

MODIFIED EVOLUTIONARY PROGRAMMING METHOD FOR SOLVING UNIT COMMITMENT PROBLEM WITH IMPORT AND EXPORT CONSTRAINTS

 K. Venkatesan^{1*}, C. Kamal², M. Jagadeesh Kumar³, G. Sivagurunathan⁴
 Corresponding Author: ^{1*}Professor, Department of EEE, P.T.Lee C.N.C.E.T, Kanchipuram-631502, Tamil Nadu, India.venkatesanjntu7676@gmail.com
 ²Assistant Professor, Department of EEE, S.V.C.E, Sriperumbudur-602117, Tamil Nadu, India. kamalc@svce.ac.in
 ³Professor, Department of EEE, Sri Sai Ram Institute of Technology, Chennai-602109, Tamil Nadu, India. Jagadeeshkumar.eee@sairamit.edu.in
 ⁴Associate Professor, Department of ECE, St. Joseph's College of Engineering, OMR, Chennai- 600119. sivagurunathang@stjosephs.ac.in

Abstract: This paper presents a new approach to solve the multi-area unit commitment problem (MAUCP) using an evolutionary programming method. The objective of this paper is to determine the optimal or a near optimal commitment schedule for generating units located in multiple areas that are interconnected via tie-lines. The evolutionary programming method is used to solve multi area unit commitment problem, allocated generation for each area and find the operating cost of generation for each hour. Joint operation of generation resources can result in significant operational cost savings. Power transfer between the areas through the tie-lines depends upon the operating cost of generation at each hour and tie line transfer limits. The tie-line transfer limits were considered as a set of constraints during optimization process to ensure the system security and reliability. The overall algorithm can be implemented on an IBM-PC, which can process a fairly large system in a reasonable period of time. Case study of four areas with different load pattern each containing 26 units connected via tie-lines has been taken for analysis. Numerical results showed comparing the operating cost using evolutionary programming method with conventional dynamic programming method have the potential to solve multi area unit commitment problem with lesser computation time.

Keywords: Dynamic Programming (DP), Evolutionary Programming (EP), Multi-Area Unit Commitment Problem (MAUCP).

1. INTRODUCTION

In multi-area, several generation areas are interconnected by tie-lines, the objective is to achieve the most economic generation to meet out the local demand without violating tie-line capacity limits constraints [1]. The main goal of this paper is to develop a multi area generation scheduling scheme that can provide proper unit commitment in each area and effectively preserve the tie-line constraints.

In an interconnected multi area system, joint operation of generation resources can result in significant operational cost savings [2]. It is possible by transmitting power from a utility, which had cheaper sources of generation to another utility having costlier generation sources. The total reduction in system cost shared by the participating utilities [3]. The exchange of energy between two utilities having significant difference in their marginal operating costs. The utility with the higher operating cost receives power from the utility with low operating cost. This arrangement usually on an hour to

hour basis and is conducted by the two system operators.

In the competitive environment, customer request for high service reliability and lower electricity prices. Thus, it is an important to maximize own profit with high reliability and minimize overall operating cost [4]. Multi Area unit commitment was studied by dynamic programming and was optimised with local demands with a simple priority list scheme on a personal computer with a reasonable execution time [5]. Even though the simplicity and execution speed are well suited for the iterative process, the commitment schedule may be far from the optimal, especially when massive unit on/off transitions are encountered. The tie-line constraint checking also ignores the network topology, resulting in failure to provide a feasible generation schedule solution [5]. The transportation model could not be used effectively in tie line constraints, as the quadratic fuel cost function and exponential form of start up cost were used in this study.

An Evolutionary algorithm is used for obtaining the initial solution which is fast and reliable [6]. Evolutionary Programming (EP) is capable of determining the global or near global solution [7]. It is based on the basic genetic operation of human chromosomes. It operates with the stochastic mechanics, which combine offspring creation based on the performance of current trial solutions and competition and selection based on the successive generations, from a considerably robust scheme for large scale real valued combinational optimization. In this proposed work, the parents are obtained from a predefined set of solution (i.e., each and every solution is adjusted to meet the requirements). In addition, the selection process is done using evolutionary strategy [8]-[10].

