_{\mathrm{C} 6 \mathrm{H} 4},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}\right)$, $7.81\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{2,6}{ }_{\mathrm{C} 6 \mathrm{H} 4},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}\right) . \mathrm{MS}\left(\mathrm{FAB}, \mathrm{H}^{+}, \mathrm{m} / \mathrm{z}\right.$, $\left.I_{\text {rel. }}, \%\right): 350[\mathrm{M}+\mathrm{H}]^{+}(7.8), 348[\mathrm{M}-\mathrm{H}]^{+}(8.3), 165$ (100).

2-Hydroxy-2-(5'-methylfuryl-2')-1-(4''-chlorophe-

nyl)-ethanone-1 (9) A solution of 4-chlorophenylglyoxal $(1.174 \mathrm{mmol}, 0.198 \mathrm{~g})$ and 2-methylfuran (4.215 mmol , $0.346 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{ml})$ in a sealed tube was kept at 20 $-23^{\circ} \mathrm{C}$ in dark for 120 h , then the reaction mixture was concentrated in vacuo 30 Torr to 1 ml volume and hexane $(5 \mathrm{ml})$ was added. After keeping at $5^{\circ} \mathrm{C}$ for 4 days, the precipitate was filtered off and dried yielding 0.269 g (91.0%) of 2-hydroxy-2-(5'-methylfuryl-2')-1-(4'’-chlorophenyl)ethanone-1 9, yellow crystals, m.p. 86-88 ${ }^{\circ} \mathrm{C}$ (hexane). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2.22 (s, 3 H , $\mathrm{Me}), 4.31\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CHOH},{ }^{3} \mathrm{~J}=6.0 \mathrm{~Hz}\right), 5.90(\mathrm{~d}$ and br. s, $2 \mathrm{H}, \mathrm{H}_{\text {Fur }}{ }^{4}$ and $\left.\mathrm{OH},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}\right), 6.21\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Fur}}{ }^{3},{ }^{3} \mathrm{~J}=\right.$ $3.0 \mathrm{~Hz}), 7.41\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{C} 6 \mathrm{H}^{3,5}},{ }^{3} J=8.1 \mathrm{~Hz}\right), 7.90(\mathrm{~d}, 2 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{C} 6 \mathrm{H}}{ }^{2,6},{ }^{3} J=8.1 \mathrm{~Hz}\right)$. IR $\left(\mathrm{v}, \mathrm{cm}^{-1}\right): 3437(\mathrm{OH}), 1695$ $(\mathrm{C}=\mathrm{O})$. MS (FAB, K $\left.{ }^{+}, \mathrm{m} / \mathrm{z}, \mathrm{I}_{\text {rel }}, \%\right): 291[\mathrm{M}+\mathrm{K}]^{+}(20), 289$
$[\mathrm{M}+\mathrm{K}]^{+}$(49), $235\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(45), $233\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$ (100), $141\left[\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})^{+}\right](14), 139\left[\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})^{+}\right]$(38). Found (\%): C 62.10, H 4.55. Calc. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClO}_{3}$ (\%): C 62.29, H 4.42.

