

Priya Tirumala^[a], Jennifer Huang^[a], Shrika Eddula^[a], Carina Jiang^[a], Angelina Xu^[a], Grace Liu^[a], William E. Acree Jr^[a]* and Michael H. Abraham^[b]

Keywords: Abraham model; solute descriptors; enthalpy of vaporization; enthalpy of sublimation; Kovats retention indices.

Abraham model **L** solute descriptors have been determined for 127 additional mono-alkyl alkanes and polymethyl alkanes based on published gas chromatographic retention indices for solutes eluted from a fused-silica capillary column coated with a cross-lined methyl silicone stationary phase. Standard molar enthalpies of vaporization and sublimation at 298 K are calculated for the 127 mono-alkyl alkanes and polymethyl alkanes using the reported solute descriptors and our recently published Abraham model correlations. Calculated vaporization and sublimation enthalpies derived from the Abraham model compare very favourably with values based on a popular atom-group additivity model.

* Corresponding Authors

Fax: (940) 565-3543

- E-Mail: acree@unt.edu
- [a] Department of Chemistry, University of North Texas, Denton, Texas 76203, USA
- [b] Department of Chemistry, University College of London, 20 Gordon Street, London WC1H OAJ, UK

INTRODUCTION

Physicochemical and thermodynamic properties are important input parameters in the design of efficient synthetic methods and purification processes for the commercial preparation of new chemical compounds. Standard molar enthalpies and Gibbs energies of formation can be used to select reaction conditions that optimize product yields, and determine the spontaneity of a chemical reaction at a given temperature and reactant concentrations. Enthalpic and kinetic considerations determine if the reaction mixture needs to be heated or cooled in order for the chemical synthesis to proceed at a controlled reaction rate. Solubility, partition coefficient, vapor pressure, activity coefficient and enthalpy of vaporization data suggest possible purification methods (recrystallization, solvent extraction, fractional distillation) for the chemical product once the synthesis is complete. These represent only a few of the physicochemical and thermodynamic properties needed by individuals working in the chemical manufacturing sector.

Experimental data is readily available for only a small fraction of the more than six billion known chemical compounds. Moreover, in designing industrial manufacturing processes one must consider the properties of liquid mixtures, as well as the properties of individual components that comprise the mixture. Mixture properties such as density, viscosity, surface tension, and vapor pressure depend on the actual concentration of the mixture components. Experimental measurements are both timeconsuming and expensive, and it is highly unlikely that there will be a significant increase in the number of experimental values in the near future.

In the absence of actual experimental data, and when measurement is not a viable option, the chemical manufacturing sector has turned to predictive methods as a means to generate the needed input values in design calculations. Many of the current predictive approaches can be classified as either: (1) Ab-initio calculational methods; (2) Quantitative Structure Property Relationships (QSPR); or (3) Group Contribution methods. Ab-initio methods¹⁻⁸ have been successfully applied to compute enthalpies and Gibbs energies of formation, molar heat capacities, enthalpies of solvation, dipole moments, and other properties of molecules of reasonable molecular size. A single computation, however, can take several hours to complete. Various calculation schemes have been employed to reduce the computational time through parameter optimization that allows one to obtain the best possible result for a certain, rather finite, set of test molecules. Abinitio methods are not widely used in process design applications where many computations may be required in order to complete the design of an industrial process.

QSPR relationships are based on finding a mathematical relationship:

$$\varphi = f(MD) \tag{1}$$

where ϕ - a physicochemical or thermodynamic property and MD - molecular descriptors

between the desired physicochemical or thermodynamic property and molecular descriptors that describe (or based upon) the molecular characteristics of the molecule. Molecular descriptors can be based upon molecular size, molecular shape, atom connectivity, atomic volumes and surface areas, components of the dipole and quadruple moment vectors, and calculable local quantities characterizing the reactivity and binding properties (such as atomic charges, atom-atom polarizabilities, molecular orbital energies, and frontier orbital densities). Molecular descriptors are discussed in greater detail elsewhere.⁹⁻¹¹ The mathematical relationship between the descriptors and each physicochemical/thermodynamic property of interest is obtained by curve-fitting the measured experimental data in accordance to Eqn. (1). Properties of any additional compounds are calculated by simply inserting the compound's molecular descriptors into the derived QSPR expression. QSPR expressions have been derived for a large range of physicochemical and thermodynamic properties, including vapor pressure,¹² flash point temperatures,^{13,14} Gibbs energies of solvation and Ostwald solubility coefficients,^{15,16} liquid viscosity,¹⁷ enthalpies of solvation,^{18,19} and liquid and gas molar heat capacities.^{20,21}

Group contribution methods belong to a class of empirical property prediction methods that base calculations upon the functional groups or "molecular building blocks" contained within the chemical compound. The molecule is broken down into individual building blocks and the physicochemical and/or thermodynamic property is then estimated as:

$$\varphi = C + \sum_{i}^{groups} n_i G_i \tag{2}$$

where a constant (C) plus the summation of the product of the number times each group appears in the molecule, n_i , multiplied by the respective group value, G_i . Second- and third-order group terms can be added if necessary to capture subtle structural features that might impact the given property. Such methods assume that the property value for a given function group has the same contribution in all compounds containing the functional group. In other words, the contribution of an ester group would be the same in ethyl acetate as in propyl decanoate. The physicochemical or thermodynamic property of a given chemical compound is thus a function of the contribution of all of the functional groups (or molecular building blocks) needed for the unique representation of the compound's molecular structure.

Molecules can be fragmented into basic organic functional groups (e.g., esters, amides, primary amines, ethers, etc.) or into much smaller atom types and bonded atoms. The key is to find a fragmentation method that results in a general predictive expression for a wide range of chemical compounds or mixtures. Published functional group contribution and atom group additivity methods provide reasonably accurate predictions of enthalpies of combustion,²² enthalpies of formation,²²⁻²⁴ standard molar enthalpies of vaporization^{25,26} and sublimation,^{25,27} solidliquid total phase entropies,^{28,29} surface tensions,²⁵ isobaric molar heat capacities of liquid and solid organic and organometallic compounds.³⁰⁻³³ Mathematical expressions for mixtures are more complex and include the mixture compositions as well as terms describing interactions between functional groups on neighboring molecules,³⁴⁻³⁸

The method that we have been promoting in recent years for predicting thermodynamic properties is based on the Abraham solvation parameter model³⁹⁻⁴³ which was originally developed to describe solute transfer between two phases.

$$\log(P \text{ or } C_{\text{S,organic}}/C_{\text{S,water}}) = c_{\text{p}} + e_{\text{p}} \cdot \mathbf{E} + s_{\text{p}} \cdot \mathbf{S} + a_{\text{p}} \cdot \mathbf{A} + b_{\text{p}} \cdot \mathbf{B} + v_{\text{p}} \cdot \mathbf{V}$$
(3)

$$\log(K \text{ or } C_{S, \text{organic}}/C_{S, \text{gas}}) = c_k + e_k \cdot \mathbf{E} + s_k \cdot \mathbf{S} + a_k \cdot \mathbf{A} + b_k \cdot \mathbf{B} + l_k \cdot \mathbf{L}$$
(4)

Equation (3) describes solute transfer from one condensed phase to another, while Eqn. (4) describes solute transfer from the gas phase into a condensed phase. Solute transfer is described in terms of the logarithms of water-to-organic solvent and gas-to-organic solvent partition coefficients, log P and log K, or in terms of the logarithms of two molar solubility ratios, $C_{S,organic}/C_{S,water}$ and $C_{S,organic}/C_{S,gas}$. The first molar solubility ratio is calculated as the molar solubility of the solute in the organic solvent divided by its aqueous molar solubility, while the second ratio involves a molar gas phase concentration, $C_{s,gas}$. This latter quantity is calculable from the equilibrium vapor pressure of the solute at the system temperature, or can be determined by fitting experimental solubility data in accordance with Eqns. 3 and 4.

The right-hand side of both Abraham model expressions represents the different types of solute-solvent molecular interactions that govern solute transfer processes. Each solute-solvent interaction is quantified as the product of a solute property (E, S, A, B, V and L) multiplied by the complementary solvent property (c_p , e_p , s_p , a_p , b_p , v_p , c_k , e_k , s_k , a_k , b_k , and l_k). Solute descriptors are described as follows: E denotes the molar refraction of the given solute in excess of that of a linear alkane having a comparable molecular size; S is a combination of the electrostatic polarity and polarizability of the solute; A and B refer to the respective hydrogen-bond donating and accepting capacities of the dissolved solute; V corresponds to the McGowan molecular volume of the solute calculated from atomic sizes and chemical bond numbers; and L is the logarithm of the solute's gas-to-hexadecane partition coefficient measured at 298.15 K. The complimentary solvent properties are determined by multi-linear regression analysis of measured log (P or $C_{S,organic}/C_{S,water}$) and log (K or $C_{S,organic}/C_{S,gas}$) values for solutes of known descriptor values. Once the solvent coefficients are known they be used to predict the solubility of additional solutes in the given solvent or $\log P$ values for a given water-to-partitioning system. Solubility and partition coefficient data are used in the chemical manufacturing sector to design the chemical separation processes needed to purify the synthesized chemical product. Thus far we have determined solute descriptors for more than 8,000 different organic and organic compounds⁴⁴, and have reported Abraham model correlations for more than 130 different water-to-organic solvent and gas-to-organic solvent transfer processes.³⁹⁻⁴³ The Gibbs energy of solvation, ΔG_{solv} , is related to the gas-to-liquid partition coefficient through Eqn. (5):

$$\Delta G_{\rm solv} = -RT \ln K \tag{5}$$

where *R* denotes the universal gas constant and *T* is the system temperature. Abraham model correlations are available for predicting the enthalpies of solvation of solutes in several common organic solvents as well.⁴⁵⁻⁵⁵ Each of our published Abraham model correlations uses the same set of solute descriptors for a given compound, irrespective of the property being predicted.

Our recent modeling efforts have been devoted to developing Abraham model correlations that enable us to predict more physicochemical and thermodynamic properties of organic and organometallic compounds, such as vapor pressures,⁵⁶ and enthalpies of vaporization⁵⁷ and sublimation.⁵⁸ We have now decided to expand our efforts on determining solute descriptors for more chemical compounds. The current communication is devoted to obtaining a complete set of solute descriptors for both the larger C₉ – C₂₆ polyalkyl alkanes and polymethyl alkanes so that we can predict their vapor pressures, enthalpies of vaporization and enthalpies of sublimation.