2. PROBLEM FORMULATION

The cost curve of each thermal unit is in quadratic form [1]

$$F(Pg_i^{\ k}) = a_i^k (Pg_i^{\ k})^2 + b_i^k (Pg_i^{\ k}) + c_i^k \text{ Rs/hr}$$

$$k = 1 \dots N_A$$
(1)

The incremental production cost is therefore

$$\lambda = 2a_i^k Pg_i^k + b_i^k$$
(2)
(or)

$$Pg_i^k = \lambda - b_i^k / 2a_i^k \tag{3}$$

The startup cost of each thermal unit is an exponential function of the time that the unit has been off

$$S(X_{i,j}^{off}) = A_i + B_i (1 - e^{x_i, j^{\frac{\partial y}{\tau_i}}})$$
(4)

The objective function for the multi-area unit commitment is to minimize the entire power pool generation cost as follows [1].

$$\min_{I,P} \sum_{k=1}^{N_A} \sum_{j=1}^{t} \sum_{i=1}^{N_k} \begin{bmatrix} I_{i,j}^k F_j^k (P_{i,j}^k + I_{i,j-1}^k) \\ I_{i,j} (1 - I_{i,j-1}) S_i (X_{i,j-1}^{off}) \end{bmatrix}$$
(5)

To decompose the problem in above equation (5), it is rewritten as

$$\min \sum_{j=1}^{t} \left[F(P_{g_{i,j}}) \right] \tag{6}$$

$$F\left(P_{g_{i,j}}\right) = \sum_{k=1}^{N_A} F^k\left(P_{g_{i,j}}^k\right)$$
(7)

Subject to the constraints of equations (9), (11) and (14–18). Each $F^k(P^k g_{i,j})$ for K=1NA is

Eur. Chem. Bull. 2023, 12(10), 6544-6556

represented in the form of schedule table, which is the solution of mixed variable optimization problem_____

$$\min_{I,P} \sum_{i} \left[I_{i,j}^{k} F_{i}^{k} \left(P_{i,j}^{k} \right) + I_{i,j} \left(1 - I_{i,j-1} \right) \left(S_{i} \left(X_{i,j}^{off} \right) \right) \right]$$
(8)

Subject to following constraints are met for optimization.

1) System power balance constraint

$$\sum_{k} P_{g_j}^k = \sum_{k} D_j^k \tag{9}$$

Sum of real power generated by each thermal unit must be sufficient enough to meet the sum of total demand of each area while neglecting transmission losses.

2) Spinning reserve constraint in each area

$$\sum_{i} P_{g_{i,j_{\max}}}^{k} \ge D_{j}^{k} + R_{j}^{k} + E_{j}^{k} - L_{j}^{k}$$
(10)

3) Generation limits of each unit

$$P_{j_{\max}}^k \le P_{i,j}^k \le P_{j_{\min}}^k \tag{11}$$

$$i=1....N_k, j=1...t, k=1...N_A$$

4) Thermal units generally have minimum up time T_{on} and down time T_{off} constraints, therefore

$$\left(X_{i,j-1}^{on} - T_i^{on}\right) * \left(I_{i,j-1} - I_{i,j}\right) \ge 0$$
(12)

$$\left(X_{i,j-1}^{off} - T_i^{off}\right) * \left(I_{i,j} - I_{i,j-1}\right) \ge 0$$
(13)

5) In each area, power generation limits caused by tie-line constraints are as follows Upper limits

$$\sum_{i} P_{g_{i,j}}^k \le D_j^k + E_{j_{\max}}^k \tag{14}$$

Lower limits

$$\sum_{i} P_{g_{i,j}}^{k} \ge D_{j}^{k} - L_{j_{\max}}^{k}$$

$$\tag{15}$$

Import/Export balance

$$\sum_{i}^{k} E_{j}^{k} - \sum_{k} L_{j}^{k} + W_{j} = 0$$
(16)

6) Area generation limits

$$\sum_{i} P_{g_{i,j}}^{k} \leq \sum_{i} P_{g_{i_{\max}}}^{k} - R_{j}^{k} ; k=1....N_{A}$$

$$j=1.....t$$
(17)

$$\sum_{i} P_{g_{i,j}}^{k} \ge \sum_{i} P_{g_{i} \min}^{k} ; \qquad k=1....N_{A}$$

$$j=1.....t \qquad (18)$$

The objective is to select λ_{sys} at every hour to minimize the operation cost.

$$P_{g_j}^k = D_j^k + E_j^k - L_j^k$$
(19)

where
$$P_{g_j}^k = \sum_{i=1}^{N_k} P_{g_{i,j}}^k$$
 (20)

Since the local demandD_j^k is determined in accordance with the economic dispatch within the pool, changes of $P_{g_j}^k$ will cause the spinning reserve constraints of equations (10) to change accordingly and redefine equation (8). Units may operate in one of the following modes when commitment schedule and unit generation limits are encountered [11].

a) Coordinate mode : The output of unit i is determined by the system incremental cost

$$\lambda_{\min,i} \le \lambda_{sys} \le \lambda_{\max,i} \tag{21}$$

b) Minimum mode : unit i generation is at its Minimum level

$$\lambda_{\min,i} \rangle \lambda_{sys}$$
 (22)

c) Maximum mode : unit i generation is at its maximum level

$$\lambda_{\max,i} \langle \lambda_{sys} \tag{23}$$

d) Shut down mode : unit i is not in operation, $P_i = 0$

Besides limitations on individual unit generations, in a multi- area system, the tie-line constraints in equations (12), (13) and (15) are to be preserved. The operation of each area could be generalized into one of the modes as follows.

