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ABSTRACT: 

The goal of this study is to foster a straightforward, naturally harmless substitute logical strategy for 

concurrent assessment of iron oxidation states. This proposed technique for iron speciation is in view of 

1,10-phenanthroline (phen) altered redox capability of progress metal particles. In a pre-step 

overabundance cerium (IV) oxidizes iron (II) in example to iron (III). Introductory back titration of un-

responded cerium (IV) with cobalt (II) in presence of phen gives measure of iron (II) in example, decrease 

of iron (III) with cobalt (II) is then used to appraise complete iron as iron (III). The potentiometric titration 

strategy has been effectively tried for conclusions of iron (II) and complete iron in engineered and regular 

examples and addresses an unmistakably green option in contrast to other detailed conventions of iron 

speciation examination. 
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INTRODUCTION 

In some cases, the stability constants of metal-ligand 

complexes and the stability constants of the 

corresponding proton-ligand complex can be linearly 

related. This means that even minor structural changes 

in the ligand will have a linear effect on the stability 

constants of the two complexes. For the analytical 

chemist, the existence of such linear relationships is 

of the utmost importance because it enables him to 

approximate the stability constant values of a 

particular metal and a ligand when the constants of 

this metal have been measured for other ligands that 

are comparable to it. Relationships or empirical trends 
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in the variation in stability between a group of metals 

and a particular ligand are equally significant. The 

Irving-Williams Series (1), for instance, asserts that 

the stability of metal complexes will typically 

correspond to the metal's second ionization potential 

for the majority of ligands. For ions of equal charge, 

the order of stability of a ligand with the following 

metals is consistent with this generalization: Zn: Cu, 

Ni, Co, Fe, Mn In addition, it has been demonstrated 

in a few instances (alkali metals, alkaline earths, and 

rare earths) that the charge squared divided by the 

metal ionic radius, or er, determines the stability of 

the complex with a particular ligand. There are 

theoretical justifications for expecting complex 

stability to be inversely proportional to ionization and 

electrostatic potentials, but these are only rough 

estimates due to the many other factors that must 

necessarily have a significant impact on a complex's 

overall stability. In order to feel justified in applying 

the theoretical generalizations to all complex 

compounds, it is only necessary to recognize, 

interpret, and, if at all possible, separate these 

additional effects. With the Irving-Williams Series, 

this is the case. Although there are notable exceptions 

that demonstrate the rule, the sequence appears to 

hold for an excessive number of diverse ligands to 

reject the correlation. One such exception is the 1,10-

phenanthroline complexes, with the most obvious 

deviation being that the stability of the tris(1,10-

phenanthroline) nickel(II) complex and the tris(l,10-

phenanthroline) iron(II) complex is greater than that 

of the copper(II) complex, whereas this would be the 

case for most ligands. Although the 1,10- 

phenanthroline complexes themselves possess 

numerous additional properties that are of interest, 

this exceptional behavior on its own would be 

sufficient to warrant a serious investigation into its 

explanation. The intense color formation of the 1,10-

phenanthroline iron(II) and copper(I) complexes has 

made them a common analytical tool. The fact that a 

number of metals react kinetically slowly with 1,10-

phenanthrolines (3) has facilitated novel analytical 

separations and raises intriguing questions regarding 

the interpretation of chelate reaction mechanisms. 

Although 1,10-phenanthroline complexes have 

received a lot of attention in the literature (4), it has 

only recently been attempted to systematically 

measure the stabilities of transition metal complexes 

with 1,10-phenanthroline, with the exception of iron 

complexes (5)>. Even less research has been done 

with complexes of substituted 1,10-phenanthrolines. It 

is hoped that the current work will at least contribute 

to this end. The far off object as a top priority, 

notwithstanding, is to endeavor to lay out the 

linearity, and the constants for the direct condition 

relating the security of the metal edifices to the 

soundness of the proton buildings, for a progression 

of subbed 1,10-phenanthrolines. The substituent effect 

of a given metal in relation to an arbitrary standard 

cation, the proton, is then represented by this 

equation. Various transition metals have the ability to 

be measured for the substituent effect. The subsequent 

inquiry is: Is there a connection between the effects of 

substituents as the metal changes? From a theoretical 

perspective, what is this relation likely to be? Indeed, 

answering these primary questions would be 

beneficial. 

 

In water systems, iron is one of the most prevalent 

and significant bioactive trace metals. The degree to 

which iron is oxidized, hydrolyzed, and complexed 

with various inorganic and organic ligands in the 

water's environment determine its biogeochemistry in 

natural water. Iron(III) and iron(II) are the two 

oxidation states of dissolved iron, with iron(III) being 

the more thermodynamically stable form in 

oxygenated waters. However, there are a number of 

processes that reduce iron(III), resulting in 

measurable iron(II) concentrations in surface water. 

Even though good analytical methods of metal ion 

estimation like atomic absorption spectrometry 

(AAS), inductively coupled plasma atomic emission 

spectrometry (ICP-AES), and X ray fluorescent 

spectrometry (XRF) detect metal ions at mg L1 (ppm) 

and even lower concentrations, they cannot 

distinguish any difference in the metal oxidation 

states and are therefore inappropriate for the 

speciation of iron.4–7 This stimulates progress in 

developing analytical methods and instrumentation 

For the simultaneous determination of iron(II) and 

iron(III) in various samples, numerous alternative 

methods9–13 have been reported in the literature. 

However, strict procedures and sophisticated 

instrumentation that are out of reach for common labs 

are required for sampling, sample handling, pre-

concentration, and/or separation of the speciated 

forms. As a result, eco-friendly analytical approaches 

with high selectivity, sensitivity, precision, and 

reproducibility are still desired. 14 We recently 

described potentiometric estimation of iron oxidation 

states through coordination inspired redox behavior of 

cobalt and iron species.18 This article describes green 

electrochemistry and extends the work to an 

environmentally friendly method for simultaneous 

speciation of iron(II) and iron(III). This is a 

continuation of our work on the complexation effect 

of redox potential15 and its utilization in novel 

analytical monitoring of transition metal ion mixtures. 

Under the redox potential modification with 1,10-

phenanthroline ligand, the method is based on the 

redox reaction of cerium(IV) and iron(II) to produce 

iron(III), then back titration of cerium(IV) with 
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cobalt(II) for estimation of iron(II), and further 

titration of iron(III) with cobalt(II) to give total iron 

concentration. This potentiometric alternative for 

simultaneously estimating iron oxidation states is 

robust, less harmful, and atom-efficient in one step. 

Furthermore, solidification of reaction waste permits 

secure disposal, minimizing the risk of human 

exposure and water body damage. The results, which 

were in good agreement with those of a standard 

spectrophotometric method, were obtained for the 

determinations of iron(II) and total iron in laboratory-

created (synthetic) and natural water samples (Dal 

Lake), standard iron ores, rock samples, and 

pharmaceutical samples. The 1,10-phenanthroline 

ligand modulated redox potential is used in this article 

to illustrate the concept of green electro analytical 

chemistry. 

 

EXPERIMENTAL 

Apparatus 

Potentiometric titrations were performed manually 

using a commercially available platinum indicator and 

calomel reference electrode over a potentiometer 

(Systronics India Model 318) at T = 50 °C ± 2 °C. pH 

was measured using a Labindia pH analyzer (PHAN) 

fitted with Lp-01 pH electrode. A Siskin Julabo 

thermostat was used to maintain a constant 

temperature within ± 2 °C. The titration vessel 

consisted of a specially designed six necked vessel 

(one each for micro burette, platinum, calomel 

electrodes, temperature probe, inlet and outlet of 

nitrogen gas). 
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