Determination of the solute descriptors of alkane solutes is relatively simple as **E**=0, **S**=0, **A**=0 and **B**=0. Alkane solutes molar possess no excess refraction (E=0)or polarity/polarizability (S=0), and are not capable of hydrogen-bond formation (A=0 and B=0) with surrounding solvent molecules. The numerical value of the V-solute descriptor is calculable from the number of chemical bonds and the atomic sizes of the atoms contained in the molecular.59 Only the L solute descriptor remains to be calculated. A recent paper⁶⁰ published in the European Chemical Bulletin illustrated the determination of the Lsolute descriptor of large mono-methyl branched alkanes from measured gas chromatographic retention indices. The identical computational methodology will be followed in the current study using the gas chromatographic Kovats retention indices reported by Kissin and coworkers⁶¹⁻⁶³ for large alkane and alkene solutes on a fused-silica capillary column coated with a cross-lined methyl silicone stationary phase.

CALCULATION OF ABRAHAM MODEL SOLUTE DESCRIPTORS

The computational method that we will use to calculate the L-solute descriptor involves establishing an Abraham model relationship:

$$RI = c_{\rm ri} + e_{\rm ri} \cdot \mathbf{E} + s_{\rm ri} \cdot \mathbf{S} + a_{\rm ri} \cdot \mathbf{A} + b_{\rm ri} \cdot \mathbf{B} + l_{\rm ri} \cdot \mathbf{L}$$
(6)

using the measured Kovats retention indices, RI, for those alkane solutes for which we already have a complete set of solute descriptors. Only two of the stationary phase coefficients, c_{ri} and l_{ri} , will need to be determined as the other four terms will not contribute to the computation. Remember that the **E**, **S**, **A** and **B** solute descriptors of alkane solutes are equal to zero.

The alkane solute that we have available for our linear regression analysis will include the C_5 - C_{30} linear alkanes for which the Kovats retention indices are defined to be 100 times the number of carbon atoms, 3-ethyloctane, 4-

ethyloctane, 2,3-dimethyloctane, 2,6-dimethyloctane, 2,7dimethyloctane, 3,5-dimethyloctane, 3,6-dimethyloctane, 2,6-dimethylheptane, and the 2-methylalkanes for which we recently determined descriptor values.⁶⁰ In total we have both retention indices and solute descriptors for 188 different alkane solutes to use in our regression analyses. Analysis of the numerical values in columns 2 and 3 of Table 1 yielded Eqn. 7.

$$\mathbf{L} = 0.507(0.000) \cdot (RI/100) - 0.398(0.007)$$
(7)

$$(N = 118, SD = 0.023, R^2 = 1.000, F = 1712340)$$

Standard errors in both equation coefficients are given in parenthesis immediately following the respective coefficient. The statistical information, namely the standard deviation (*SD*), squared correlations coefficient (R^2), and Fisher F-statistic (F) is provided below the derived correlation.

The derived mathematical relationship allows us to calculate the **L** solute descriptor of the remaining 127 polyalkyl alkane and polymethyl alkane molecules. These calculations are summarized in the last column of Table 1. Examination of the last two columns of numerical entries in Table 1 reveals that Eqn. (7) provides a very accurate back-calculation of the solute descriptor values used in the regression analysis. The average absolute difference and average difference betwen the experimental-based **L**-solute descriptor values and those back-calculated from Eqn. (7) were 0.013 and -0.006, respectively.

Table 1. Retention Indices, *RI*, and Abraham Model **L** Solute Descriptors for n-Alkanes, Polyalkyl Alkanes and Polymethyl Alkanes.

Compound	RI	L	L
		(database)	Eqn.(7)
Hexane	600.0	2.668	2.644
Heptane	700.0	3.173	3.151
Octane	800.0	3.677	3.658
Nonane	900.0	4.182	4.165
Decane	1000.0	4.686	4.672
Undecane	1100.0	5.191	5.179
Dodecane	1200.0	5.696	5.686
Tridecane	1300.0	6.200	6.193
Tetradecane	1400.0	6.705	6.700
Pentadecane	1500.0	7.209	7.207
Hexadecane	1600.0	7.714	7.714
Heptadecane	1700.0	8.218	8.221
Octadecane	1800.0	8.722	8.728
Nonadecane	1900.0	9.226	9.235
Eicosane	2000.0	9.731	9.742
Heneicosane	2100.0	10.236	10.249
Docosane	2200.0	10.740	10.756
Tricosane	2300.0	11.252	11.263
Tetracosane	2400.0	11.758	11.770
Pentacosane	2500.0	12.264	12.277
Hexacosane	2600.0	12.770	12.784
Heptacosane	2700.0	13.276	13.291
Octacosane	2800.0	13.780	13.798
Nonacosane	2900.0	14.291	14.305
Triacontane	3000.0	14.794	14.812
2-Methyloctane	865.0	3.966	3.988

Calculated	vaporization	enthalpies	of alkane	derivatives
caremanca	raporization	chinapics	of amane	acrivatives

2-Methylnonane	964.0	4.453	4.489	5-Methyltricosane
2-Methyldecane	1065.0	4.981	5.002	5-Methyltetracosane
2-Methylundecane	1164.5	5.516	5.506	6-Methyldodecane
2-Methyldodecane	1265.0	6.022	6.016	6-Methyltetradecane
2-Methyltridecane	1364.5	6.528	6.520	6-Methylhexadecane
2-Methyltetradecane	1465.0	7.034	7 030	6-Methylheptadecane
2-Methylpentadecane	1564.0	7 539	7.531	6-Methyloctadecane
2 Methylpenadecane	1664.5	8.046	8.041	6-Methyleicosane
2 Mathylhantadaana	1764.0	0.040 0.551	8.545	6 Mathulhanajaasana
2 Methyloctadecane	1864.5	0.057	0.055	6 Methyldocosane
2 Mathylponadaaana	1064.0	0.562	0.550	6 Mathyltatraaasana
2 Methylaioosano	2064.5	9.505	10.060	7 Methyltrideenne
2 Mathylhonaiaasana	2004.3	10.070	10.009	7-Methyltitatradacane
2-Methyldesesene	2104.0	11.020	10.575	7-Methyltetradecalle
2-Methyldocosalle	2205.3	11.080	11.078	7-Methylpentadecane
2-Methyltricosane	2363.0	11.449	11.582	7-Methylnexadecane
2-Methyltetracosane	2463.0	11.952	12.089	7-Methylneptadecane
3-Methyloctane	872.0	3.998	4.023	7-Methylhonadecane
3-Methylnonane	971.0	4.486	4.525	7-Methylheneicosane
3-Methyldecane	1071.5	5.037	5.035	7-Methyltricosane
3-Methylundecane	1172.0	5.550	5.544	3-Ethyloctane
3-Methyldodecane	1272.0	6.056	6.051	3-Ethyldecane
3-Methyltridecane	1372.0	6.563	6.558	3-Ethyldodecane
3-Methyltetradecane	1472.5	7.070	7.068	3-Ethyltetradecane
3-Methylpentadecane	1572.0	7.577	7.572	3-Ethylhexadecane
3-Methylhexadecane	1673.0	8.073	8.084	3-Ethyloctadecane
3-Methylheptadecane	1773.5	8.573	8.594	3-Ethyleicosane
3-Methyloctadecane	1873.5	9.099	9.101	3-Ethyldocosane
3-Methylnonadecane	1973.7	9.607	9.609	4-Ethyloctane
3-Methyleicosane	2074.0	10.114	10.117	4-Ethyldecane
3-Methylheneicosane	2174.0	10.621	10.624	4-Ethyldodecane
3-Methyldocosane	2274.0	11.127	11.131	4-Ethyltetradecane
3-Methyltricosane	2373.7	11.635	11.637	4-Ethylhexadecane
3-Methyltetracosane	2473.7	12.142	12.144	4-Ethyloctadecane
4-Methylnonane	962.0	4.441	4.479	4-Ethyleicosane
4-Methyldecane	1061.5	4.963	4.984	4-Ethyldocosane
4-Methylundecane	1161.0	5.495	5.488	5-Ethyldecane
4-Methyldodecane	1261.0	5.998	5.995	5-Ethyldodecane
4-Methyltridecane	1360.0	6.502	6.497	5-Ethyltetradecane
4-Methyltetradecane	1460.5	7.008	7.007	5-Ethylhexadecane
4-Methylpentadecane	1560.0	7.512	7.511	5-Ethyloctadecane
4-Methylhexadecane	1660.5	8.018	8.021	5-Ethyleicosane
4-Methylheptadecane	1760.0	8.524	8.525	5-Ethyldocosane
4-Methyloctadecane	1860.2	9.030	9.033	6-Ethyldodecane
4-Methylnonadecane	1960.2	9 536	9 540	6-Ethyltetradecane
4-Methyleicosane	2060.5	10.043	10.049	6-Ethylbexadecane
4-Methylheneicosane	2160.0	10.549	10.553	6-Ethyloctadecane
4-Methyldocosane	2259.5	11.055	11.058	6-Ethyleicosane
4 Methyltricosane	2259.5	11.055	11.050	6 Ethyldocosane
4 Methyltetracosane	2357.0	12.067	12.067	7 Ethyltetradecane
5 Methylnonane	2438.5	12.007	12.007	7-Ethyltetradecalle
5 Methyldesene	1058.0	4.452	4.474	7-Ethylaetadaeana
5 Methodane	1058.0	4.905	4.900	7-Ethyloctadecale
5-Methylundecane	1156.0	5.475	5.465	7-Ethyleicosane
5-Methyldodecane	1255.0	5.975	5.965	7-Ethyldocosane
5-Methyltridecane	1354.0	0.4//	0.407	5-Propylindecane
5-Methyltetradecane	1453.8	6.980	6.973	5-Propylpentadecane
5-Methylpentadecane	1553.6	7.483	7.479	5-Propylheptadecane
5-Methylhexadecane	1653.4	7.988	7.985	5-Propylnonadecane
5-Methylheptadecane	1753.2	8.492	8.491	7-Propyltridecane
5-Methyloctadecane	1853.0	8.998	8.997	/-Propylpentadecane
5-Methylnonadecane	1953.2	9.503	9.505	/-Propylheptadecane
5-Methyleicosane	2053.0	10.009	10.011	5-Butyldecane
5-Methylheneicosane	2153.0	10.514	10.518	5-Butyldodecane
5-Methyldocosane	2252.0	11.019	11.020	5-Butyltetradecane