(i) Area coordinate mode

$$\lambda^{k} = \lambda_{sys}$$

$$D_{j}^{k} - L_{\max}^{k} \leq \sum_{i} P_{g_{i,j}}^{k} \leq D_{j}^{k} + E_{\max}^{k}$$
(24)

$$-L_{\max}^{k} \leq \sum_{i}^{(\text{or})} P_{g_{i,j}}^{k} - D_{j}^{k} \leq E_{\max}^{k}$$
(25)

(ii) Limited export mode

When the generating cost in one area is lower than the cost in the remaining areas of the system, that area may generate its upper limits according to equations (14) or (17) therefore

$$\lambda^k \langle \lambda_{sys}$$
 (26)

For area k, area λ^k is the optimal equal incremental cost which satisfies the generation requirement.

(iii) Limited import mode

An area may reach its lower generation limit according to equation (15) or (18) in this case because of higher generation cost

$$\lambda_{\min}^k \lambda_{sys}$$
 (27)

3. TIE LINE CONSTRAINTS

To illustrate the tie-line flow in a multi-area system, the four area system given in Fig.1 is studied.

An economically efficient area may generate more power than the local demand, and the excessive power will be exported to other areas through the tie-lines [1]. For example assume area 1 has the excessive power the tie-line flows would have directions from area1 to other areas, and the maximum power generation for area1 would be the local demand in area1 plus the sum of all the tie-line capacities connected to area1.

If we fix the area 1 generation to its maximum level than the maximum power generation in area 2 could be calculated in a similar way to area 1. Since tie-line C_{12} imports power at its maximum capacity, this amount should be subtracted from the generation limit of area2. According to power balance equation (9) some areas must have a power generation deficiency and requires generation imports. The minimum generation limits in these areas is the local demand minus all the connected tie-line capacities. If any of these tie-lines is connected to an area with higher deficiencies, then the power flow directions should be reserved.

Figure 1. Multi-area connection and tie-line limitations

4. EVOLUTIONARY PROGRAMMING

4.1 Introduction

EP is a mutation-based evolutionary algorithm applied to discrete search spaces. D. Fogel (Fogel, 1988) [6][7] extended the initial work of his father L. Fogel (Fogel, 1962) [6][7] for applications involving real-parameter optimization problems. Real-parameter EP is similar in principle to evolution strategy (ES), in that normally distributed mutations are performed in both algorithms. Both algorithms encode mutation strength (or variance of the normal distribution) for each decision variable and a self-adapting rule is used to update the mutation strengths. Several variants of EP have been suggested (Fogel, 1992).

4.2 Evolutionary Strategies

For the case of evolutionary strategies, Fogel remarks "evolution the chromosome, the individual, the species, and the ecosystem" [6][7] can be categorized by several levels of hierarchy: the gene, the chromosome, the individual, the species, and the ecosystem" [6][7]. Thus, while genetic algorithms stress models of genetic operators, ES emphasize mutational transformation that maintains behavioural linkage between each parent and its offspring at the level of the individual. ES are a joint development of Bienert Rechenberg and schwetel. The first applications were experimental and addressed some optimization problems in hydrodynamics.

4.3 EP General Algorithm

Evolutionary programming is conducted as a sequence of operations and is given below. The flowchart for EP general algorithm [7] is shown in Fig.2.

Figure 2. Flowchart for EP general algrithm

- 1. The initial population is determined by setting $s_i=S_i \sim U(a_k,b_k)^k$ i =1,...,*m*, where S_i is a random vector, s_i is the outcome of the random vector, $U(a_k,b_k)^k$ denotes a uniform distribution ranging over $[a_k,b_k]$ in each of *k* dimensions, and *m* is the number of parents.
- 2. Each s_i , i=1,...,m, is assigned a fitness score $\vartheta(s_i)=G(F(s_i),v_i)$, where F maps $s_i \rightarrow R$ and denotes the true fitness of s_i , v_i , represents random alteration in the instantiation of s_i , random variation imposed on the evaluation of $F(s_i)$, or satisfies another relation s_i , and $G(F(s_i),v_i)$ describes the fitness score to be assigned. In general, the functions F and G can be as complex as required. For example, F may be a function not only of a particular s_i , but also of other members of the population, conditioned on a particular s_i .
- 3. Each s_i , i=1,...,m, is altered and assigned to s_{i+m} such that

$$s_{i+m} = s_{i,j} + N(0,\beta j \vartheta(s_i) + z_j), j = 1,...,k$$

 $N(0,\beta j \vartheta(s_i)+z_j)$ represents a Gaussian random variable with mean μ and variance σ^2 , β_j is a constant of proportionality to scale $\vartheta(s_i)$, and zj represents an offset to guarantee a minimum amount of variance,

