E®
REGULAR NUMBER OF COMPLEMENTARY PRISM OF FERRERS GRAPH
${ }^{1}$ R. Chenthil ThangaBama and ${ }^{2}$ S. Sujitha
${ }^{1}$ Register Number 18113132092001, Research Scholar, Department of Mathematics, Manonmaniam Sundaranar University,Tirunelveli,India. email: chenthilthangabama@gmail.com
${ }^{2}$ Assistant Professor, Department of Mathematics, Holy Cross College (Autonomous), Nagercoil - 629 004, India. email: sujitha.s@holycrossngl.edu.in
Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India

Abstract

The regular number $\mathrm{r}(\mathrm{G})$ of a graph G is the minimum number of subsets into which the edge set of G is partitioned so that the subgraph induced by each subset is regular. In this paper, we examine the regular number $\mathrm{r}(\mathrm{G})$ of complementary prism of a Ferrers graph.

AMS Subject Classification: 05C50, 05C25.
Keywords: Ferrers graph, complementary prism, regular number, diameter, radius.

DOI: 10.48047/ecb/2022.11.12.123

1. Introduction

Graph theory notation and terminology are not given here we refer it from [1]. The complement of a graph G is a graph \bar{G} on the same set of vertices as of G such that there will be an edge between two vertices in \bar{G}, if and only if there is no edge in between in G. The complementary prism of a graph G , denoted by $G \bar{G}$, as the graph formed from the disjoint union of G and its complement \bar{G} by adding the edges of the perfect matching between the corresponding vertices of G and \bar{G}, Where $V(G \bar{G})=V(G) \cup V(\bar{G})$. The regular number of G is defined to be the minimum number of subsets into which the edge set of G can be partitioned so that the subgraph induced by each subset is regular.

In this paper we find the regular number of complementary prism of a Ferrers graph. Also we find the diameter and radius of the complementary prism of a Ferrers graph.

Theorem 1.1[2] If $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a Ferrers graph iff for all distrinct $x, \mathrm{y}, \mathrm{z}, \mathrm{w} \in \mathrm{E}$ then $\mathrm{d}(x, \mathrm{w})+\mathrm{d}(\mathrm{y}, \mathrm{z}) \leq 4$.

Theorem 1.2 [5] For any path $\mathrm{P}_{\mathrm{n}}, \mathrm{r}\left(\mathrm{P}_{\mathrm{n}}\right)=2$.
Theorem 1.3 [5] For any graph $\mathrm{G}, \mathrm{r}(\mathrm{G})=1$ if and only if G is regular.
Theorem 1.4 [1] For any complete bipartite graph $K_{3, n}$, where $n \geq 1, r\left(K_{3, n}\right)=\frac{n}{3}$ if $n \equiv 0$ $(\bmod 3)$, and $r\left(K_{3, n}\right)=\left\lfloor\frac{n}{3}\right\rfloor+3$ if $n \equiv 1,2(\bmod 3)$

Theorem 1.5 [3] If G is a Ferrers graph, then $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 3$ for all $\mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G})$.
Theorem 1.6 [4] For a graph G, G is a Ferrers tree if and only if G has two internal vertices.

2. Main results

Theorem 2.1. For any path $G=P_{n}, G \bar{G}$ is a Ferrers graph for $n=2$ and non-Ferrers graph otherwise.

Proof. Case (i) When $\mathbf{n}=2$

In this case $G \bar{G}=P_{4}$, and by Theorem 1.6, P_{4} is a Ferrers graph.

Case (ii) When $\mathbf{n} \geq 3$

Consider a path P_{n} with $\mathrm{n}(\geq 3)$ vertices. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the vertices of P_{n} and $\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{n}}$ be the vertices of $\overline{\mathrm{P}_{\mathrm{n}}}$. Consider the four vertices $x_{1}, \bar{x}_{1}, x_{n-1}, x_{n}$ in $G \bar{G}$. By the definition of complementary prism, $\overline{x_{1}}$ is adjacent to $x_{1}, \bar{x}_{2}, \bar{x}_{3}, \ldots \ldots, \bar{x}_{n}$ Hence $d\left(x_{1}, x_{n}\right)=3$ and $d\left(\bar{x}_{1}, x_{n-1}\right)=2$ (or) $d\left(x_{1}, x_{n-1}\right)=2$ and $d\left(\bar{x}_{1}, x_{n}\right)=3$. In both the cases, $d\left(x_{1}, x_{n}\right)+d\left(\bar{x}_{1}, x_{n-1}\right)>4$ and $d\left(x_{1}, x_{n-1}\right)+d\left(\bar{x}_{1}, x_{n}\right)>4$. Therefore, by Theorem 1.1, $G \bar{G}$ is a non-Ferrers graph.