Section E-Research paper

4.453	4.489	5-Methyltricosane	2352.5	11.525	11.529
4.981	5.002	5-Methyltetracosane	2453.0	12.031	12.039
5.516	5.506	6-Methyldodecane	1254.0	5.965	5.960
6.022	6.016	6-Methyltetradecane	1451.0	6.964	6.959
6.528	6.520	6-Methylhexadecane	1650.0	7.968	7.968
7.034	7.030	6-Methylheptadecane	1749.0	8.473	8.469
7.539	7.531	6-Methyloctadecane	1848.0	8.977	8.971
8.046	8.041	6-Methyleicosane	2048.0	9.986	9.985
8.551	8.545	6-Methylheneicosane	2147.5	10.490	10.490
9.057	9.055	6-Methyldocosane	2247.0	10.995	10.994
9.563	9.559	6-Methyltetracosane	2446.5	12.006	12.006
10.070	10.069	7-Methyltridecane	1351.0	6.460	6.452
10.575	10.573	7-Methyltetradecane	1450.0	6.957	6.954
11.080	11.078	7-Methylpentadecane	1548.0	7.456	7.450
11.449	11.582	7-Methylhexadecane	1646.0	7.956	7.947
11.952	12.089	7-Methylheptadecane	1745.0	8.458	8.449
3.998	4.023	7-Methylnonadecane	1944.0	9.465	9.458
4.486	4.525	7-Methylheneicosane	2143.0	10.473	10.467
5.037	5.035	7-Methyltricosane	2342.0	11.481	11.476
5.550	5.544	3-Ethyloctane	961.0	4.467	4.474
6.056	6.051	3-Ethyldecane	1157.0		5.468
6.563	6.558	3-Ethyldodecane	1355.0		6.472
7.070	7.068	3-Ethyltetradecane	1554.0		7.481
7.577	7.572	3-Ethylhexadecane	1753.0		8.490
8.073	8.084	3-Ethyloctadecane	1952.0		9.499
8.573	8.594	3-Ethyleicosane	2152.0		10.513
9.099	9.101	3-Ethyldocosane	2351.5		11.524
9.607	9.609	4-Ethyloctane	954.0	4.409	4.439
10.114	10.117	4-Ethyldecane	1152.0		5.443
10.621	10.624	4-Ethyldodecane	1348.0		6.436
11.127	11.131	4-Ethyltetradecane	1548.0		7.450
11.635	11.637	4-Ethylhexadecane	1747.0		8.459
12.142	12.144	4-Ethyloctadecane	1947.5		9.476
4.441	4.479	4-Ethyleicosane	2148.0		10.492
4.963	4.984	4-Ethyldocosane	2348.0		11.506
5.495	5.488	5-Ethyldecane	1146.0		5.412
5.998	5.995	5-Ethyldodecane	1341.0		6.401
6.502	6.497	5-Ethyltetradecane	1538.0		7.400
7.008	7.007	5-Ethylhexadecane	1736.0		8.404
7.512	7.511	5-Ethyloctadecane	1937.0		9.423
8.018	8.021	5-Ethyleicosane	2137.0		10.437
8.524	8.525	5-Ethyldocosane	2335.0		11.440
9.030	9.033	6-Ethyldodecane	1336.0		6.376
9.536	9.540	6-Ethyltetradecane	1533.0		7.374
10.043	10.049	6-Ethylhexadecane	1731.0		8.378
10.549	10.553	6-Ethyloctadecane	1929.0		9.382
11.055	11.058	6-Ethyleicosane	2129.0		10.396
11.561	11.562	6-Ethyldocosane	2327.0		11.400
12.067	12.067	7-Ethyltetradecane	1530.0		7.359
4.432	4.474	7-Ethylhexadecane	1727.0		8.358
4.963	4.966	7-Ethyloctadecane	1924.0		9.357
5.475	5.463	7-Ethyleicosane	2122.0		10.361
5.975	5.965	7-Ethyldocosane	2320.0		11.364
6.477	6.467	5-Propyltridecane	1516.0		7.288
6.980	6.973	5-Propylpentadecane	1712.0		8.282
7.483	7.479	5-Propylheptadecane	1910.0		9.286
7.988	7.985	5-Propylnonadecane	2108.0		10.290
8.492	8.491	7-Propyltridecane	1506.0		7.237
8.998	8.997	7-Propylpentadecane	1700.0		8.221
9.503	9.505	7-Propylheptadecane	1898.0		9.225
10.009	10.011	5-Butyldecane	1313.0		6.259
10.514	10.518	5-Butyldodecane	1505.0		7.232
11.019	11.020	5-Butyltetradecane	1699.0		8.216

5-Butylhexadecane	1896.0		9.215
6-Butyldodecane	1498.0		7.197
6-Butyltetradecane	1691.0		8.175
6-Butylhexadecane	1887.0		9 169
7 Butylitetradecane	1688.0		8 160
7-Butylietradecane	1000.0		0.124
/-ButyInexadecane	1880.0	4 401	9.134
2,3-Dimethyloctane	956.9	4.401	4.453
2,4-Dimethyloctane	919.8		4.265
2,5-Dimethyloctane	926.6		4.300
2,6-Dimethyloctane	936.0	4.304	4.348
2,7-Dimethyloctane	930.6	4.282	4.320
3.5-Dimethyloctane	927.6	4.259	4.305
3 6-Dimethyloctane	942.3	4 331	4 379
4.5 Dimethyloctane	047.9	4.551	4.407
4,5-Dimethyloctalle	1150.0		4.407
2,3-Dimethyldecane	1158.0		5.475
2,4-Dimethyldecane	1115.2		5.256
2,5-Dimethyldecane	1118.5		5.273
2,6-Dimethyldecane	1120.0		5.280
2,7-Dimethyldecane	1125.7		5.309
2,8-Dimethyldecane	1136.8		5.366
2.9-Dimethyldecane	1130.1		5.332
3 5-Dimethyldecane	1118.4		5 272
3.6 Dimethyldecane	1178.8		5 3 2 5
3,0-Dimetryidecale	1120.0		5.325
3,7-Dimethyldecane	1132.0		5.544
3,8-Dimethyldecane	1143.6		5.400
4,5-Dimethyldecane	1138.0		5.372
4,6-Dimethyldecane	1111.2		5.236
4,7-Dimethyldecane	1120.8		5.284
2,6,10-Trimethylundecane	1276.8		6.075
2.6.10-Trimethyldodecane	1380.6		6.602
2 6 10-Trimethyltridecane	1466.6		7.038
2,6,10	1100.0		1.050
Z,0,10-	1652 6		7.096
	1035.0		7.980
2,6,10,14-			
Tetramethylpentadecane	1711.7		8.280
2,6,10,14-			
Tetramethylhexadecane	1816.2		8.810
2,6-Dimethylheptane	830.0	3.780	3.810
2,6-Dimethylnonane	1025.3		4.800
3.7-Dimethylnonane	1042.2		4.886
2 6-Dimethylundecane	12167		5 771
3.7 Dimethyldodecane	1210.7		6 300
	1321.2		0.300
3,7,11-1rimethyltridecane	1485.0		/.131
2,6,10-			
Trimethyltetradecane	1557.0		7.496
2,6,10,15-			
Tetramethylhexadecane	1806.0		8.758
2,6,10,15-			
Tetramethylheptadecane	1913.8		9.305
2 6 10 15-			
Tetramethyloctadecane	1080 8		9 690
	1707.0		9.090
2,0,10,13-	2000 5		10 101
TetramethyInonadecane	2088.5		10.191
2,6,10,15-			
Tetramethyleicocane	2165.5		10.581
2,6,10,15-			
Tetramethylheneicosane	2268.0		11.101
2,6,10,15-			
Tetramethyldocosane	2354.5		11.539
8-Ethylhexadecane	1726.6		8.356
4-Ethylhentadecane	1846.0		8 966
A-Propulheyadacana	1873 /		8 8 47
5 Dropylleavedager	1025.4		0.047
p-Pronymexadecane	1000.9		8.77.5

6-Propylhexadecane	1804.3		8.750
7-Propylhexadecane	1800.0		8.728
8-Propylhexadecane	1798.6		8.721
5-Butylhexadecane	1897.4		9.222
6-Butylhexadecane	1889.7		9.183
7-Butylhexadecane	1884.6		9.157
9-Butylhexadecane	1883.1		9.149
6-Ethylnonadecane	2028.3		9.885
6-Propyloctadecane	2000.0		9.742
6-Butylheptadecane	1987.7		9.680
6-Pentylhexadecane	1979.6		9.639
7-Pentylhexadecane	1972.8		9.604
8-Pentylhexadecane	1971.3		9.596
7-Propylnonadecane	2094.7		10.222
7-Butyloctadecane	2080.5		10.150
7-Pentylheptadecane	2071.7		10.106
7-Hexylhexadecane	2066.0		10.077
8-Hexylhexadecane	2064.2		10.067
8-Methyldocosane	2241.5	11.019	10.966
8-Ethylheneicosane	2218.4		10.849
8-Propyleicosane	2189.5		10.703
8-Butylnonadecane	2174.8		10.628
8-Pentyloctadecane	2166.0		10.584
8-Hexylheptadecane	2160.1		10.554
8-Heptylhexadecane	2158.5		10.546
9-Methyltricosane	2339.4	11.459	11.463
9-Ethyldocosane	2314.9		11.339
9-Propylheneicosane	2285.4		11.189
9-Butyleicosane	2270.4		11.113
9-Pentylnonadecane	2261.2		11.066
9-Hexyloctadecane	2253.4		11.027
9-Heptylheptadecane	2251.7		11.018
10-Methyltetracosane	2436.6	11.957	11.956

PREDICTION OF MOLAR ENTHALPIES OF VAPORIZATION AND MOLAR ENTHALPIES OF SUBLIMATION

A complete set of solute descriptors enables one to estimate a large number of physicochemical and thermodynamic properties using published Abraham model correlations. To date we have reported mathematical expressions for predicting log *K* and log *P* values for solutes dissolved in both traditional molecular organic solvents³⁹⁻⁴³ and ionic liquid solvents,⁶⁴⁻⁷³ molar solubility ratios,³⁹⁻⁴³ blood-to-body tissue/fluid partition coefficients,⁷⁴⁻⁷⁸ Draize scores and eye irritation thresholds,⁷⁹⁻⁸¹ enthalpies of solvation,⁴⁵⁻⁵⁵ lethal median concentrations of organic compounds towards fish and other aquatic organisms,⁸²⁻⁸⁵ nasal pungency,^{79,86-88} vapor pressures,⁵⁶ enthalpies of vaporization⁵⁷ and sublimation,⁵⁸ isobaric molar heat capacities of crystalline, liquid and gaseous organic and organometallic compounds,⁸⁹ and many other solute properties.⁹⁰⁻⁹⁵

To illustrate the importance of determining solute descriptors for additional compounds, we want to predict a couple of properties that can be used by the scientific community and manufacturing sector. Of the properties for which we have developed Abraham model correlations enthalpies of vaporization and enthalpies of sublimation seem the most logical choice. Large alkanes are not very soluble in water so the likelihood for the scientific community needing to know the compounds' water-toorganic solvents partition coefficients and lethal molar concentrations towards aquatic organisms is small. Even if large alkanes were to be accidentally released in the environment their aqueous molar concentration would be too small to do significant harm to fish and other aquatic organisms. Also, large alkanes are not pharmaceutical compounds and there is little demand to estimate their distribution in the body. Knowledge of their enthalpies of vaporization and enthalpies of sublimation might be needed, however, in the design of high temperature industrial processes.