2-Hydroxy-2-(5'-methylfuryl-2')-1-(4''-bromophe-

 nyl)ethanone-1 (10) was synthesized in a manner similar to that for compound 9 , yield 63%, yellow crystals, m.p. $69-70{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ - hexane). ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): 2.22 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 4.30 (br. $\mathrm{s}, 1 \mathrm{H}, \underline{\mathrm{CHOH}), 5.90}$ (br. s, $2 \mathrm{H}, \mathrm{H}_{\mathrm{Fur}}{ }^{4}$ and OH), $6.21\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Fur}}{ }^{3},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}\right.$), $7.58\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{C} 6 \mathrm{H}^{3,5}}{ }^{3,5}{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}\right), 7.82\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{C} 6 \mathrm{H}}{ }^{2,6}\right.$, $\left.{ }^{3} J=8.7 \mathrm{~Hz}\right) . \mathrm{IR}\left(\mathrm{v}, \mathrm{cm}^{-1}\right): 3440(\mathrm{OH}), 1700(\mathrm{C}=\mathrm{O}) . \mathrm{MS}$ $\left(\mathrm{FAB}, \mathrm{H}^{+}, \mathrm{m} / \mathrm{z}\left(\mathrm{I}_{\mathrm{rel}}, \%\right): 297[\mathrm{M}+\mathrm{H}]^{+}(2), 295[\mathrm{M}+\mathrm{H}]^{+}(6)\right.$, $293[\mathrm{M}-\mathrm{H}]^{+}(4), 279\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(84), 277\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$ (82), $111 \mathrm{Me}-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}-\mathrm{CH}^{+}(\mathrm{OH})$ (100). MS (FAB, K^{+}, $\mathrm{m} / \mathrm{z}\left(\mathrm{I}_{\mathrm{rel} .}, \%\right): 335[\mathrm{M}+\mathrm{K}]^{+}(50), 333[\mathrm{M}+\mathrm{K}]^{+}(60), 279$ $\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(31), $277\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(28), $111 \mathrm{Me}-$ $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}-\mathrm{CH}^{+}(\mathrm{OH})(58), 39 \mathrm{~K}^{+}(100)$. Found (\%): C 53.08, H 3.82. Calc. For $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrO}_{3}$ (\%): C 52.91, H 3.76.
2-Hydroxy-2-(5'-methylfuryl-2')-1-(4''-fluorophe-

nyl)ethanone-1 (11) was synthesized in a manner similar to that for compound 9 , yield 84%, yellow crystals, m.p. $90-92{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ - hexane). ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): 2.22 (s, $3 \mathrm{H}, \mathrm{Me}$), 4.34 (br. s, $1 \mathrm{H}, \mathrm{CHOH}$), 5.91 (br. s, $2 \mathrm{H}, \mathrm{H}_{\mathrm{Fur}}{ }^{4}$ and OH), $6.21\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Fur}}{ }^{3},{ }^{3} J=3.0 \mathrm{~Hz}\right.$), 7.11 (dd, $2 \mathrm{H}, \mathrm{H}_{\mathrm{C} 6 \mathrm{H}^{3,5}},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{\mathrm{H}-\mathrm{F}} J=8.4 \mathrm{~Hz}$), 8.00 (dd, $2 \mathrm{H}, \mathrm{H}_{\mathrm{C} 6 \mathrm{H}^{2,6}},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}$, ${ }^{\mathrm{H}-\mathrm{F}} J=8.4 \mathrm{~Hz}$). IR $\left(v, \mathrm{~cm}^{-1}\right)$: $3440(\mathrm{OH}), 1698(\mathrm{C}=\mathrm{O})$. MS (EI, m/z ($\left.\mathrm{I}_{\text {rel. }}, \%\right)$): 123 $\left[\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})^{+}\right](100)$. MS ($\mathrm{FAB}, \mathrm{K}^{+}, \mathrm{m} / \mathrm{z}\left(\mathrm{I}_{\text {rel. }}, \%\right): 273$ $[\mathrm{M}+\mathrm{K}]^{+}(16), 217\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(100), 123\left[\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})^{+}\right]$ (53). Found (\%): C 66.31, H 4.93. Calc for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{FO}_{3}$ (\%): C 66.66, H 4.73.