Theorem 2.2. For any path P_{2}, the regular number $r\left(P_{2} \bar{P}_{2}\right)=2$
Proof. Consider P_{2}. Clearly $P_{2} \bar{P}_{2}=P_{4}$, which is a path. Therefore by Theorem 1.2, $r\left(P_{2} \bar{P}_{2}\right)=r\left(P_{4}\right)=2$.

Theorem 2.3. For a cycle $\mathrm{G}=\mathrm{C}_{\mathrm{n}}, G \bar{G}$ is a Ferrers graph for $\mathrm{n}=3$ and non-Ferrers for $\mathrm{n} \geq 4$.

Proof. When $\mathbf{n}=3$
Clearly C_{3} is an infringe Ferrers graph and $\overline{C_{3}}$ is a null graph. Let x, y, z be the vertices of C_{3} and $\bar{x}, \bar{y}, \bar{z}$ be the vertices of $\overline{C_{3}}$. Consider any two disjoint edges $x \bar{x}$ and $y \bar{y}$ in $C_{3} \overline{C_{3}}$. Then we find $d(x, \bar{y})+d(\bar{x}, y)=4$. Hence by Theorem 1.1, $C_{3} \overline{C_{3}}$ is Ferrers graph.

When $n \geq 4$

Consider a cycle C_{n} with $\mathrm{n}(\geq 4)$ vertices. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the vertices of C_{n} and $\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{n}}$ be the vertices of $\overline{C_{n}}$. Consider the four vertices $\overline{x_{1}}, \overline{x_{3}}, x_{4}, \overline{x_{4}}$ in $G \bar{G}$. Clearly $d\left(\overline{x_{1}}, \overline{x_{4}}\right)=3$ and $d\left(\overline{x_{3}}, x_{4}\right)=2$ (or) $d\left(\overline{x_{1}}, x_{4}\right)=2$ and $d\left(\overline{x_{3}}, \overline{x_{4}}\right)=3$. In both the cases $d\left(\overline{x_{1}}, \overline{x_{4}}\right)+d\left(\overline{x_{3}}, x_{4}\right)>4$ and $d\left(\overline{x_{1}}, x_{4}\right)+d\left(\overline{x_{3}}, \overline{x_{4}}\right)>4$. By theorem 1.1, $G \bar{G}$ is non-Ferrers.

Theorem 2.4. For any complementary prism of C_{3}, the regular number $r\left(C_{3} \overline{C_{3}}\right)=2$
Proof. Consider the complementary prism of C_{3}. To prove $r\left(C_{3} \overline{C_{3}}\right)=2$. Suppose $r\left(C_{3} \overline{C_{3}}\right) \neq 2$. Let $x, y, z, \bar{x}, \bar{y}, \bar{z}$ be the vertices in $C_{3} \overline{C_{3}}$ and $x y, y z, x z, x \bar{x}, y \bar{y}, z \bar{z}$ be the edges in $C_{3} \overline{C_{3}}$ and is shown in Figure 1.

Figure 1
Clearly $C \overline{C_{3}}$ is not a regular graph. Hence $\mathrm{r}\left(\mathrm{C}_{3} \overline{C_{3}}\right) \neq 1$.Also $\mathrm{C}_{3} \overline{C_{3}}$ contains one C_{3} cycle and the remaining non adjacent edges are in one set.Hence $r\left(C_{3} \overline{C_{3}}\right)=2$

Theorem 2.5, For a wheel graph $G=W_{n}, G \bar{G}$ is ferrers for $\mathrm{n}=4$ and non-Ferrers for $n \geq 5$.