Our published Abraham model correlations:^{57,58}

$$\Delta H_{\text{vap},298K} \text{ (kJ mol}^{-1}\text{)} = 6.100 - 7.363 \text{ E} + 9.733 \text{ S}$$

+ 4.025A + 2.123B + 9.537L-1.180 S·S
+ 77.871 A·B - 5.781 Iamine-
14.783 Inon- α,ω -diol - 17.873 I α,ω -diol (8)

$$(N = 703, SD = 2.09, R^2 = 0.986, F = 4925.6)$$

and

$$\Delta H_{\text{sub},298\text{K}} \text{ (kJ mol^{-1})} = 13.93 - 16.90 \text{ E} + 9.66 \text{ S} + 10.02 \text{ A} + 1.82 \text{ B} + 13.57 \text{ L} - 0.30 \text{ S}^{*}\text{S} + 35.43 \text{ A}^{*}\text{B} - 0.05 \text{ L}^{*}\text{L} - 9.09 \text{ IoH,adj} + 17.26 \text{ IoH,non} + 7.37 \text{ I}_{\text{NH}}$$
(9)

$$(N = 864, SD = 9.94, R^2 = 0.867, F = 503.2)$$

provide reasonably accurate predictions the standard molar enthalpies of vaporization, $\Delta H_{vap,298K}$, and standard molar enthalpies of sublimation, $\Delta H_{sub,298K}$, as evidence by the correlations' respective standard deviations of SD = 2.09 kJ mol⁻¹ and SD = 9.94 kJ mol⁻¹, respectively. The larger standard deviations for $\Delta H_{sub,298K}$ result from the difficulty in measuring the low vapor pressures, and from the fact that the measurements were performed at high temperatures and extrapolated back to 298 K.

For the polyalkyl alkanes and polymethyl alkanes considered in the present study only the terms containing the **L** descriptor contribute to the $\Delta H_{vap,298K}$ and $\Delta H_{sub,298K}$. For the convenience of the reader we have simplified the predictive expressions:

$$\Delta H_{\rm vap,298K} \,(\rm kJ \,\,mol^{-1}) = 6.100 + 9.537 \,\,\rm L \tag{10}$$

$$\Delta H_{\rm sub,298K} \,(\rm kJ \, mol^{-1}) = 13.93 + 13.57 \, L - 0.05 \, L^{*}L \quad (11)$$

to contain only the non-zero terms. Enthalpy of sublimation predictions given in Table 2 start with the C₂₀-compounds as most of the smaller compounds are liquid at 298 K. Predicted values of $\Delta H_{vap,298K}$ are given in Table 3 for all compounds as vaporization enthalpies of compounds that are crystalline at 298 K can be easily determined using the method of correlation gas chromatography⁹⁶⁻¹⁰⁰. Calculated values are given only for those polyalkyl alkanes and polymethyl alkanes for which we just calculated Ldescriptor values. Calculated $\Delta H_{vap,298K}$ and $\Delta H_{sub,298K}$ values for the 2-methyl branched alkanes were reported elsewhere. 60

Table 2. Comparison of the Enthalpies of Sublimation, $\Delta H_{\text{sub},298K}$ (kJ mol⁻¹), Predicted by the Abraham Model, Eqn. (11), and the Group-Additivity Method of Naef and Acree, Eqn. (14)

Compound	$\Delta H_{ m sub}$	$\Delta H_{ m sub}$
	Eqn. (11)	Eqn. (14)
3-Ethyloctadecane	138.32	1/0.76
3 Ethyleicosane	151.06	153 /6
2 Ethyldogogong	151.00	155.40
4 Ethylootadaaana	103.07	140.76
4-Ethyloctadecale	150.05	140.70
4-Ethyleicosane	150.81	155.40
4-Ethyldocosane	103.45	100.10
5 Ethyloctadecane	157.50	140.70
5-Ethyleicosane	150.11	155.40
5-Ethyldocosane	162.63	100.10
6-Ethyloctadecane	136.84	140.76
6-Ethyleicosane	149.60	153.46
6-Ethyldocosane	162.13	166.16
7-Ethyltetradecane	111.09	115.30
7-Ethylhexadecane	123.85	128.06
7-Ethyloctadecane	136.52	140.76
7-Ethyleicosane	149.16	153.46
7-Ethyldocosane	161.69	166.16
5-Propylheptadecane	135.63	140.76
5-Propylnonadecane	148.27	153.46
7-Propylheptadecane	134.86	140.76
5-Butylhexadecane	134.73	140.76
6-Butylhexadecane	134.15	140.76
7-Butyltetradecane	121.33	128.06
7-Butylhexadecane	133.70	140.76
2,6,10,14-		
Tetramethylhexadecane	129.60	124.29
2,6,10,15-		
Tetramethylhexadecane	128.95	124.29
2,6,10,15-		
Tetramethylheptadecane	135.87	130.64
2,6,10,15-		
Tetramethyloctadecane	140.73	136.99
2,6,10,15-		
Tetramethylnonadecane	147.03	143.34
2,6,10,15-		
Tetramethyleicocane	151.92	149.69
2,6,10,15-		
Tetramethylheneicosane	158.41	156.04
2,6,10,15-		
Tetramethyldocosane	163.86	162.39
5-Butylhexadecane	134.82	140.76
6-Butylhexadecane	134.32	140.76
7-Butylhexadecane	134.00	140.76
9-Butylhexadecane	133.90	140.76
6-Ethylnonadecane	143.19	147.11
6-Propyloctadecane	141.38	147.11
6-Butylheptadecane	140.60	147.11
6-Pentylhexadecane	140.08	147.11
7-Pentylhexadecane	139.65	147.11
8-Pentylhexadecane	139.55	147.11
7-Propylnonadecane	147.42	153.46
7-Butyloctadecane	146.52	153.46
7-Pentylheptadecane	145.96	153.46
7-Hexylhexadecane	145.59	153.46

8-Hexylhexadecane	145.48	153.46
8-Ethylheneicosane	155.27	159.81
8-Propyleicosane	153.44	159.81
8-Butylnonadecane	152.51	159.81
8-Pentyloctadecane	151.95	159.81
8-Hexylheptadecane	151.57	159.81
8-Heptylhexadecane	151.47	159.81
9-Ethyldocosane	161.37	166.16
9-Propylheneicosane	159.50	166.16
9-Butyleicosane	158.56	166.16
9-Pentylnonadecane	157.98	166.16
9-Hexyloctadecane	157.48	166.16
9-Heptylheptadecane	157.38	166.16

Table 3. Comparison of the Enthalpies of Vaporization, $\Delta H_{vap,298K}$ (kJ mol⁻¹), Predicted by the Abraham Model, Eqn. (10), and the Group-Additivity Method of Naef and Acree, Eqn. (13)

	$\Delta H_{ m vap}$	$\Delta H_{\rm vap}$	3,8-D
Compound	Eqn. (10)	Eqn. (13)	4,5-D
3-Ethyldecane	58.25	59.83	4,6-D
3-Ethyldodecane	67.82	69.35	4,7-D
3-Ethyltetradecane	77.44	78.87	2,6,10
3-Ethylhexadecane	87.07	88.39	2,6,10
3-Ethyloctadecane	96.69	97.91	2,6,10
3-Ethyleicosane	106.36	107.43	2,6,10
3-Ethyldocosane	116.01	116.95	2,6,10
4-Ethyldecane	58.01	59.83	2,6,10
4-Ethyldodecane	67.48	69.35	2,6-D
4-Ethyltetradecane	77.15	78.87	3,7-D
4-Ethylhexadecane	86.78	88.39	2,6-D
4-Ethyloctadecane	96.47	97.91	3,7-D
4-Ethyleicosane	106.17	107.43	3,7,11
4-Ethyldocosane	115.84	116.95	2,6,10
5-Ethyldecane	57.72	59.83	2,6,10
5-Ethyldodecane	67.15	69.35	2,6,10
5-Ethyltetradecane	76.67	78.87	2,6,10
5-Ethylhexadecane	86.24	88.39	2,6,10
5-Ethyloctadecane	95.96	97.91	2,6,10
5-Ethyleicosane	105.63	107.43	2,6,10
5-Ethyldocosane	115.21	116.95	2,6,10
6-Ethyldodecane	66.90	69.35	8-Eth
6-Ethyltetradecane	76.43	78.87	4-Eth
6-Ethylhexadecane	86.00	88.39	4-Pro
6-Ethyloctadecane	95.58	97.91	5-Pro
6-Ethyleicosane	105.25	107.43	6-Pro
6-Ethyldocosane	114.82	116.95	7-Pro
7-Ethyltetradecane	76.28	78.87	8-Pro
7-Ethylhexadecane	85.81	88.39	5-But
7-Ethyloctadecane	95.33	97.91	6-But
7-Ethyleicosane	104.91	107.43	7-But
7-Ethyldocosane	114.48	116.95	9-But
5-Propyltridecane	75.61	78.87	6-Eth
5-Propylpentadecane	85.08	88.39	6-Pro
5-Propylheptadecane	94.66	97.91	6-But
5-Propylnonadecane	104.23	107.43	6-Pen
7-Propyltridecane	75.12	78.87	7-Pen
7-Propylpentadecane	84.50	88.39	8-Pen
7-Propylheptadecane	94.08	97.91	7-Pro
5-Butyldecane	65.79	69.35	7-But
5-Butyldodecane	75.07	78.87	7-Pen
5-Butyltetradecane	84.46	88.39	7-Hex
5-Butylhexadecane	93.98	97.91	8-Hex