4. Each s_{i+m} , i=1,...,m, is assigned a fitness score

$$\Theta(s_{i+m}) = G(F(s_{i+m}), v_{i+m})$$

5. For each s_i , i=1,...,2m, a value wi is assigned according to

$$\begin{split} w_i &= \Sigma w_t^* \\ w_t^* &= \begin{cases} 1, \mbox{ if } \vartheta(s_i) \leq \vartheta(s_\rho); \\ 0, \mbox{ otherwise}; \end{cases} \ \end{split}$$

Where $\rho = [2mu_1+1], \rho \neq i, [x]$ denotes the greatest integer less than or equal to x, c is the number of competitions, and u1~U(0,1).

6. The solutions s_i , I = 1...2m, are ranked in descending order of their corresponding value W_i [with preference to their actual scores $\vartheta(s_i)$ if there are more than *m* solutions attaining a

value of c]. The first m solutions are transcribed along with their corresponding values $\vartheta(s_i)$ to be the basis of the next generation.

7. The process proceeds to step 3, unless the available execution time is exhausted or an acceptable solution has been discovered.

5. EVOLUTIONARY PROGRAMMING FOR MAUCP

The Flowchart for MAUCP using EP is shown in Fig. 3. EP is conducted to solve MAUCP by following sequence of operations.

- 1. Initialize area A=1.
- 2. Read unit data, tie-line data, load demand profile and number of iterations to be carried out.
- 3. Generate population of parents (N) by adjusting the existing solution to the given demand to the form of state variables.
- 4. Unit down time makes a random recommitment.
- 5. Check for constraint in the new schedule. If the constraints are not met then repair the schedule as given below in Section V.A.
- 6. PerformEconomicLoad Dispatch (ELD) and calculate total production cost for each parent.
- 7. Add the Gaussian random variable to each state variable and, hence, create an offspring. This will further undergo some repair operations asgiven SectionV.B.Selection process is done using Evolutionary strategy.
- 8. Improve the status of the evolved offspringandverify the constraintsbyEP. Formulate the rank for the entire population. Check for constraint in the new schedule. If the constraints are not met then repair the schedule as given below in Section V. A.
- 9. Formulate the rank for the entire population.
- 10. Select the best N number of population for next iteration.
- 11. Has the iteration count been reached? If yes, go to step 12, else go to step 3.
- 12. Select the best populations by evolutionary strategy [7][8].
- 13. Check for N number of areas completed. If yes go to step 2, else go to step 14.
- 14. Export power from lower operating cost areas to higher operating cost area by following tieline constraints.
- 15. Print the commitment schedule of N areas and tie- line flows.

5.1 Repair mechanism

A repair mechanism to restore the feasibility of the constraints is applied and described as follows[1

- Pick at random one of the OFF units at one of the violated hours.
- Apply the rules in section 4.4 to switch the selected units from OFF to ON keeping the feasibility of the down time constraints.
- Check for the reserve constraints at this hour. Otherwise repeat the process at the same hour for another unit.

Figure 3. Flowchart for EP algorithm for MAUCP

5.2 Making Offspring Feasible

While solving the constrained optimization problem, there are various techniques to repair an infeasible solution [8] [11]. In this paper, we have chosen the technique, which evolves only the feasible solutions. That is, the schedule which satisfies the set of constraints as mentioned earlier. Here, in this paper, the selection routine is involved as "curling force" to estimate the feasible schedules. Before the best solution is selected by evolutionary strategy, the trial is made to correct the unwanted mutations.

5.3 Implementation

Software program were developed using MATLAB software package, and the test problem was simulated for ten independent trials using EPA. The training and identification part as implemented in the EPA technique is employed here and considered as a process involving random recommitment, constraint verification, and offspring creation.