Proof. Let $G=W_{n}$ be a wheel graph on n vertices.

When $\mathrm{n}=4$

Clearly W_{4} is a regular graph with degree 3 , and \bar{W}_{4} is a null graph. Let $x, \mathrm{y}, \mathrm{z}$, w be the vertices in W_{4} and $\bar{x}, \bar{y}, \bar{z}, \bar{w}$ be the vertices in $\overline{W_{4}}$. By the definition of complementary prism $x y, y z, x z, x w, y w, z w, x \bar{x}, y \bar{y}, z \bar{z}, w \bar{w}$ are the edges in $W_{4} \bar{W}_{4}$. Consider any two non adjacent edges $x \bar{x}, z \bar{z} \in W_{4} \overline{W_{4}}$. Then $d(x, \bar{z})+d(\bar{x}, z)=4$. for every x, \bar{x}, z and $\bar{z} \in V\left(W_{4} \overline{W_{4}}\right)$. Therefore by Theorem 1.1, $W_{4} \bar{W}_{4}$ is a Ferrers graph.

When $n \geq 5$

Consider a wheel graph W_{n} with $\mathrm{n}(\geq 5)$ vertices. Let $x_{1}, x_{2}, \ldots, x_{\mathrm{n}}$ be the vertices of W_{n} and $\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{n}}$ be the vertices in $\overline{W_{n}}$. Let z be the center vertex of W_{n}. Clearly $\operatorname{deg}(\mathrm{z})=\mathrm{n}-1$ and the remaining vertices have degree 3.Also \bar{z} is an isolated vertex in $\overline{W_{n}}$ and the remaining vertices have degree $\mathrm{n}-4$ in $\overline{W_{n}}, \overline{W_{n}}$ is a disconnected graph. But by the definition of complementary prism $W_{n} \bar{W}_{n}$ is a connected graph. Consider the four vertices $x_{1}, x_{2}, x_{4}, \overline{x_{4}}$ in $G \bar{G}$. Clearly $d\left(x_{1}, \overline{x_{4}}\right)=3$ and $d\left(x_{2}, x_{4}\right)=2$. Then we find $d\left(x_{1}, \overline{x_{4}}\right)+d\left(x_{2}, x_{4}\right)>4$. By theorem 1.1, $G \bar{G}$ is non-Ferrers.

Theorem 2.6 For any complementary prism of a wheel graph W_{4}, the regular number $r\left(W_{4} \bar{W}_{4}\right)=2$

Proof Consider the wheel $\mathrm{G}=W_{4}$. By Theorem 2.5, $G \bar{G}$ is Ferrers. To prove that $r\left(W_{4} \overline{W_{4}}\right)=2$. Let $v_{1}, v_{2}, v_{3}, v_{4}, \overline{v_{1}}, \overline{v_{2}}, \overline{v_{3}}, \overline{v_{4}}$ be the vertices in $W_{4} \overline{W_{4}}$ and $v_{1} v_{2}, v_{2} v_{3}, v_{1} v_{3}, v_{1} v_{4}, v_{2} v_{4}$, $v_{3} v_{4}, v_{1} \overline{v_{1}}, v_{2} \overline{v_{2}}, v_{3} \overline{v_{3}}$ be the edges in $W_{4} \overline{W_{4}}$ and is shown in Figure 2.

Figure 2

Case(i) Suppose $r\left(W_{4} \overline{W_{4}}\right)=1$. By Theorem 1.3, $W_{4} \overline{W_{4}}$ is a regular graph. Which is a contradiction to $W_{4} \bar{W}_{4}$ is not regular. Hence $r\left(W_{4} \bar{W}_{4}\right) \neq 1$.