	6-Butyldodecane	74.74	78.87
	6-Butyltetradecane	84.07	88.39
	6-Butylhexadecane	93.55	97.91
	7-Butyltetradecane	83.02	88 30
	7 Butylieuadeeane	03.92	07.01
	7-Butymexadecane	95.21	97.91
	2,4-Dimethyloctane	46.78	47.61
	2,5-Dimethyloctane	47.11	47.61
	4,5-Dimethyloctane	48.13	47.61
	2,3-Dimethyldecane	58.30	57.13
	2,4-Dimethyldecane	56.23	57.13
	2,5-Dimethyldecane	56.39	57.13
	2,6-Dimethyldecane	56.46	57.13
	2,7-Dimethyldecane	56.73	57.13
	2,8-Dimethyldecane	57.27	57.13
	2,9-Dimethyldecane	56.95	57.13
	3,5-Dimethyldecane	56.38	57.13
	3.6-Dimethyldecane	56.88	57.13
	3 7-Dimethyldecane	57.07	57.13
1	3 8-Dimethyldecane	57.60	57.13
	4.5-Dimethyldecane	57.33	57.13
	4,5-Dimethyldecane	56.03	57.13
	4,0-Dimethyldecane	56.50	55.52
	4,7-Dimethyldecane	50.50	55.55
	2,6,10-Trimethylundecane	64.04	63.95
	2,6,10-Trimethyldodecane	69.06	68.71
	2,6,10-Trimethyltridecane	73.22	73.47
	2,6,10-Trimethylpentadecane	82.26	82.99
	2,6,10,14-Tetramethylpentadecane	85.07	85.05
	2,6,10,14-Tetramethylhexadecane	90.12	89.81
	2,6-Dimethylnonane	51.88	52.37
	3,7-Dimethylnonane	52.70	52.37
	2,6-Dimethylundecane	61.13	61.89
	3,7-Dimethyldodecane	66.19	66.65
	3,7,11-Trimethyltridecane	74.11	73.47
	2,6,10-Trimethyltetradecane	77.59	78.23
	2,6,10,15-Tetramethylhexadecane	89.63	89.81
	2,6,10,15-Tetramethylheptadecane	94.84	94.57
	2,6,10,15-Tetramethyloctadecane	98.52	99.33
	2,6,10,15-Tetramethylnonadecane	103.29	104.09
	2,6,10,15-Tetramethyleicocane	107.01	108.85
	2,6,10,15-Tetramethylheneicosane	111.97	113.61
	2,6,10,15-Tetramethyldocosane	116.15	118.37
	8-Ethylhexadecane	85.79	88.39
	4-Ethylheptadecane	91.61	93.15
	4-Propylhexadecane	90.47	93.15
	5-Propylhexadecane	89.77	93.15
	6-Propylhexadecane	89.55	93.15
	7-Propylhexadecane	89.34	93.15
	8-Propylhexadecane	89.27	93.15
	5-Butylbevadecane	94.05	97.91
	6-Butylhevadecane	93.68	97.91
	7 Butylhevadecane	03.43	07.01
	0 Dutylhevadecane	93.43	97.91
	6 Etheling and a sense	95.50	97.91
	6-Eurymonadecane	100.58	102.07
	6 Dutulhants	99.01	102.07
	о-Битупертаdecane	98.41	102.67
	o-Pentylnexadecane	98.02	102.67
	/-Pentylhexadecane	97.69	102.67
	8-Pentylhexadecane	97.62	102.67
	7-PropyInonadecane	103.59	107.43
	7-Butyloctadecane	102.90	107.43
	/-Pentylheptadecane	102.48	107.43
	/-Hexylhexadecane	102.20	107.43
l	8-Hexylhexadecane	102.11	107.43

Calculated vaporization enthalpies of alkane derivatives

109.57	112.19
108.17	112.19
107.46	112.19
107.04	112.19
106.75	112.19
106.67	112.19
114.24	116.95
112.81	116.95
112.08	116.95
111.64	116.95
111.26	116.95
111.18	116.95
	109.57 108.17 107.46 107.04 106.75 106.67 114.24 112.81 112.08 111.64 111.26 111.18

We were unable to find experimental $\Delta H_{\text{vap},298\text{K}}$ and $\Delta H_{\text{sub},298\text{K}}$ data in the published chemical literature to compare our calculated values against. What we offer in the way of a comparison is to compare our calculated values against the calculated values of a popular group-additivity method proposed by Naef and Acree²⁵ that has been shown to predict $\Delta H_{\text{vap},298\text{K}}$ and $\Delta H_{\text{sub},298\text{K}}$ values for a wide range of organic and organometallic compounds to within standard deviations of SD = 4.30 kJ mol⁻¹ (N=3,460 compounds) and SD = 10.33 kJ mol⁻¹ (N = 1,866 compounds), respectively. The basic method sums the contributions that each atomic group makes to the given thermodynamic or physical property:

$$\varphi = \sum_{i} A_{i}a_{i} + \sum_{j} B_{j}b_{j} + C \qquad (12)$$

where A_i is the number of occurrences of the *i*th atom group, B_j is the number of times each special group occurs, a_i and b_j are the numerical values of each atom group and special group, and *C* is a constant.

The atom group-additivity method proposed by Naef and Acree²⁵ fragments branched alkane molecules into three types of sp³ hybridized carbon atoms based on the number of each type of atoms bonded to the carbon atom. One of the carbon atom-groups will be bonded to three hydrogen atoms and one carbon atom (CH₃ group), a second carbon atom type is bonded to two hydrogen atoms and two carbon atoms (CH₂ group), and the third carbon atom type is bonded to one hydrogen atom and three carbon atoms (CH group). There is also one special group that is defined as the number of carbon atoms in the alkane molecule.

In Eqns. (13) and (14) below we have filled in the numerical group values and constants for predicting $\Delta H_{vap,298K}$ and $\Delta H_{sub,298K}$ of C_nH_{2n+2} polyalkyl alkanes and polymethyl alkanes:

$$\Delta H_{\text{vap},298\text{K}} \text{ (kJ mol}^{-1)} = 3.07 n_{\text{CH3}} + 4.67 n_{\text{CH2}} + 3.57 n_{\text{CH}} + 0.09 n_{\text{carbons}} + 8.61$$
(13)

and

$$\Delta H_{\text{sub},298\text{K}} \text{ (kJ mol^{-1})} = 5.99 \ n_{\text{CH3}} + 6.88 \ n_{\text{CH2}} + 2.28 \ n_{\text{CH}} - 0.53 \ n_{\text{carbons}} + 21.03$$
(14)

Examination of the numerical entries in Tables 2 and 3 reveals that the predictions based on the Abraham model are similar to predictions based on the group-additivity model of Naef and Acree⁷³. The group-additivity method though is not able to distinguish between the placement of the alkylsubstituted group attached to large carbon atom chain, and gives the same predicted values for a given molecular formula. In other words, the predicted values of all monopropylhexadecane molecules are the same. This limitation is a common feature of most group-additivity and group contribution methods. The Abraham model, on the other hand, would provide different predicted values for the different propylhexadecane isomers, and does not require fragmentation of the molecule into atom groups or functional groups. Fragmentation of molecules into functional groups can be difficult at times, particularly in the case of more complex molecules having many different functional groups.

As stated in the Introduction we have elected to promote the Abraham solvation parameter model for the correlation and estimation of physicochemical and thermodynamic properties over the many other QSAR and group contribution methods that have been proposed over the years. Abraham model correlations have been developed for a large number of solute transfer process having chemical, biological, pharmaceutical, and environmental significance. The published QSAR and group contribution methods are applicable to a much smaller number of chemical and biological processes. Moreover, the Abraham model solute descriptors for a given molecule can be used to predict many other properties such as vapor pressure, water-to-organic solvent partition coefficients, gas-to-water partition coefficients, solubility ratios, enthalpies of solvation, molar heat capacities of hydration¹⁰¹, and the infinite dilution activity coefficients of the compound in water^{102,103}. There is no need to calculate a different set of descriptor values for each property that one wishes to predict.

SUMMARY

Abraham model **L**-descriptors have been determined for 127 additional mono-alkyl alkanes and polymethyl alkanes from the published gas chromatographic retention indices for solutes eluted from a fused-silica capillary column coated with a cross-lined methyl silicone stationary phase. The computation is based on establishing a mathematical Abraham model correlation using the measured Kovats retention indices, *RI*, for those alkane solutes for which we already have a complete set of solute descriptors. In total experimental values for 118 different alkanes were used to establish the Abraham model correlation.

Calculated L-descriptor values were used to predict the standard molar enthalpies of vaporization and standard molar enthalpies of sublimation of 127 mono-alkyl alkanes and polyalkyl alkanes at 298 K based on recently published Abraham model correlations^{57,58}. The predicted values compare very favorably with calculated values based on an atom-group additivity model²⁵.

Unlike simple atom-additivity and group contribution methods, the Abraham model is able to capture the effect that subtle structural features have on the physicochemical and thermodynamic properties of the molecule.

ACKNOWLEDGEMENTS

Priya Tirumala, Jennifer Huang, Shrika Eddula, Carina Jiang, and Angelina Xu thank the Univeristy of North Texas's Texas Academy of Math & Science (TAMS) Program for providing them with a TAMS summer research scholarship award.

REFERENCES

- ¹Harding, M. E., Vázquez, J., Ruscic, B., Wilson, A. K., Gauss, J., and Stanton, J. F., High-accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview, *J. Chem. Phys.*, **2008**, *128*, 114111/1-114111/15. <u>https://doi.org/10.1063/1.2835612</u>
- ²Karton, A., Rabinovich, E., Martin, J. M. L., and Ruscic, B., W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions, *J. Chem. Phys.*, **2006**, *125*, 144108/1-144108/17.. <u>https://doi.org/10.1063/1.2348881</u>
- ³Pople, J. A., Head-Gordon, M., Fox, D. J., Raghavachari, K., and Curtiss, L. A., Gaussian-1 theory: a general procedure for prediction of molecular energies, *J. Chem. Phys.*, **1989**, *90*, 5622-5629. <u>https://doi.org/10.1063/1.456415</u>
- ⁴Curtiss, L. A., Jones, C., Trucks, G. W., Raghavachari, K., and Pople, J. A., Gaussian-1 theory of molecular energies for second-row compounds, *J. Chem. Phys.*, **1990**, *93*, 2537-2545. <u>https://doi.org/10.1063/1.458892</u>
- ⁵Wong, B. M. and Raman, S., Thermodynamic calculations for molecules with asymmetric internal rotors--application to 1,3-butadiene, J. Comp. Chem., 2007, 28, 759-766. <u>https://doi.org/10.1002/jcc.20536</u>
- ⁶Curtiss, L. A., Raghavachari, K., Trucks, G. W., and Pople, J. A., Gaussian-2 theory for molecular energies of first- and second-row compounds, *J. Chem. Phys.*, **1991**, 94, 7221-7230.<u>https://doi.org/10.1063/1.460205</u>
- ⁷Curtiss, L. A., Raghavachari, K., Redfern, P. C, Rassolov, V., and Pople, J. A., Gaussian-3 (G3) theory for molecules containing first and second-row atoms, *J. Chem. Phys.*, **1998**, 109, 7764-7776. <u>https://doi.org/10.1063/1.477422</u>
- ⁸L. A. Curtiss L.A.,Redfern, P. C., and Raghavachari, K., Gaussian-4 theory, J. Chem. Phys., **2007**, 126, 084108/1-084108/12. <u>https://doi.org/10.1063/1.2436888</u>
- ⁹Tseng, Y. J., Hopfinger, A. J., and Esposito, E. X., The great descriptor melting pot: mixing descriptors for the common good of QSAR models, *J. Comp.-Aided Mol. Des.*, **2012**, 26, 39-43.<u>https://doi.org/10.1007/s10822-011-9511-4</u>
- ¹⁰Todeschini, R. and Consonni, V. (Eds.) Handbook of Molecular Descriptors; Wiley-VCH: Hoboken, NJ, USA, 2000.
- ¹¹Karelson, M., Molecular Descriptors in QSAR/QSPR, Wiley-Interscience; New York, NY, USA, 2000.
- ¹²Katritzky, A. R., Slavov, S. H., Dobchev, D. A., and Karelson, M., Rapid QSPR model development technique for prediction of vapor pressure of organic compounds, *Comp. Chem. Eng.*, **2007**, *31*, 1123-1130. https://doi.org/10.1016/j.compchemeng.2006.10.001
- ¹³Katritzky, A. R., Petrukhin, R., Jain, R., and Karelson, M., QSPR analysis of flash points, J. Chem. Inf. Comp. Sci., 2001, 41, 1521-1530. <u>https://doi.org/10.1021/ci010043e</u>