2-Hydroxy-1-(4''-chlorophenyl)-2-(5'-N,N-dimeth-
ylhydrazonylfuril-2')-ethanon-1 (12). $\quad \mathrm{N}, \mathrm{N}$ Dimethylhydrazone of 2-furanecarbaldehyde (3.90 mmol , $0.539 \mathrm{~g})$ was added to a cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of 4 chlrophenylglyoxal ($3.90 \mathrm{mmol}, 0.650 \mathrm{~g}$) in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$. The reaction mixture was kept for a week at $-20^{\circ} \mathrm{C}$, and then evaporated in vacuo. The residue was washed by hexane and dried in vacuo 2 Torr, yielding 0.74 g (62%) of 2-hydroxy-1-(4''-chlorophenyl)-2-(5'-N,N-dimethyl-hydrazonofuryl-2')ethanon-1 12, yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$): $2.85\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NMe}_{2}\right), 6.13$ (br. s, $2 \mathrm{H}, \mathrm{CHOH}), 6.35\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Fur}}{ }^{3},{ }^{3} \mathrm{~J}=3.3 \mathrm{~Hz}\right.$), 6.42 (d, $\left.1 \mathrm{H}, \mathrm{H}_{\text {Fur }}{ }^{4},{ }^{3} J=3.3 \mathrm{~Hz}\right), 7.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.58(\mathrm{~d}$, $\left.2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}{ }^{3,5},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}\right), 8.01\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}{ }^{2,6},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}\right)$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.96\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NMe}_{2}\right), 6.01(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}) ; 6.29\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Fur}}{ }^{3},{ }^{3} \mathrm{~J}=3.3 \mathrm{~Hz}\right), 6.34(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}_{\mathrm{Fur}}{ }^{4},{ }^{3} \mathrm{~J}=3.3 \mathrm{~Hz}$), $7.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.15$ (br. s, 1 H , $\mathrm{OH}), 7.42\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{C} 644^{3,5}},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}\right), 7.93(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{H}_{\mathrm{C} 6 \mathrm{H} 4}{ }^{2,6},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}$). MS (FAB, m/z, $I_{\text {отн. }}$, $\%$): 309 $[\mathrm{M}+\mathrm{H}]^{+}(5), 307[\mathrm{M}+\mathrm{H}]^{+}(16), 291\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(6), 289$ $\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(20), 167 \mathrm{Me}_{2} \mathrm{NN}=\mathrm{CH}-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}^{+}(\mathrm{OH})$ (100), $141 \mathrm{Cl}^{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{+}=\mathrm{O}$ (13), $139 \mathrm{Cl}^{2} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{+}=\mathrm{O}$ (33). Found (\%): C 58.91, H 4.70, N 9.11. Calc. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{3}$ (\%): C 58.73, H 4.93, N 9.13 .

2-Hydroxy-1-(4''-bromophenyl)-2-(5'-N,N-dimeth-

 ylhydrazonylfuril-2')-ethanone-1 (13). $\quad \mathrm{N}, \mathrm{N}$ Dimethylhydrazone of 2-furanecarbaldehyde (2.30 mmol , 0.318 g) was added to the a solution of 4 bromophenylglyoxal ($2.30 \mathrm{mmol}, 0.480 \mathrm{~g}$) in $\mathrm{Et}_{2} \mathrm{O}$ (20ml) at $-20^{\circ} \mathrm{C}$, the reaction mixture was kept at $-20^{\circ} \mathrm{C}$ for a week, and then evaporated in vacuo 1 Torr at $10^{\circ} \mathrm{C}$. The residue was washed by hexane and dried in vacuo 1 Torr, yielding $0.72 \mathrm{~g} \quad(86 \%)$ of 2-hydroxy-1-(4'’-bromophenyl)-2-(5'-N,N-dimethylhydrazonylfuril-2')-
ethanone-1 13, dark brown viscous oil. ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 2.96 (s, 6H, NMe_{2}), $6.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.29$ (d, $1 \mathrm{H}, \mathrm{H}_{\mathrm{Fur}}{ }^{3},{ }^{3} J=3.3 \mathrm{~Hz}$), $6.34\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Fur}}{ }^{4},{ }^{3} J=3.3 \mathrm{~Hz}\right.$), $7.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.58\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{CH}} \mathrm{H}^{3,5},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}\right)$, $7.84\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{C} 6 \mathrm{H}}{ }^{2,6},{ }^{3} \mathrm{~J}=8.7 \mathrm{~Hz}\right) . \mathrm{MS}(\mathrm{FAB}, \mathrm{m} / \mathrm{z}$, $\left.I_{\mathrm{rel} .}, \%\right): 353[\mathrm{M}+\mathrm{H}]^{+}(21), 352 \mathrm{M}^{+}(23), 351[\mathrm{M}+\mathrm{H}]^{+}(28)$, $350 \mathrm{M}^{+}(24), 335\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(23), 333\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$ (23), $167 \mathrm{Me}_{2} \mathrm{NN}=\mathrm{CH}-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}^{+}(\mathrm{OH})$ (100). $185 \mathrm{Br}-$ $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{+}=\mathrm{O}$ (30). $183 \mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{+}=\mathrm{O}$ (30). Found (\%): C 52.01, H 4.55, N 7.82. Calc. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{3}$ (\%): C 51.30, H 4.31, N 7.98 .