6. NUMERICAL RESULTS

The test system consists of four areas, and each area has 26 thermal generating units [1]. Units have quadratic cost functions, and exponential start up cost functions. Table 1 lists generating unit characteristics like the minimum up/down times, initial conditions and generation limits of units in every area. Table 2 to Table 5 lists the cost functions of units given in the four area[1], where variables ai, bi and ci are defined in equation 1. A_i , B_i and C_i are defined in equation 4. Load demand profile for each area is different and is given in Fig. 4. The hourly operating cost of four areas by Dynamic Programming (DP) and Evolutionary Programming (EP) method is given in Table 6 and Table 7 respectively. The total operating cost in pu comparison between DP and EP method is shown in Table 8. Comparison of total operating cost by DP Vs EP method is shown in Fig. 5. The proposed algorithm quickly reaches smallest total operating cost compared to DP method, which indicates that the proposed algorithm could determine the appropriate schedule within a reasonable computation time. It is noted that cost in one iteration may be lower than that of the previous iteration, indicating that our optimization rules always comply with the equal incremental cost criterion for dispatching power generation among thermal units. The tie line flow pattern at 11 am and 4 pm are shown in Fig. 6 and Fig. 7 respectively.

Figure 4. Load demand profile in each area

Table 1. Generating unit characteristics

Unit No.	Minimum up time (hour)	Minimum down time (hour)	Initial condition (hour)	Minimum Generation (MW)	Maximum Generation (MW)
1	0	0	-1	2.40	12
2	0	0	-1	2.40	12
3	0	0	-1	2.40	12
4	0	0	-1	2.40	12
5	0	0	-1	2.40	12
6	0	0	-1	4.00	20
7	0	0	-1	4.00	20
8	0	0	-1	4.00	20
9	0	0	-1	4.00	20
10	0	-2	3	15.20	76
11	3	-2	3	15.20	76
12	3	-2	3	15.20	76
13	3	-2	3	15.20	76
14	3	-2	-3	25.00	100
15	4	-2	-3	25.00	100
16	4	-2	-3	25.00	100
17	4	-3	5	54.25	155
18	4	-3	5	54.25	155
19	5	-3	5	54.25	155
20	5	-3	5	54.25	155
21	5	-4	-4	68.95	197
22	5	-4	-4	68.95	197
23	5	-4	-4	68.95	197
24	8	-5	10	140.00	350
25	8	-5	10	140.00	350
26	8	-5	10	140.00	350

Table 2. Cost functions for generating units in area

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Uni t No.	Gen. cost co-effi. a(\$/MW ²)	Gen. cost co-effi. b(\$/MW)	Gen. cost co-effi. c (\$)	Start up Cost co- effi.A(\$)	Start up Cost co-effi.B(\$)	Start up time constan t T
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	24.360	25.237	0.0120	0	0	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	24.379	25.255	0.0121	0	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	24.395	25.273	0.0125	0	0	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	24.420	25.299	0.0129	0	0	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	24.434	25.321	0.0130	0	0	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	117.121	37.000	0.0060	20	20	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	117.239	37.132	0.0062	20	20	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	117.358	37.307	0.0064	20	20	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	117.481	37.490	0.0066	20	20	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	81.000	13.322	0.0046	50	50	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	81.028	13.244	0.0047	50	50	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	81.104	13.300	0.0049	50	50	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	81.176	13.350	0.0052	50	50	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	217.000	18.000	0.0042	70	70	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	217.100	18.100	0.0044	70	70	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	217.200	18.200	0.0047	70	70	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	142.035	10.394	0.0043	150	150	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	142.229	10.515	0.0045	150	150	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	142.418	10.637	0.0047	150	150	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	143.497	10.708	0.0048	150	150	6
22 257.649 22.100 0.0026 200 200 8 23 258.176 22.200 0.0026 200 200 8 24 175.057 10.462 0.0016 300 200 8 25 305.036 7.486 0.0019 500 500 10 26 306.910 7.493 0.0019 500 500 10	21	256.101	22.000	0.0025	200	200	8
23 258.176 22.200 0.0026 200 200 8 24 175.057 10.462 0.0016 300 200 8 25 305.036 7.486 0.0019 500 500 10 26 306.910 7.493 0.0019 500 500 10	22	257.649	22.100	0.0026	200	200	8
24 175.057 10.462 0.0016 300 200 8 25 305.036 7.486 0.0019 500 500 10 26 306.910 7.493 0.0019 500 500 10	23	258.176	22.200	0.0026	200	200	8
25 305.036 7.486 0.0019 500 500 10 26 306.910 7.493 0.0019 500 500 10	24	175.057	10.462	0.0016	300	200	8
26 306.910 7.493 0.0019 500 500 10	25	305.036	7.486	0.0019	500	500	10
	26	306.910	7.493	0.0019	500	500	10