- ¹⁴Katritzky, A. R., Stoyanova-Slavova, I. B., Dobchev, D. A., and Karelson, M., QSPR modeling of flash points: An update, J. Mol. Graph. Model., 2007, 26, 529-536. <u>https://doi.org/10.1016/j.jmgm.2007.03.006</u>
- ¹⁵Katritzky, A. R., Oliferenko, A. A., Oliferenko, P. V., Petrukhin, R., Tatham, D. B., Maran, U., Lomaka, A., and Acree, W. E. Jr., A general treatment of solubility. 2. QSPR prediction of free energies of solvation of specified solutes in ranges of solvents, J. Chem. Inf. Comp. Sci., 2003, 43, 1806-1814. https://doi.org/10.1021/ci034122x
- ¹⁶Katritzky, A. R., Oliferenko, A. A., Oliferenko, P. V., Petrukhin, R., Tatham, D. B., Maran, U., Lomaka, A., and Acree, W. E. Jr., A general treatment of solubility. 1. The QSPR correlation of solvation free energies of single solutes in series of solvents, J. Chem. Inf. Comp. Sci., 2003, 43, 1794-1805. <u>https://doi.org/10.1021/ci034120c</u>
- ¹⁷Katritzky, A. R., Chen, K., Wang, Y., Karelson, M., Lucic, B., Trinajstic, N., Suzuki, T., and Schuurmann, G., Prediction of liquid viscosity for organic compounds by a quantitative structure-property relationship, *J. Phys. Org. Chem.*, **2000**, *13*, 80-86. <u>https://doi.org/10.1002/(SICI)1099-</u>

1395(200001)13:1<80::AID-POC179>3.0.CO;2-8

- ¹⁸Golmohammadi, H., Dashtbozorgi, Z., Gholam Samani, M., Acree, W. E. Jr., QSPR prediction of gas-to-methanol solvation enthalpy of organic compounds using replacement method and support vector machine, *Phys. Chem. Liq.*, **2015**, *53*, 46-66. <u>https://doi.org/10.1080/00319104.2014.915710</u>
- ¹⁹Toubaei, A., Golmohammadi, H., Dashtbozorgi, Z., and Acree, W. E. Jr., QSPR studies for predicting gas to acetone and gas to acetonitrile solvation enthalpies using support vector machine, J. Mol. Liq., 2012, 175, 24-32. https://doi.org/10.1016/j.molliq.2012.08.006
- ²⁰Khajeh A. and Modarress, H., Quantitative structure-property relationship prediction of liquid heat capacity at 298.15 k for organic compounds, *Ind. Eng. Chem. Res.*, **2012**, *51*, 6251–6255. <u>https://doi.org/10.1021/ie202153e</u>
- ²¹Khajeh, A. and Modarress, H., Quantitative structure-property relationship prediction of gas heat capacity for organic compounds, *Ind. Eng. Chem. Res.*, **2012**, *51*, 13490-13495.<u>https://doi.org/10.1021/ie301317f</u>
- ²²Naef, R., A generally applicable computer algorithm based on the group additivity method for the calculation of seven molecular descriptors: heat of combustion, log Po/w, log S, refractivity, polarizability, toxicity and log BB of organic compounds; scope and limits of applicability, *Molecules*, **2015**, 20, 18279-18351. <u>https://doi.org/10.3390/molecules201018279</u>
- ²³Gharagheizi, F., Mirkhani, S. A., and Tofangchi Mahyari, A. R., Prediction of standard enthalpy of combustion of pure compounds using a very accurate group-contribution-based method, *Energy Fuels*, **2011**, 25, 2651–2654. <u>https://doi.org/10.1021/ef200081a</u>
- ²⁴Cardozo, R. L. Prediction of the enthalpy of combustion of organic compounds. *AIChE J.*, **1986**, *32*, 844–848. <u>https://doi.org/10.1002/aic.690320514</u>
- ²⁵Naef, R. and Acree, W. E., Jr., Calculation of five thermodynamic molecular descriptors by means of a general computer algorithm based on the group-additivity method: standard enthalpies of vaporization, sublimation and solvation, and entropy of fusion of ordinary organic molecules and total phase-change entropy of liquid crystals, *Molecules*, 2017, 22, 1059/1-1059/41. <u>https://doi.org/10.3390/molecules22071059</u>
- ²⁶Gharagheizi, F., Ilani-Kashkouli, P., Acree, W. E. Jr., Mohammadi, A. H., and Ramjugernath, D., A group contribution model for determining the vaporization enthalpy of organic compounds at the standard reference temperature of 298 K, *Fluid Phase Equilib.*, **2013**, *360*, 279-292. <u>https://doi.org/10.1016/j.fluid.2013.09.021</u>

- ²⁷Gharagheizi, F., Ilani-Kashkouli, P., Acree, W. E. Jr., Mohammadi, A. H., and Ramjugernath, D., A group contribution model for determining the sublimation enthalpy of organic compounds at the standard reference temperature, *Fluid Phase Equil.*, **2013**, *354*, 265-285. <u>https://doi.org/10.1016/j.fluid.2013.06.046</u>
- ²⁸Chickos, J. S., Acree, W. E. Jr., and; Liebman, J. F., Estimating solid-liquid phase change enthalpies and entropies, *J. Phys. Chem. Ref. Data*, **1999**, 28, 1535-1673. <u>https://doi.org/10.1063/1.556045</u>
- ²⁹Chickos, J. S. and Acree, W. E., Total phase change entropies and enthalpies. An update on fusion enthalpies and their estimation, *Thermochim. Acta*, **2009**, 495, 5-13. <u>https://doi.org/10.1016/j.tca.2009.05.008</u>
- ³⁰Naef, Rudolf, Calculation of the isobaric heat capacities of the liquid and solid phase of organic compounds at 298.15 K by means of the group-additivity method, *Molecules*, **2020**, 25, 1147/1-1147/26. <u>https://doi.org/10.3390/molecules25051147</u>
- ³¹Chickos, J. S., Hesse, D. G., and Liebman, J. F., A group additivity approach for the estimation of heat capacities of organic liquids and solids at 298 K, *Struct. Chem.*, **1993**, *4*, 261-269. <u>https://doi.org/10.1007/BF00673700</u>
- ³²Acree, W. and Chickos, J. S., Phase transition enthalpy measurements of organic and organometallic compounds and ionic liquids. sublimation, vaporization, and fusion enthalpies from 1880 to 2015. Part 2. C11-C192, J. Phys. Chem. Ref. Data, 2017, 46, 013104/1-013104/532. http://dx.doi.org/10.1063/1.4970519
- ³³Kolska, Z., Kukal, J., Zabransky, M., and Ruazicka, V., Estimation of the heat capacity of organic liquids as a function of temperature by a three-level group contribution method, *Ind. Eng. Chem. Res.*, **2008**, *47*, 2075-2085. <u>https://doi.org/10.1021/ie071228z</u>
- ³⁴Fredenslund, A., Gmehling, J., Michelsen, M. L., Rasmussen, P., and Prausnitz, J. M., Computerized design of multicomponent distillation columns using the UNIFAC group contribution method for calculation of activity coefficients, *Ind. Eng. Chem. Proc. Des. Develop.*, **1977**, *16*, 450-462.
- ³⁵Gmehling, J., Tiegs, D., and Knipp, U., A comparison of the predictive capability of different group contribution methods, *Fluid Phase Equilib.*, **1990**, *54*, 147-165. <u>https://doi.org/10.1016/0378-3812(90)85077-N</u>
- ³⁶Gmehling, J., Lohmann, J., Jakob, A., Li, J., and Joh, R., A modified UNIFAC (Dortmund) model. 3. Revision and extension, *Ind. Eng. Chem. Res.*, **1998**, *37*, 4876-4882. <u>https://doi.org/10.1021/ie980347z</u>
- ³⁷Currier, R. P. and O'Connell, J. P., An analysis of the solution of groups method for component activity coefficients, *Fluid Phase Equilib.*, **1987**, *33*, 245-265. <u>https://doi.org/10.1016/0378-3812(87)85040-9</u>
- ³⁸Tochigi, K. and Gmehling, J., Determination of ASOG parameters-extension and revision, *J. Chem. Eng. Japan*, 2011, 44, 304-306.<u>https://doi.org/10.1252/jcej.10we260</u>
- ³⁹Abraham, M. H., Smith, R. E., Luchtefeld, R., Boorem, A. J., Luo, R., and Acree, W. E. Jr., Prediction of solubility of drugs and other compounds in organic solvents, *J. Pharm. Sci.*, **2010**, *99*, 1500-1515. <u>https://doi.org/10.1002/jps.21922</u>
- ⁴⁰Abraham, M. H. and Acree, W. E. Jr., Gas-solvent and watersolvent partition of trans-stilbene at 298 K, *J. Mol. Liq.*, 2017, 238, 58-61.<u>https://doi.org/10.1016/j.molliq.2017.04.119</u>
- ⁴¹Abraham, M. H. and Acree, W. E. Jr., Descriptors for the prediction of partition coefficients of 8-hydroxyquinoline and its derivatives, Sep. Sci. Technol., 2014, 49, 2135-2141.<u>https://doi.org/10.1080/01496395.2014.928768</u>
- ⁴²Hart, E., Klein, A., Barrera, M., Jodray, M., Rodriguez, K., Acree, W. E. Jr., and Abraham, M. H., Development of Abraham model correlations for describing the transfer of molecular solutes into propanenitrile and butanenitrile from water and

from the gas phase, *Phys. Chem. Liq.*, **2018**, *56*, 821-833. <u>https://doi.org/10.1080/00319104.2017.1399268</u>