Case(ii) Suppose $r\left(W_{4} \overline{W_{4}}\right)>2$. By Theorem 1.4, $W_{4} \bar{W}_{4}$ is a complete bipartite graph $\mathrm{K}_{3, \mathrm{n}}$ where $\mathrm{n} \geq 1$. From figure $2, W_{4} \overline{W_{4}}$ is not a complete bipartite graph. Which is a contradiction. Hence $r\left(W_{4} \overline{W_{4}}\right) \ngtr 2$. Hence in both the cases $r\left(W_{4} \overline{W_{4}}\right) \neq 1$ and $r\left(W_{4} \overline{W_{4}}\right) \ngtr 2$. Thus $r\left(W_{4} \overline{W_{4}}\right)=2$. Theorem 2.7 The complementary prism of a complete graph is a Ferrers graph.

Proof Consider a complete graph $G=K_{n}$ with n vertices. And \bar{K}_{n} is a complement of K_{n} which is a null graph. But by the definition of complementary prism $G \bar{G}$ is a connected graph. Let $x_{1}, x_{2}, x_{3} \ldots, x_{n}$ be the vertices of K_{n} and $\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{n}}$ be the vertices of \bar{K}_{n}. Consider
any four vertices $x_{1}, \overline{x_{1}}, x_{n}, \overline{x_{n}}$ in $G \bar{G}$. Clearly $d\left(x_{1}, \overline{x_{n}}\right)=2$ and $d\left(\overline{x_{1}}, x_{n}\right)=2$ (or) $d\left(x_{1}, x_{n}\right)=3$ and $d\left(\bar{x}_{1}, x_{n}\right)=1$. In both the cases, $d\left(x_{1}, \overline{x_{n}}\right)+d\left(\bar{x}_{1}, x_{n}\right) \leq 4$. Therefore, by Theorem 1.1, \bar{G} is Ferrers.

Theorem 2.8. For any Complementary prism of K_{4}, the regular number $r\left(K_{n} \overline{K_{n}}\right)=2$
Proof. Consider a Ferrers graph $K_{n} \overline{K_{n}}$ To prove that $r\left(K_{n} \overline{K_{n}}\right)=2$. Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}$, $\overline{v_{1}}, \overline{v_{2}}, \overline{v_{3}}, \overline{v_{4}}$ be the vertices in $K_{n} \overline{K_{n}}$ and $\mathrm{v}_{1} \mathrm{v}_{2}, \mathrm{v}_{2} \mathrm{v}_{3}, \mathrm{v}_{1} \mathrm{v}_{3}, \mathrm{v}_{1} \mathrm{v}_{4}, \mathrm{v}_{2} \mathrm{v}_{4}, \mathrm{v}_{3} \mathrm{v}_{4}, v_{1} \bar{v}_{1}, v_{2} \overline{v_{2}}, v_{3} \overline{v_{3}}$ be the edges in $K_{n} \overline{K_{n}}$ and is shown in Figure 3.

Figure 3

Case (i) Suppose $r\left(K_{n} \overline{K_{n}}\right)=1$. By theorem 1.3, $K_{n} \overline{K_{n}}$ is a regular graph. But $K_{n} \overline{K_{n}}$ is not a regular graph. Which is a contradiction. Hence $r\left(K_{n} \overline{K_{n}}\right) \neq 1$.

Case (ii) Suppose $r\left(K_{n} \overline{K_{n}}\right)>2$. By theorem 1.4, $K_{n} \overline{K_{n}}$ is a complete bipartite graph $\mathrm{K}_{3, n}$ where $\mathrm{n} \geq 1$. From figure $3, K_{n} \overline{K_{n}}$ is not a complete bipartite graph. Which is a contradiction. Hence $r\left(K_{n} \overline{K_{n}}\right) \ngtr 2$. Hence in both the cases $r\left(K_{n} \overline{K_{n}}\right) \neq 1$ and $r\left(K_{n} \overline{K_{n}}\right) \ngtr 2$.Thus $r\left(K_{n} \overline{K_{n}}\right)=2$.