2-Hydroxy-1-(4''-fluorophenyl)-2-(5'-N,N-dimethyl-hydrazonylfuril-2')-ethanone-1 (14).
(i) A solution of N, N-dimethylhydrazone of 2furancarbaldehyde ($1.404 \mathrm{mmol}, 0.194 \mathrm{~g}$) and 4 fluorophenylglyoxal ($1.615 \mathrm{mmol}, 0.245 \mathrm{~g}$) in PhH (12 ml) under argon was kept in a sealed tube at $40^{\circ} \mathrm{C}$ for 9 h and at $24^{\circ} \mathrm{C}$ for 80 h , and then evaporated in vacuo to a volume of 3 ml and hexane (10 ml) was added. The separated oil was extracted by $\mathrm{CCl}_{4}(10 \mathrm{ml})$, the extract was evaporated in vacuo 2 Torr, yielding 0.302 g (74.3%) 2-hydroxy-1-(4''-fluorophenyl)-2-(5'-N,N-dimethylhyd-razonylfuril-2')-ethanone-1 14, red semi-solid substance. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2.94 (s, 6H, NMe_{2}), 6.00 (s , $1 \mathrm{H}, \mathrm{CHOH}), 6.28\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {Fur }}{ }^{3},{ }^{3} J=3.6 \mathrm{~Hz}\right), 6.33(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\text {Fur }}{ }^{4},{ }^{3} J=3.6 \mathrm{~Hz}\right), 7,00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.15(\mathrm{dd}, 2 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{C} 6 \mathrm{H}}{ }^{2,6},{ }^{3} J=8.7 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}\right), 8.01\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{C} 6 \mathrm{H}^{3,5}}{ }^{3,}\right.$, $\left.{ }^{3} J=8.7 \Gamma_{ц},{ }^{\mathrm{F}-\mathrm{H}} \mathrm{J}=5.25 \mathrm{~Hz}\right) . \mathrm{MS}\left(\mathrm{EI}, \mathrm{m} / \mathrm{z}, \mathrm{I}_{\mathrm{rel}} .(\%)\right): 290$ M^{+}(24), $167 \mathrm{Me}_{2} \mathrm{~N}-\mathrm{N}+\mathrm{CH}-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}-\mathrm{C}^{+} \mathrm{H}(\mathrm{OH})$ (83), 123 $\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})^{+}$(100). MS (FAB, $\mathrm{H}^{+}, \mathrm{m} / \mathrm{z}, \mathrm{I}_{\text {rel. }}$. (\%)): 291 $[\mathrm{M}+\mathrm{H}]^{+}(39), 290 \mathrm{M}^{+}(38), 273\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(35), 167 $\mathrm{Me}_{2} \mathrm{~N}-\mathrm{N}+\mathrm{CH}-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}-\mathrm{C}^{+} \mathrm{H}(\mathrm{OH})(100), 123 \mathrm{~F}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}^{+}=\mathrm{O}$ (54). Found (\%): C 62.11, H 4.80, N 9.72. Calc. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}_{3}$ (\%): C 62.06, H 5.21, N 9.65.