- ⁴³Fischer R., Jodray, M., Qian, E., Wang, L., Lee, G., Yue, D., Che, M., Liu, Y., Acree, W. E. Jr;, and Abraham, M. H., Abraham model correlations for solute transfer into benzyl alcohol from both water and the gas phase, *Phys. Chem. Liq.*, **2020**, 58, 116-126.<u>https://doi.org/10.1080/00319104.2018.1550778</u>
- ⁴⁴Ulrich, N., Endo, S., Brown, T. N., Watanabe, N., Bronner, C., Abraham, M. H., and Goss, K.U., UFZ-LSER database v 3.2.1 [Internet], Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. 2017 [accessed on 13.06.2020]. <u>http://www.ufz.de/lserd</u>.
- ⁴⁵Lu, J. Z, Acree, W. E. Jr., and Abraham, M. H., Abraham model correlations for enthalpies of solvation of organic solutes dissolved in N,N-dimethylacetamide, 2-butanone and tetrahydrofuran (UPATED) at 298.15 K, *Phys. Chem. Liq.*, **2019**, Ahead of Print. https://doi.org/10.1080/00319104.2019.1633528
- ⁴⁶Lu, J. Z., Acree, W. E. Jr., and Abraham, M. H., Abraham model correlations for enthalpies of solvation of organic solutes dissolved in methyl acetate and octane, *Phys. Chem. Liq.*, **2020**, 58, 18-30. https://doi.org/10.1080/00319104.2018.1534234
- ⁴⁷Lu, J. Z., Acree, W. E Jr., and Abraham, M. H., Updated Abraham model correlations for enthalpies of solvation of organic solutes dissolved in benzene and acetonitrile, *Phys. Chem. Liq.*, **2019**, *57*, 84-99. <u>https://doi.org/10.1080/00319104.2018.1423565</u>
- ⁴⁸Higgins, E., Acree, W. E. Jr., and Abraham, M. H., Development of Abraham model correlations for enthalpies of solvation of organic solutes dissolved in 1,3-dioxolane, *Phys. Chem. Liq.*, **2016**, 54, 786-796. <u>https://doi.org/10.1080/00319104.2016.1161043</u>
- ⁴⁹Schmidt, A., Zad, M., Acree, W. E. Jr., and Abraham M. H., Development of Abraham model correlations for predicting enthalpies of solvation of nonionic solutes dissolved in formamide, *Phys. Chem. Liq.*, **2016**, *54*: 313-324. <u>https://doi.org/10.1080/00319104.2015.1084882</u>
- ⁵⁰Hart, E., Grover, D., Zettl, H., Koshevarova, V., Acree, W. E. Jr., and Abraham M. H., Development of Abraham model expressions for predicting the enthalpies of solvation of solutes dissolved in acetic acid, *Phys. Chem. Liq.*, 2016, 54, 141-154. <u>https://doi.org/10.1080/00319104.2015.1079194</u>
- ⁵¹Hart, E., Grover, D., Zettl, H., Acree, W. E. Jr., Abraham, M. H., Abraham model enthalpy of solvation correlations for solutes dissolved in dimethyl carbonate and diethyl carbonate, *Phys. Chem. Liq.*, 2015, 53, 732-747. <u>https://doi.org/10.1080/00319104.2015.1042478</u>
- ⁵²Hart, E., Zettl, H., Grover, D., Acree, W. E. Jr., and Abraham, M. H., Abraham model enthalpy of solvation correlations for solutes dissolved in 1-alkanol solvents (C4-C6), *Phys. Chem. Liq.*, **2015**, *53*, 638-659. <u>https://doi.org/10.1080/00319104.2015.1018259</u>
- ⁵³Mintz, C., Clark, M., Burton, K., Acree, W. E. Jr., and Abraham, M. H., Enthalpy of solvation correlations for gaseous solutes dissolved in benzene and in alkane solvents based on the Abraham model, *QSAR Comb. Sci.*, **2007**, *26*, 881-888. https://doi.org/10.1002/qsar.200630152
- ⁵⁴Mintz, C., Burton, K., Acree, W. E. Jr., and Abraham, M. H., Enthalpy of solvation correlations for gaseous solutes dissolved in linear alkanes (C₅-C₁₆) based on the Abraham model, *QSAR Comb. Sci.*, **2008**, 27, 179-186. <u>https://doi.org/10.1002/qsar.200730040</u>
- ⁵⁵Mintz, C., Burton, K., Ladlie, T., Clark, M., Acree, W. E. Jr., and Abraham, M. H., Enthalpy of solvation correlations for organic solutes and gases dissolved in N,Ndimethylformamide and tert-butanol, *J. Mol. Liq.*, **2009**, *144*, 23-31.<u>https://doi.org/10.1016/j.molliq.2008.09.002</u>

- ⁵⁶Abraham, M. H. and Acree, W. E. Jr., Estimation of vapor pressures of liquid and solid organic and organometallic compounds at 298.15 K, *Fluid Phase Equilib.*, **2020**, *519*, 112595/1-112595/5. <u>https://doi.org/10.1016/j.fluid.2020.112595</u>
- ⁵⁷Churchill, B., Acree, W. E. Jr., and Abraham, M. H., Development of Abraham model expressions for predicting the standard molar enthalpies of vaporization of organic compounds at 298.15 K, *Thermochim. Acta*, **2019**, *681*, 178372/1-178372/6. https://doi.org/10.1016/j.tca.2019.178372
- ⁵⁸Abraham, M. H. and Acree, W. E. Jr., Estimation of enthalpies of sublimation of organic, organometallic and inorganic compounds, *Fluid Phase Equilib.*, **2020**, *515*, 112575/1-112475/5. <u>https://doi.org/10.1016/j.fluid.2020.112575</u>
- ⁵⁹Abraham, M. H. and McGowan, J. C., The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography, *Chromatographia*, **1987**, *23*, 243-246. <u>https://doi.org/10.1007/BF02311772</u>
- ⁶⁰Liu, G., Eddula, S., Jiang, C., Huang, J., Tirumala, P., Xu, A., Acree, W. E. Jr., and Abraham, M. H., Abraham solvation parameter model: prediction of enthalpies of vaporization and sublimation of mono-methyl branched alkanes using measured gas chromatographic data, *Eur. Chem. Bull.*, **2020**, *9*, 273-284. <u>http://dx.doi.org/10.17628/ecb.2020.9.273-284</u>
- ⁶¹Kissin, Y. V., Feulmer G. P., and Payne, W. B., Gas chromatographic analysis of polymethyl-substituted alkanes, *J. Chromatogr. Sci.*, **1986**, 24, 164-169. <u>https://doi.org/10.1093/chromsci/24.4.164</u>
- ⁶²Kissin. Y. V., Gas chromatographic analysis of branched olefins, J. Chromatogr. Sci., **1986**, 24, 278-284. <u>https://doi.org/10.1093/chromsci/24.7.278</u>
- ⁶³Kissin, Y. V. and Feulmer, J. P., Gas chromatographic analysis of alkyl-substituted paraffins, *J. Chromatogr. Sci.*, **1986**, 24, 53-59. <u>https://doi.org/10.1093/chromsci/24.2.53</u>
- ⁶⁴Jiang, B., Horton, M. Y., Acree, W. E., Jr., and Abraham, M. H., Ion-specific equation coefficient version of the Abraham model for ionic liquid solvents: determination of coefficients for tributylethylphosphonium, 1-butyl-1-methyl-morpholinium, 1-allyl-3-methylimidazolium and octyltriethylammonium cations, *Phys. Chem. Liq.*, **2017**, *55*, 358-385. <u>https://doi.org/10.1080/00319104.2016.1218009</u>
- ⁶⁵Mutelet, F., Hussard, C., Baker, G. A., Zhao, H., Churchill, B., and Acree, W. E. Jr., Characterization of the solubilizing ability of short-chained glycol-grafted ammonium and phosphonium ionic liquids, J. *Mol. Liq.*, **2020**, *304*, 112786/1-112786/15. <u>https://doi.org/10.1016/j.molliq.2020.112786</u>
- ⁶⁶Rabhi, F., Mutelet, F., Sifaoui, H., Wagle, D. V., Baker, G. A., Churchill, B., and Acree, W. E. Jr., Characterization of the solubilizing ability of tetraalkylammonium ionic liquids containing a pendant alkyl chain bearing a basic N,Ndimethylamino or N,N-dimethylaminoethoxy functionality, J. Mol. Liq., **2019**, 283, 380-390. <u>https://doi.org/10.1016/j.molliq.2019.03.066</u>
- ⁶⁷Mutelet, F., Baker, G. A., Ravula, S., Qian, E., Wang, L., and Acree, W. E. Jr., Infinite dilution activity coefficients and gas-to-liquid partition coefficients of organic solutes dissolved in 1-sec-butyl-3-methylimidazolium bis(trifleoromethylsulfonyl)-imide and in 1-tert-butyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide, *Phys. Chem. Liq.*, **2019**, *57*, 453-472. https://doi.org/10.1080/00319104.2018.1491045
- ⁶⁸Mutelet, F., Ravula, S., Baker, G. A., Woods, D., Tong, X., and Acree, W. E. Jr., Infinite dilution activity coefficients and gas-to-liquid partition coefficients of organic solutes dissolved in 1-benzylpyridinium bis(trifluoromethylsulfonyl)imide and 1-cyclo-hexylmethyl-1-methylpyrrolidinium bis(trifluoro-methylsulfonyl)imide, *J. Solut. Chem.*, **2018**, 47, 308-335. <u>https://doi.org/10.1007/s10953-018-0720-5</u>