Theorem 2.9. Let $\mathrm{G}=\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ be a complete bipartite graph on $\mathrm{m}+\mathrm{n}$ vertices. Then $G \bar{G}$ is nonFerrrers for every $m, n \geq 2$

Proof. Consider a complete bi-partite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ with $\mathrm{m}, \mathrm{n}(\geq 2)$ vertices. Let $\mathrm{V}_{1} \& \mathrm{~V}_{2}$ be the two partitions of $\mathrm{G}=\mathrm{K}_{\mathrm{m}, \mathrm{n}}$. Let $x_{1}, x_{2}, x_{3} \ldots, x_{m}$ be the vertices of V_{1} and $y_{1}, y_{2}, y_{3} \ldots, y_{n}$ be the vertices of V_{2}. Also $\overline{x_{1}}, \overline{x_{2}}, \overline{x_{3}} \ldots, \overline{x_{m}}$ and $\overline{y_{1}}, \overline{y_{2}}, \overline{y_{3}} \ldots ., \overline{y_{n}}$ be the vertices of $\bar{K}_{m, n}$. Consider the four vertices $\overline{x_{1}}, \overline{x_{m}}, \overline{y_{1}}, \overline{y_{n}}$ in $K_{m, n} \overline{K_{m, n}}$. Clearly $d\left(\overline{x_{1}}, \overline{y_{n}}\right)=4$ and $d\left(\overline{x_{m}}, \overline{y_{1}}\right)=3$ (or) $d\left(\overline{x_{1}}, \overline{y_{1}}\right)=3$ and $d\left(\overline{x_{m}}, \overline{y_{n}}\right)=3$. In both the cases, $d\left(\overline{x_{1}}, \overline{y_{n}}\right)+d\left(\overline{x_{m}}, \overline{y_{1}}\right)>4$. Therefore by Theoren 1.1, $G \bar{G}$ is non-Ferrers.

Theorem 2.10 For a complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}, r} r\left(K_{m, n} \overline{K_{m, n}}\right)=3$

Proof. To prove, $r\left(K_{m, n} \overline{K_{m, n}}\right)=3$. Suppose $r\left(K_{m, n} \overline{K_{m, n}}\right) \neq 3$.
Case (i). Suppose $r\left(K_{m, n} \overline{K_{m, n}}\right)=1$, then $K_{m, n} \overline{K_{m, n}}$ is a regular graph (or) P_{2} (or) K_{n}. But $K_{m, n} \overline{K_{m, n}}$ is not a regular graph. Hence $r\left(K_{m, n} \overline{K_{m, n}}\right) \neq 1$.

Case (ii). Suppose $r\left(K_{m, n} \overline{K_{m, n}}\right)=2$, then $K_{m, n} \overline{K_{m, n}}$ is either a path containing atleast 3 vertices (or) $p_{2} \overline{p_{2}}$ or $C_{3} \overline{C_{3}}$ (or) $W_{4} \overline{W_{4}}$ (or) $K_{n} \overline{K_{n}}$. In all the cases the graph is Ferrers. Which is a contradiction. Hence $r\left(K_{m, n} \overline{K_{m, n}}\right) \neq 2$

Case (iii). Suppose that $K_{m, n} \overline{K_{m, n}}>3$, then $K_{m, n} \overline{K_{m, n}}$ is either a wheel graph with atleast 6 vertices (or) $\mathrm{K}_{3,3}$. In all the cases the graph is a Ferrers graph. Which is a contradiction. Hence $r\left(K_{m, n} \overline{K_{m, n}}\right)=3$

Theorem 2.11. For a tree $\mathrm{G}, G \bar{G}$ is non Ferrers except path $\mathrm{P}_{2}(\mathrm{n}=2)$.

Proof.

We Prove the result by the following two cases.

Case (i) Suppose G is a Ferrers tree.
To prove that $G \bar{G}$ is a non Ferrers graph. Since G is a Ferrers tree. By Theorem 1.6. G has 2 internal vertices. Let us assume that x_{1}, x_{2} be the internal vertices and $x_{3}, x_{5}, x_{7}, \ldots \ldots, x_{n-1}$ be the vertices adjacent with x_{1} and $x_{2}, x_{4}, x_{6}, \ldots, x_{n}$ be the vertices adjacent with x_{2}. Also, $\overline{x_{1}}, \overline{x_{2}}, \overline{x_{3}}, \ldots, \overline{x_{n-1}}, \overline{x_{n}}$ are the vertices in \bar{G}. Consider the four vertices $x_{n-1}, \overline{x_{n-1}}, x_{2}, x_{n}$ in $G \bar{G}$. Clearly $d\left(x_{n}, x_{n-1}\right)=3$ and $d\left(x_{2}, \overline{x_{n-1}}\right)=2$. Then we find $d\left(x_{n}, x_{n-1}\right)+$ $d\left(x_{2}, \overline{x_{n-1}}\right)>4$. By Theorem 1.1, $G \bar{G}$ is non Ferrers.