From the hexane phase, $0.066 \mathrm{~g}(16.1 \%) 1-\left(5^{\prime}-N, N-\right.$ dimethylhydrazonylfuril-2')-2-(4''-fluorophenyl)-ethan-dione-1,2 $\mathbf{1 5}$ was isolated by crystallization as black-red solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 3.12 (s, $6 \mathrm{H}, \mathrm{NMe}_{2}$), $6.63\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\text {Fur, }}{ }^{3} \mathrm{~J}=3.9 \mathrm{~Hz}\right), 7.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.18$ (dd, $2 \mathrm{H}, \mathrm{H}_{\mathrm{C} 6 \mathrm{H}^{2,6}}{ }^{2.3} \mathrm{~J}=8.7 \mathrm{~Hz},{ }^{\mathrm{F}-\mathrm{H}} J=8.55 \mathrm{~Hz}$), $7.40(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}^{3}{ }_{\text {Fur }},{ }^{3} J=3.9 \mathrm{~Hz}\right), 8.12\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{C} 6 \mathrm{H}_{4}}{ }^{3,5},{ }^{3} J=8.7 \mathrm{~Hz}\right.$, ${ }^{\mathrm{F}-}$ ${ }^{\mathrm{H}} J=5.55 \mathrm{~Hz}$). MS (EI, m/z, $\left.\mathrm{I}_{\text {rel }} .(\%)\right): 288 \mathrm{M}^{+}(27) ; 165$ $\mathrm{Me}_{2} \mathrm{NN}=\mathrm{CH}-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}-\mathrm{C}^{+}=\mathrm{O}(100), 123 \mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})^{+}$(25). Found (\%): N 9.70. Calc. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{3}$ (\%): N 9.72 . (ii) N, N-Dimethylhydrazone of 2-furancarbaldehyde ($0.800 \mathrm{mmol}, 0.110 \mathrm{~g}$) was added to a solution of 4fluorophenylglyoxal ($0.800 \mathrm{mmol}, 0.121 \mathrm{~g}$) in $\mathrm{Et}_{2} \mathrm{O}$ (20 ml) at $-20^{\circ} \mathrm{C}$, the reaction mixture was kept at $-20^{\circ} \mathrm{C}$ for 4 days and then evaporated in vacuo 3 Torr, yielding 0.190 g (81.8\%) 2-hydroxy-1-(4'-fluorophenyl)-2-(5'- N, N -dimethylhydrazonylfuril-2')-ethanone-1 14, identified by ${ }^{1} \mathrm{H}$ NMR.
(iii) A solution of N, N-dimethylhydrazone of 2furancarbaldehyde (1.615 mmol) and 4fluorophenylglyoxal (1.717 mmol) in $\mathrm{PhH}(10 \mathrm{ml})$ was kept at $20^{\circ} \mathrm{C}$ in a sealed tube for 7 days and then evaporated in vacuo. The residue was washed by hexane
and dried in vacuo, yielding 0.464 g (99\%) of 2-hydroxy-1-(4'’-fluorophenyl)-2-(5^{\prime} - N, N-dimethylhydrazonylfuril2^{\prime})-ethanone-1 14, identified by ${ }^{1} \mathrm{H}$ NMR.