- ⁶⁹Mutelet, F., Djebouri, H., Baker, G. A., Ravula, S., Jiang, B., Tong, X., Woods, D., and Acree, W. E., Jr. Study of benzylor cyclohexyl-functionalized ionic liquids using inverse gas chromatography, *J. Mol. Liq.*, **2017**, 242, 550-559.<u>https://doi.org/10.1016/j.molliq.2017.07.036</u>
- ⁷⁰Baelhadj, A. C., Mutelet, F., Jiang, B. and Acree, W. E. Jr. Activity coefficients at infinite dilution for organic solutes dissolved in two 1,2,3-tris(diethylamino)cyclopenylium based room temperature ionic liquids, *J. Mol. Liq.*, **2016**, 223, 89-99. <u>https://doi.org/10.1016/j.molliq.2016.08.028</u>
- ⁷¹Mutelet, F., Hussard, C., Baker, G. A., Zhao, H., Churchill, B., and Acree, W. E. Jr., Characterization of the solubilizing ability of short-chained glycol-grafted ammonium and phosphonium ionic liquids, *J. Mol. Liq.*, **2020**, *304*, 112786/1–112786/15. https://doi.org/10.1016/j.molliq.2020.112786
- ⁷²Twu, P., Anderson, J. L., Stephens, T. W., Lu, H., Satish, K., Shan, D., Acree, W. E., Jr. and Abraham, M. H., Determination of the solubilizing character of 1-(2hydroxyethyl)-1-methylimidazolium tris(penta-fluoroethyl)trifluorophosphate based on the Abraham solvation parameter model, *Eur. Chem. Bull.*, **2013**, *2*, 954-964. <u>http://dx.doi.org/10.17628/ecb.2013.2.954-964</u>
- ⁷³Jiang, R., Anderson, J. L., Stephens, T. W., Acree, W. E., Jr., and Abraham, M. H., Abraham model correlations for predicting gas-to-liquid partition coefficients and activity coefficients of organic solutes dissolved in 1-(2-methoxyethyl)-1methylpyrrolidinium tris(pentafluoroethyl)-trifluorophosphate, *Eur. Chem. Bull.*, **2013**, 2, 741-751. <u>http://dx.doi.org/10.17628/ecb.2013.2.741-751</u>
- ⁷⁴Abraham, M. H., Ibrahim, A., and Acree, W. E Jr., Air to brain, blood to brain and plasma to brain distribution of volatile organic compounds: linear free energy analyses, *Eur. J. Med. Chem.*, **2006**, *41*, 494-502. <u>https://doi.org/10.1016/j.ejmech.2006.01.004</u>
- ⁷⁵Abraham, M. H., Ibrahim, A., and Acree WE Jr. Air to muscle and blood/plasma to muscle distribution of volatile organic compounds and drugs: linear free energy analyses. *Chem. Res. Toxicol.*, **2006**, *19*, 801-808. https://doi.org/10.1021/tx050337k
- ⁷⁶Abraham, M. H., Ibrahim, A., and Acree, W. E., Air to liver partition coefficients for volatile organic compounds and blood to liver partition coefficients for volatile organic compounds and drugs, *Eur. J. Med. Chem.*, **2007**, *42*, 743751.<u>https://doi.org/10.1016/j.ejmech.2006.12.011</u>
- ⁷⁷Abraham, M. H., Ibrahim, A., and Acree, W. E., Air to lung partition coefficients for volatile organic compounds and blood to lung partition coefficients for volatile organic compounds and drugs, *Eur. J. Med. Chem.*, **2008**, *43*, 478485.<u>https://doi.org/10.1016/j.ejmech.2007.04.002</u>
- ⁷⁸Abraham, M. H. and Ibrahim, A., Air to fat and blood to fat distribution of volatile organic compounds and drugs: Linear free energy analyses. *Eur. J. Med. Chem.*, **2006**; *41*: 14301438.<u>https://doi.org/10.1016/j.ejmech.2006.07.012</u>
- ⁷⁹Abraham, M. H., Gola, J. M. R., Cometto-Muniz, J. E., and Cain, W. S., The correlation and prediction of VOC thresholds for nasal pungency, eye irritation and odour in humans, *Indoor+Built Environ.*, **2001**, *10*, 252-257. <u>https://doi.org/10.1177/1420326X0101000320</u>
- ⁸⁰Abraham, M. H., Hassanisadi, M., Jalali-Heravi, M., Ghafourian, T., Cain, W. S., Cometto-Muniz, J. E., Draize rabbit eye test compatibility with eye irritation thresholds in humans: A quantitative structure-activity relationship analysis, *Toxicol. Sci.*, **2003**, *76*, 384-391.<u>https://doi.org/10.1093/toxsci/kfg242</u>
- ⁸¹Abraham, M. H., Kumarsingh, R., Cometto-Muniz, J. E., Cain, W. S., Draize eye scores and eye irritation thresholds in man can be combined into one QSAR, *Ann. New York Acad. Sci.*, **1998**, *855*, 652-656. <u>https://doi.org/10.1111/j.17496632.1998.tb10641.x</u>

- ⁸²Hoover, K. R., Acree, W. E. Jr., and Abraham, M. H., Chemical toxicity correlations for several fish species based on the Abraham solvation parameter model, *Chem. Res. Toxicol.*, **2005**, *18*, 1497-505. <u>https://doi.org/10.1021/tx050164z</u>
- ⁸³Hoover, K. R., Flanagan, K. B., Acree, W. E. Jr., Abraham, M. H. Chemical toxicity correlations for several protozoas, bacteria, and water fleas based on the Abraham solvation parameter model, *J. Environ. Eng. Sci.*, **2007**, *6*, 165-174.<u>https://doi.org/10.1139/s06-041</u>
- ⁸⁴Bowen, K. R., Flanagan, K. B., Acree, W. E., Abraham, M. H., Rafols, C, Correlation of the toxicity of organic compounds to tadpoles using the Abraham model, *Sci. Total Environ.*, **2006**, 371, 99-109. <u>https://doi.org/10.1016/j.scitotenv.2006.08.030</u>
- ⁸⁵Bowen, K. R., Flanagan, K. B., Acree, W. E., Abraham, M. H., Correlating toxicities of organic compounds to select protozoa using the Abraham model, *Sci. Total Environ.*, 2006, *369*, 109-118. <u>https://doi.org/10.1016/j.scitotenv.2006.05.008</u>
- ⁸⁶Cometto-Muniz, J. E., Cain, W. S., Abraham, M. H., Determinants for nasal trigeminal detection of volatile organic compounds, *Chem. Senses*, **2005**, *30*, 627-642. <u>https://doi.org/10.1093/chemse/bji056</u>
- ⁸⁷Abraham, M. H., Kumarsingh, R., Cometto-Muniz, J. E., and Cain, W. S., An algorithm for nasal pungency thresholds in man, *Arch. Toxicol.*, **1998**, 72, 227-232. <u>https://doi.org/10.1007/s002040050493</u>
- ⁸⁸Abraham, M. H., Andonian-Haftvan, J., Cometto-Muniz, J. E., Cain, W. S., An analysis of nasal irritation thresholds using a new solvation equation, *Fund. Appl. Toxicol.*, **1996**, *31*, 71-76.https://doi.org/10.1006/faat.1996.0077
- ⁸⁹Abraham, M. H. and Acree, W. E., Estimation of heat capacities of gases, liquids and solids, and heat capacities of vaporization and of sublimation of organic chemicals at 298.15 K, J. Mol. Liq., submitted for publication.
- ⁹⁰Abraham, M. H., Acree, W. E. Jr., Mintz, C., and Payne, S., Effect of anesthetic structure on inhalation anesthesia: implications for the mechanism, *J. Pharm. Sci.*, **2008**, *97*, 2373-2384.<u>https://doi.org/10.1002/jps.21150</u>
- ⁹¹Abraham, M. H. and Acree, W. E Jr., Prediction of convulsant activity of gases and vapors, *Eur. J. Med. Chem.*, **2009**, 44, 885-890.<u>https://doi.org/10.1016/j.ejmech.2008.05.027</u>
- ⁹²Zhao, Y. H., Abraham M. H., Hersey, A., and Luscombe, C. N., Quantitative relationship between rat intestinal absorption and Abraham descriptors, *Eur. J. Med. Chem.*, **2003**, *38*, 939-947.<u>https://doi.org/10.1016/j.ejmech.2003.07.005</u>
- ⁹³Zhao, Y. H., Le, J., Abraham, M. H., Hersey, A., Eddershaw, P. J., Luscombe, C. N., Boutina, D., Beck, G., Sherborne, B., Cooper, I., and Platts, J. A., Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors, J. Pharm. Sci., 2001, 90, 749-784. https://doi.org/10.1002/jps.1031

- ⁹⁴He, J., Abraham, M. H., Acree, W. E. Jr., and Zhao, Y. H., A linear free energy analysis of PAMPA models for biological systems, *Int. J. Pharm.*, **2015**, 496, 717-722. <u>https://doi.org/10.1016/j.ijpharm.2015.10.064</u>
- ⁹⁵Abraham, M. H. and Martins, F., Human skin permeation and partition: General linear free-energy relationship analyses, J. *Pharm. Sci.*, **2004**, *93*, 1508-1523. <u>https://doi.org/10.1002/jps.20070</u>
- ⁹⁶Wilson, J., Gobble, C., and Chickos, J., Vaporization, Sublimation, and fusion enthalpies of some saturated and unsaturated long chain fatty acids by correlation gas chromatography, J. Chem. Eng. Data, 2015, 60, 202-212.<u>https://doi.org/10.1021/je5009729</u>
- ⁹⁷Wilson, J. A. and Chickos, J. S., Vapor pressures and vaporization, sublimation, and fusion enthalpies of some fatty acids, *J. Chem. Eng. Data*, **2013**, *58*, 322-333. <u>https://doi.org/10.1021/je300902c</u>
- ⁹⁸Lipkind, D., Kapustin, Y., Umnahanant, P., and Chickos, J. S., The vaporization enthalpies and vapor pressures of a series of unsaturated fatty acid methyl esters by correlation gas chromatography, *Thermochim. Acta*, **2007**, *456*, 94-101. <u>https://doi.org/10.1016/j.tca.2007.02.008</u>
- ⁹⁹Umnahanant, P., Kweskin, S., Nichols, G., Dunn, M. J., Smart-Ebinne, H., and Chickos, J. S., Vaporization enthalpies of the α,ω-alkanediols by correlation gas chromatography, *J. Chem. Eng. Data*, **2006**, *51*, 2246-2254. <u>https://doi.org/10.1021/je060333x</u>
- ¹⁰⁰Nichols, G., Kweskin, S., Frericks, M., Reiter, S., Wang, G., Orf, J., Carvallo, B., Hillesheim, D., and Chickos, J., Evaluation of the vaporization, fusion, and sublimation enthalpies of the 1-alkanols: the vaporization enthalpy of 1-, 6-, 7-, and 9-heptadecanol, 1-octadecanol, 1-eicosanol, 1-docosanol, 1-hexacosanol, and cholesterol at T = 298.15 K by correlation gas chromatography, *J. Chem. Eng. Data*, **2006**, *51*, 475-482. https://doi.org/10.1021/je0503857
- ¹⁰¹Abraham, M. H. and Acree, W. E. Jr., Prediction of gas to water partition coefficients from 273 to 373 K using predicted enthalpies and heat capacities of hydration, *Fluid Phase Equilib.* **2007**, 262, 97-110. <u>https://doi.org/10.1016/j.fluid.2007.08.011</u>
- ¹⁰²Abraham, M. H., Acree, W. E. Jr., and Zissimos, A. M., The correlation and prediction of infinite dilution activity coefficients of compounds in water at 298.15 K, *Fluid Phase Equilib.*, **2017**, 449, 117-129. <u>https://doi.org/10.1016/j.fluid.2017.06.017</u>
- ¹⁰³Abraham, M. H. and Acree, W. E. Jr., The correlation and prediction of the temperature variation of infinite dilution activity coefficients of compounds in water, *Fluid Phase Equilib.*, **2018**, 455, 1-5. <u>https://doi.org/10.1016/j.fluid.2017.09.026</u>

Received:	30.06.2020.
Accepted:	16.07.2020