Case (ii) Suppose G is a non-Ferrers tree.
To prove that $G \bar{G}$ is a non-Ferrers graph. Since G is a non-Ferrers tree. Let $x_{1}, x_{2}, x_{3} \ldots, x_{n}$ be the vertices of G, and $\overline{x_{1}}, \overline{x_{2}}, \overline{x_{3}} \ldots, \overline{x_{n}}$ be the vertices of \bar{G}. Consider the four vertices $x_{n-1}, x_{n}, x_{1}, \overline{x_{1}}$ in $G \bar{G}$. Clearly $d\left(x_{n-1}, x_{1}\right)=3$ and $d\left(x_{n}, \overline{x_{1}}\right)=3$. In both the cases $d\left(x_{n-1}, x_{1}\right)+d\left(x_{n}, \overline{x_{1}}\right)>4$. By Theorem 1.1, $G \bar{G}$ is non Ferrers.

Theorem 2.12. Let G be any graph, $G \bar{G}$ is Ferrers, then $\operatorname{diam}(G \bar{G})=3$ and $\operatorname{rad}(G \bar{G})=2$.

Proof. Let G be any graph and $G \bar{G}$ is a Ferrers graph. To prove that, $\operatorname{diam}(G \bar{G})=3$ and $\operatorname{rad}(G \bar{G})=2$ since $G \bar{G}$ is a Ferrers g raph, by Theorem $1.5, \mathrm{~d}(\mathrm{u}, \mathrm{v}) \leq 3$ for all $\mathrm{u}, \mathrm{v} \in \mathrm{V}(G \bar{G})$. Then $G \bar{G}$ graph attains the upper bound value. Hence $\operatorname{diam}(G \bar{G})=3$. Now to prove that $\operatorname{rad}(G \bar{G})=2$. It is enough to prove that $\operatorname{rad}(G \bar{G}) \neq 3$ and $\operatorname{rad}(G \bar{G}) \neq 1$.

Case (i) Suppose $\operatorname{rad}(G \bar{G})=3$, then $\operatorname{diam}(G \bar{G}) \geq 3$. If $\operatorname{diam}(G \bar{G})>3$, then by Theorem 2.12, $G \bar{G}$ is not a Ferrers graph. Which is a contradiction. Hence $r(G \bar{G}) \neq 3$

Case (ii) Suppose $\operatorname{rad}(G \bar{G})=1$, then $G \bar{G}$ is a regular graph. By Theorem 2.12, $G \bar{G}$ is not a regular graph. Hence $\operatorname{rad}(G \bar{G}) \neq 1$. Hence in both the cases $\operatorname{rad}(G \bar{G}) \neq 3$ and $\operatorname{rad}(G \bar{G}) \neq 1$. Thus $\operatorname{rad}(G \bar{G})=2$.

3. Conclusion.

In this paper we proved that the regular number of the complementary prism of a Ferrers graph is 2 . Also we have seen that the diameter and radius of the complementary prism of a Ferrers graph.

References.

[1] Ashwin Ganesan and Radha. R. Iyer, The regular number of a graph, Journal of Discrete Mathematical sciences and cryptography, November 2011.
[2] Bitlis, Turkey, A new graph class defined by ferrers relation, published Bilis Eren University.
[3] Bondy J.A. and Murthy U.S.R., Graph Theory with Applications, North Holand, New Yourk, 1976.
[4] R. Chenthil ThangaBama and S. Sujitha, Distance Parameters for a Ferrers graph, Publ. Journal of computational Information systems. 15:1(2019) 193-196.
[5] V.R.Kulli, B. Janakiram, Radha. R. Iyer, Regular number of a graph, Journal of Discrete Mathematical Sciences and cryptography, Vol. 4 (2001); No.1, pp.57-64.