2-Hydroxy-2-(4'’-fluorophenyl)-1-(5'-N,N-dimeth-

ylhydrazonylfuryl-2')-ethanone-1 (16). A sample of 2-hydroxy-1-(4''-fluorophenyl)-2-(5'-5'- N,N-dimethylhyd-razonylfuryl-2'-)-ethanone-1 $\mathbf{1 4}$ was kept at $10^{\circ} \mathrm{C}$ in dark for 4 months. A quantitative isomerization took place to 2-hydroxy-2-(4'’-fluorophenyl)-1-(5'-N,N-dimethylhyd-razonylfuryl-2')-ethanon-1 16, red solid, m.p. 117-120 ${ }^{\circ} \mathrm{C}$ (with decomp.). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 3.08 (s, 6H, NMe_{2}), 5.73 (s, $1 \mathrm{H}, \mathrm{CH}$), $6.47\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Fur}}{ }^{4},{ }^{3} J=3.9 \mathrm{~Hz}\right.$), 6.93 (s, 1H, CH=N), $7.02\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}^{2}, 6}{ }^{2} J=8.7 \mathrm{~Hz}, J=\right.$ $8.7 \mathrm{~Hz}), 7.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Fur}}{ }^{3},{ }^{3} \mathrm{~J}=3.9 \mathrm{~Hz}\right), 7.42(\mathrm{dd}, 2 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{Ar}}{ }^{3,5},{ }^{3} J=8.7 \mathrm{~Hz},{ }^{\mathrm{F}-\mathrm{H}} J=5.25 \mathrm{~Hz}\right)$. $\mathrm{IR}\left(v, \mathrm{~cm}^{-1}\right): 1640$ (C=O), $1600(\mathrm{C}=\mathrm{N})$. MS (EI, m/z, $\mathrm{I}_{\text {rel. }}$. \%)): $290 \mathrm{M}^{+}$(10); $166 \quad \mathrm{Me}_{2} \mathrm{NN}=\mathrm{CH}-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}=\mathrm{O}^{+}$(81), 124 $\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CH}(=\mathrm{O})^{+.}(100)$. MS ($\left.\mathrm{FAB}, \mathrm{H}^{+}, \mathrm{m} / \mathrm{z}, \mathrm{I}_{\mathrm{rel}} .(\%)\right): 289$ $[\mathrm{M}+\mathrm{H}]^{+}(58), 245$ (38), 165 (76), 154 (100), 136 (80), 123 (53). Found (\%): C 62.25, H 5.42. Calc. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}_{3}$ (\%): C 62.06, H 5.21.

Results and Discussion

By the investigating the reaction of arylglyoxal with the 2-R-furanes, we have established that the 4-R'phenylglyoxales ($\mathrm{R}^{\prime}=\mathrm{OMe}, \mathrm{Ph}$,) and 2-thienylglyoxal react in similar manner with N, N-dimethylhydrazone of 2-furancarbaldehyde and 2-methylfurane yielding α benzoins, such as 2-furyl-1-arylethan-1-ones 3-5, at room temperature (Scheme 3).

Scheme 3

However, it was found that 4-chlorophenylglyoxal and 4-bromophenylglyoxal react with N, N-dimethylhydrazone of 2 -furancarbaldehyde yielding β-benzoins, such as 2 -aryl-1-furylethan-1-ones $\mathbf{6 , 7}$ if this reaction carries out at room temperature ($18-28^{\circ} \mathrm{C}$) in dichloromethane or benzene solution. This reaction also yielded some 1,2diketone $\mathbf{8}$ in the last case. Under the similar conditions 4 -X-phenylglyoxals ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{F}$) react with 2-methylfuran yielding only α-benzoins, 2-furyl-1-arylethan-1-ones 9-11 (Scheme 4).

This unusual formation of 2-aryl-1-furylethan-1-ones 6,7 from 4-chloro- and 4-bromophenylglyoxals must have arisen from the formation of α-benzoins, 2 -furyl-1-arylethan-1-ones $\mathbf{1 2 , 1 3}$, in the first stage. IN the second
stage, α-benzoins $\mathbf{1 2}, \mathbf{1 3}$ spontaneously isomerize into β benzoins 6, 7 at room temperature (Scheme 5).

Scheme 4

Scheme 5.
Actually, it was found that at $-23--20^{\circ} \mathrm{C}, 4$-chloro- and 4-bromophenylglyoxals react with N, N dimethylhydrazone of 2-furancarbaldehyde selectively yielding unstable 2-furyl-1-arylethan-1-ones $\mathbf{1 2 , 1 3}$, which spontaneously isomerize in 2-aryl-1-furylethan-1-ones 6,7 at room temperature. The unstable α-benzoins $\mathbf{1 2 , 1 3}$ had been characterized by ${ }^{1} \mathrm{H}$ NMR and MS spectra.

4-Fluorophenylglyoxal reacts with N, N dimethylhydrazone of 2-furancarbaldehyde at $20-40^{\circ} \mathrm{C}$ range yielding mainly α-benzoin 14 (Scheme 6). At $40^{\circ} \mathrm{C}$ some 1,2-diketone $\mathbf{1 5}$ is also formed.