Unit No.	Gen. cost co-effi. a(\$/MW ²)	Gen. cost co-effi. b(\$/MW)	Gen. cost co-effi. c (\$)	Start up Cost co- effi.A(\$)	Start up Cost co- effi.B(\$)	Start up time constant T
1	24.389	25.547	0.0123	0	0	1
2	24.411	25.675	0.0125	0	0	1
3	24.638	25.803	0.0130	0	0	1
4	24.760	25.932	0.0134	0	0	1
5	24.488	26.061	0.0136	0	0	1
6	117.755	37.551	0.0059	20	20	2
7	118.108	37.664	0.0066	20	20	2
8	118.458	37.777	0.0066	20	20	2
9	118.821	37.890	0.0073	20	20	2
10	81.136	13.327	0.0047	50	50	3
11	81.298	13.354	0.0049	50	50	3
12	81.464	13.380	0.0051	50	50	3
13	81.626	13.407	0.0053	50	50	3
14	217.895	18.000	0.0043	70	70	4
15	218.355	18.100	0.0051	70	70	4
16	218.775	18.200	0.0049	70	70	4
17	142.735	10.695	0.0047	150	150	6
18	143.029	10.715	0.0047	150	150	6
19	143.318	10.737	0.0048	150	150	6
20	143.597	10.758	0.0049	150	150	6
21	259.131	23.000	0.0026	200	200	8
22	259.649	23.100	0.0026	200	200	8
23	260.176	23.200	0.0026	200	200	8
24	177.057	10.862	0.0015	300	200	8
25	310.002	7.492	0.0019	500	500	10
26	311 010	7 503	0.0019	500	500	10

Table 4. Cost functions for generating units in area 3

Unit No.	Gen. cost co-effi. a(\$/MW ²)	Gen. cost co-effi. b(\$/MW)	Gen. cost co-effi. c (\$)	Start up Cost co- effi.A(\$)	Start up Cost co- effi.B(\$)	Start up time constan t T
1	24.389	25.202	0.0123	0	0	1
2	24.411	25.255	0.0125	0	0	1
3	24.638	25.273	0.0130	0	0	1
4	24.760	25.342	0.0134	0	0	1
5	24.888	25.366	0.0136	0	0	1
6	117.755	37.012	0.0059	20	20	2
7	118.108	37.055	0.0066	20	20	2
8	118.458	37.098	0.0066	20	20	2
9	118.821	37.156	0.0073	20	20	2
10	81.136	13.261	0.0047	50	50	3
11	81.298	13.278	0.0049	50	50	3
12	81.464	13.295	0.0051	50	50	3
13	81.626	13.309	0.0053	50	50	3
14	217.895	17.500	0.0043	70	70	4
15	218.355	17.600	0.0051	70	70	4
16	218.775	17.700	0.0049	70	70	4
17	142.735	10.210	0.0047	150	150	6
18	143.029	10.268	0.0047	150	150	6
19	143.318	10.307	0.0048	150	150	6
20	143.597	10.375	0.0049	150	150	6
21	259.131	22.500	0.0026	200	200	8
22	259.649	22.600	0.0026	200	200	8
23	260.176	22.700	0.0026	200	200	8
24	177.057	10.462	0.0015	300	200	8
25	310.002	7.492	0.0019	500	500	10
26	311.910	7.503	0.0019	500	500	10

Table 3.Cost functions for generating units in area 2

Table 7. Hourly cost of each area by DP method

Unit No.	Gen. cost co-effi. a(\$/MW ²)	Gen. cost co-effi. b(\$/MW)	Gen. cost co-effi. c (\$)	Start up Cost co- effi.A(\$)	Start up Cost co- effi.B(\$)	Start up time constan t T
1	24.389	25.202	0.0123	0	0	1
2	24.411	25.255	0.0125	0	0	1
3	24.638	25.273	0.0130	0	0	1
4	24.760	25.342	0.0134	0	0	1
5	24.888	25.366	0.0136	0	0	1
6	117.755	37.012	0.0059	20	20	2
7	118.108	37.055	0.0066	20	20	2
8	118.458	37.098	0.0066	20	20	2
9	118.821	37.156	0.0073	20	20	2
10	81.136	13.261	0.0047	50	50	3
11	81.298	13.278	0.0049	50	50	3
12	81.464	13.295	0.0051	50	50	3
13	81.626	13.309	0.0053	50	50	3
14	217.895	17.500	0.0043	70	70	4
15	218.355	17.600	0.0051	70	70	4
16	218.775	17.700	0.0049	70	70	4
17	142.735	10.210	0.0047	150	150	6
18	143.029	10.268	0.0047	150	150	6
19	143.318	10.307	0.0048	150	150	6
20	143.597	10.375	0.0049	150	150	6
21	259.131	22.500	0.0026	200	200	8
22	259.649	22.600	0.0026	200	200	8
23	260.176	22.700	0.0026	200	200	8
24	177.057	10.462	0.0015	300	200	8
25	310.002	7.492	0.0019	500	500	10
26	311.910	7.503	0.0019	500	500	10