Scheme 6

Table 1. The characteristic ${ }^{1} \mathrm{H}$ NMR chemical shifts of α-benzoins $\mathbf{3 a}, 4,5,12$ - 14 and β-benzoins $\mathbf{6 , 7 , 1 6}$ in CDCl_{3}

Compound		Resonance, σ, ppm				
Number	X in 4-X-C6H4	HFurane		$\mathrm{C}_{6} \mathrm{H}_{4}$		Me2N
		\mathbf{H}^{3} Fur	\mathbf{H}^{4} Fur	$\mathbf{H}^{3,5}$	$\mathbf{H}^{2,6}$	
$\alpha-3 a^{*}$	2-thienyl	6.31	6.47	-	-	2.83
$\alpha-3{ }^{* * *}$	2-thienyl	6.39	6.49	-	-	2.86
$\alpha-4$	OMe	6.27	6.35	6.91	7.98	2.96
$\alpha-5$	Ph	6.31	6.35	7.65	8.05	2.95
$\alpha-12 * *$	Cl	6.35	6.42	7.58	8.01	2.85
$\alpha-12$	Cl	6.29	6.34	7.42	7.93	2.96
$\alpha-13$	Br	6.29	6.34	7.58	7.84	2.96
$\alpha-14$	F	6.28	6.33	7.15	8.01	2.94
$\beta-6$ **	Cl	6.56	7.68	7.39	7.49	3.00
$\beta-7$	Br	6.46	7.20	7.35	7.45	3.08
β-16	F	6.47	7.19	7.42	7.02	3.08

Mixed α-benzoin 14 is more stable than mixed α benzoins $\mathbf{1 2 , 1 3}$ and can exist for $1-2$ months at $20^{\circ} \mathrm{C}$. However, after that period α-benzoin 14 spontaneously isomerizes to β-benzoin 16 in solid state as well as in solution. On storing at $5-6^{\circ} \mathrm{C}$ for $4-5$ months, α-benzoin 14 isomerizes into β-benzoin 16.

On the other hand, α-benzoins 1a, 3a,b, 4,5 and 9-11 remained unchanged after storing at $5^{\circ} \mathrm{C}$ for more than five years.

The structures of the compounds 3-16 were confirmed by data of ${ }^{1} \mathrm{H}$ NMR spectrometry and MS data. ${ }^{1} \mathrm{H}$ NMR spectra of α-benzoins $3 a, 4,5,12$-14 and β-benzoins 6,7,16 are given in the Table 1.

Scheme 7 (EI)

For β-benzoins $\mathbf{6 , 7 , 1 6}$ the differences of chemical shifts of H^{4} - and H^{3} furan protons are substantial more, 0.721.12 ppm , whereas that for α-benzoins $\mathbf{3 a}, \mathbf{4 , 5 , 1 2}-14$, is $0.04-0.16 \mathrm{ppm}$. That is caused by the possibility of the conjugation of $\mathrm{Me}_{2} \mathrm{~N}$-moiety with carbonyl group in β benzoins. In α-benzoins this possibility is absent. The other consequence of this conjugation is some low field shift of the resonance of $\mathrm{Me}_{2} \mathrm{~N}$-group protons for β benzoins 6,7,16.

Scheme 8 (FAB)

Conversely, the difference of the chemical shifts of $\mathrm{H}^{2,6}$ and ${ }^{3,5} \mathrm{H}$ of para-substituted benzene ring for α-benzoins 4,5,12-14 is substantially more, $0.40-1.07 \mathrm{ppm}$ (but for $\alpha-$ benzoin 13 - only 0.26 ppm), whereas that for β-benzoins $\mathbf{6 , 7}$ is only 0.10 ppm (excluding β-benzoin $\mathbf{1 6}-0.40$ ppm). This phenomenon is caused by the possibility of the conjugation of para-substituent with carbonyl group in α-benzoins. In β-benzoins this possibility is absent.