Table 5. Cost functions for generating units in area 4

Table 6. Hourry cost of each area by DP metho	Table 6.	Hourly	cost of	each area	by	DP method
---	----------	--------	---------	-----------	----	-----------

HOURS (24)	AREA-1 (26 unit)	AREA-2 (26 unit)	AREA-3 (26 unit)	AREA-4 (26 unit)
1	36967.398	23978.521	28416.216	21898.126
2	24332.916	22896.680	22740.900	19324.823
3	27998.167	23114.640	23667.246	19245.978
4	29612.861	18326.321	26117.837	18417.701
5	29363.621	18316.323	25472.429	18553.713
6	35721.176	18312.326	23869.510	19573.596
7	39617.164	28143.146	21845.592	24765.272
8	39328.856	38076.468	19905.851	21123.616
9	38549.734	34843.238	18245.373	21291.120
10	37219.318	32416.347	22163.591	24207.432
11	37184.469	31691.375	20612.082	23542.570
12	38316.472	31581.138	20979.893	21262.693
13	33116.354	34120.029	18127.822	26401.178
14	31630.279	37051.828	17124.939	25704.619
15	30466.627	33150.817	17878.473	23576.431
16	36281.163	32861.752	22306.578	25204.946
17	36894.174	32860.606	23648.580	25226.725
18	35696.310	39439.616	27612.752	19314.724
19	34975.326	39811.059	23799.842	22343.624
20	35766.320	32081.951	21834.391	15868.403
21	38622.479	29125.272	19798.539	20118.242
22	30614.829	15108.122	20985.432	21816.770
23	31483.724	18412.089	19896.273	22294.078
24	29540.211	15162.711	19716.613	18314.498

HOURS (24)	AREA-1 (26 unit)	AREA-2 (26 unit)	AREA-3 (26 unit)	AREA-4 (26 unit)
()				
1	36394.904	24678.309	29112.227	22128.126
2	32398.748	23221,985	22898.975	19312.818
3	31714.449	23121.988	23694.843	19163.999
4	31723.462	18350.520	26238.838	18774.766
5	32023.452	18364.520	25612.969	19065.740
6	35712.469	19012.524	23593.510	19715.542
7	38904.904	28196.592	21832.636	24921.278
8	39680.722	34467.091	20119.855	21974.690
9	41896.216	34791.559	19316.373	21367.342
10	37900.709	32945.357	22168.596	24306.437
11	37917.621	32869.634	20322.082	23391.572
12	37958.864	32865.094	20984.893	21272.693
13	33762.144	34214.477	18212.821	26541.176
14	33613.449	37582.461	17814.931	25892.619
15	31918.347	33706.661	17895.408	23704.434
16	37482.917	33472.179	22519.578	25306.943
17	37416.541	33621.180	23718.580	25778.726
18	36267.023	39914.137	27489.760	19513.752
19	36216.023	39893.695	23899.842	22287.661
20	36249.123	32892.034	21933.391	16016.417
21	38230.836	31482.461	19897.539	20245.248
22	30217.685	14517.871	21107.431	21796.720
23	32112.343	18698.415	19989.213	22319.124
24	30219.685	14516.872	19742.613	18318.498

Figure 5. Comparison of Total Operating cost by DP Vs EP method

Table 8. Comparison of total operating cost for 26 unit

System	Method		Total Operatin	ng Cost (pu)	
		Area 1	Area 2	Area 3	Area 4
	DP	1.00000	1.00000	1.00000	1.00000
26 Unit	EP	0.97377	0.98783	0.98618	0.98926

Figure 6. Tie line flow pattern at 11 am

Figure 7. Tie line flow pattern at 11 am

7. CONCLUSION

This paper presents EP method for solving multi area unit commitment problem with import and export constraints. In comparison with the results produced by the technique DP, the EP method obviously displays satisfactory performance. Test results have demonstrated that the proposed method of solving multiarea unit commitment problem with import and export constraints reduces the total operating cost of the plant. An effective tieline constraint checking procedure is implemented in this paper. This method provides more accurate solution formultiarea unit commitment problem with import and export constraints.

References

[1] Z.Ouyang and S.M. Shahidehpur, "Heuristic multi area unit commitment with economic dispatch", IEE proceedings –c, vol.138, no.3, May 1991.