Scheme 9 (EI)

Mass spectra may also differentiate between α - and β benzoins as was shown ealier for α-benzoin 1a and β benzoin 1b ${ }^{[2]}$. For α-benzoins, in mass spectra the furan "benzylic' ions with $\mathrm{m} / \mathrm{z} 167$ and and para-substituted aroyl cations dominate (Scheme 7,8,9). Similar fragmentation was observed for unsubstituted α-benzoin 1a. ${ }^{2}$

On the other hand, MS spectrum of β-benzoin 6 is dominated by the furoyl cation with $\mathrm{m} / \mathrm{z} 165$ (Scheme 10). Similar fragmentation was observed for unsubstituted β benzoin 1b ${ }^{[2]}$.

Scheme 10. (EI)

Only one case of the $\alpha \rightarrow \beta$ benzoin isomerization by heating has been reported earlier ${ }^{[6]}$. Anisbenzoin isomerizes to benzanisoin by heating the former above its melting point $\left(89^{\circ} \mathrm{C}\right)$ or by distillation in vacuum ${ }^{[6]}$. But the spontaneous $\alpha \rightarrow \beta$ benzoin isomerization at the room temperature was not reported.

Therefore, it may be supposed that this spontaneous $\alpha \rightarrow \beta$ benzoins rearrangement of these mixed aryl(furyl)benzoins is caused by two reasons. First, the presence of a para-halogen substituent in the aryl moiety and secondly the presence of $\mathrm{Me}_{2} \mathrm{NN}=\mathrm{CH}$-substituent at 5-position of furan ring. This spontaneous $\alpha \rightarrow \beta$ benzoins rearrangement takes place in the absence of bases. The $\mathrm{Me}_{2} \mathrm{~N}$-group of β-benzoins 6,7,16 cannot been regarded as base center because it presence in α-benzoins 1a, 3a,b, 4,5 and 9-11 does not cause their spontaneous $\alpha \rightarrow \beta$ rearrangement.

An alternative mechanism for the spontaneous $\alpha \rightarrow \beta$ benzoins isomerisation of α-benzoins which does not involve the formation of the intermediate anion A is depicted in Scheme 11.

Probably, intramolecular hydroxyl group protonation of the oxygen atom of carbonyl group increases the electron density on $\sigma^{*}{ }^{\text {C-H }}$ orbital. The H -atom becomes intramolecular nucleophilic center. The latter causes the synchronous 1,2 -hydride shift as nucleophilic attack on carbonyl group finally yielding β-benzoins $6,7,16$.

Scheme 11.
Thus, the new kind of $\alpha \rightarrow \beta$ benzon isomerization was found. It is independent of base catalyst and takes place at temperature growth from $-20^{\circ} \mathrm{C}$ to room temperature.

References

${ }^{1}$ Shtamburg, V. G., Anishchenko, A. A., Ivonin, S. P., Chemistry of Nitrogen Containing Heterocycles - 2000, Thesis, 2000, Kharkiv, 117.
${ }^{2}$ Ivonin, S. P., Anishchenko, A. A., Samucha, A. V., Lapandin, A. V., Serduk, V. N., Pleshkova, A. P., Shtamburg, V,G., Visnyk Dnipropetrovsk. Univ., Khim., 2000, 5(5), 27-32.
${ }^{3}$ Ivonin, S. P., Lapandin, A. V., Anishchenko, A. A., Shtamburg, V. G., Synth. Commun., 2004, 34, 451-461.
${ }^{4}$ Ivonin, S. P., Lapandin, A. V., Anishchenko, A. A., Shtamburg V. G., Eur. J. Org. Chem., 2004, 4688-4693.
${ }^{5}$ Ide, W: S., Buck, J. S., in: Organic Reactions, R. Adams (Ed.), Wiley, New York, 1948, 4, 269-304.
${ }^{6}$ Julian, P. L., Passler, W., J. Am. Chem. Soc., 1932, 54, 4756.

Received: 02.02.2013.
Accepted: 08.02.2013.