- [2] Fred N. Lee and Qibei Feng, "Multi area unit commitment", IEEE Transactions on power systems, vol. 7, No. 2, May 1992.
- [3] Kankar Bhattacharya, Math H. J.Bollen, Jp E. Dlder, Operation of Restructured power systems: Kluwer Academic Publishers; 2001.
- [4] C. Wang and S. M Shahidehpur, "A Decomposition approach to non linear multi area generation scheduling with tie line constraints using expert systems", IEEE Transactions on power systems, vol. 7, No. 4, Novenmber 1992.
- [5] C. K. Pang, C. K. Sheble, and H. F. Albuyeh, "Evalution of dynamic programming based methods and multiple area representation for thermal unit commitments", IEEE Trans. Power Appar. Syst., PAS-100, (3), pp 1212-1218, 1981.
- [6] U. B. Fogel, "On the Philosophical Differences between Evolutionary Algorithms and Genetic Algorithms," Proc. second annual conference on Evolutionary Programming, 1993, pp. 23-29.
- [7] C. Christober Asir Rajan and M. R. Mohan, "An evolutionary programming based tabu search method for solving the unit commitment problem", IEEE Trans. On power syst., vol. 19, No. 1, Feb 2004.
- [8] D. B Fogel, "Evolutionary computation, Toward a new philosophy of machine intelligence", piscataway, NJ:IEEE press, 1995.
- [9] T.Back, "Evolutionary algorithms in theory and practice", Newyork:Oxford univ. Press, 1996.
- [10] L. J. Fogel, A. J. Owns, and M. J. Walsh, "Artifical intelligence through simulated evolution", Newyork: Wiley, 1996.
- [11] K. A. Juste, H. Kita, E. Tanaka, and J. Hasegawa, "An evolutionary programming solution to the unit commitment problem", IEEE Tran. Power syst., vol 14, pp 1452-1459, Nov. 1999.
- [12] C. C. A. Rajan and M. R. Mohan, "An evolutionary programming based simulated annealing method for solving the unit commitment problem", Elsevier Electrical power and energy systems 29(2007), pp540-550, [online] Available: <u>www.sciencedirect.com</u>.
- [13] C.Christober Asir Rajan, "Hybridizing Evolutionary Programming, Simulated Annealing, Tabu Search Method to Solve the Unit Commitment Problem", Journal of Electrical Engineering, Vol.10, No. 1, pp. 34~41, 2010.
- [14] S. ChitraSelvi R. P. Kumudini Devi, C. Christober Asir Rajan, "A Hybrid Approaches for the Profit Based Unit Commitment Problem in the Deregulated Markets", Journal of Electrical Engineering, Vol. 9, No.3, 2009, pp.35-41.
- [15] Chitra Yingvivatanapong, Wei Jen Lee, and Edwin Liu, "Multi area power generation dispatch in competitive markets", IEEE Trans. On power syst., vol., 23, No. 1, Feb 2008.

- [16] Maryam Ramezani, Mahmood Reza Haghifam, Chanan Singh, Hossein Seifi, and Mohsen Parsa Moghaddam, "Determination of capacity benefit margin in multi area power systems using particle swarm optimization", IEEE Trans. On power syst., vol.24., No.2, May 2009.
- [17] Fred N. Lee, Qibei Feng, "Milti area unit commitment", IEEE Trans. On power syst., vol., 7, No. 2, May 1992.
- [18] E.Mariappane,K. Thyagarajah, "A Genetic Algorithm Approach to Price-Based Unit Commitment", Journal of Electrical Engineering, Vol. 9, No.4, 2009, pp. 41-46.
- [19] Chang Chuan Ping, Liu Chih Wen, Liu Chunchang., "Unit Commitment by Lagrangian relaxation and genetic algorithms", IEEE Trans. On Power System, Vol. 15, No.2, pp.707-714, 2000.
- [20] S. Chitra Selvi, R. P. Kumudini Devi, and C. Christober Asir Rajan, "Multi area unit commitment with bilateral contract approach in deregulated electricity market", Journal of Elect. Engg. And Tech., vol. 4, No. 3, pp. 346-352, 2009.
- [21] C. L. Tseng, X. Guan, and A. J. Svoboda, "Multi area unit commitment for large scale power systems", IEE Proc-Gener. Transm. Distrib., vol. 145, No. 4, July 1998.
- [22] C. Wang, S. M. Shahidehpour, "A decomposition approach to non linear multi area generation scheduling with tie line constraints using expert systems", IEEE Trans. On power syst., vol. 7, No. 4, Nov. 1992.
- [23] J. M. Nagundam, F. Kenfack, and T. T. Tatietse,"Optimal scheduling of large-scale hydrothermal power systems using the Lagrangian relaxation techniques", Int. J. Elect. Power Energy Syst., vol.22, No.1, pp. 237-245, 2002.
- [24] F.Benhamida, "A Hybrid Lagrangian Relaxation Dynamic Programming Solution to the Unit Commitment Problem", Journal of Elect. Engg., Vol. 9, No.4, 2009, pp. 31-40.