
CD45 in clinical medicine and Multiple Myeloma 

Section A-Research paper 

2751 

Eur. Chem. Bull. 2023, 12(Special Issue 12): 2751-2764 

 

 

 

 

 

 CD45 in clinical medicine and Multiple Myeloma 
Mohammed Gamal Mohammed Abukhisha Alshamy, Esam Nasr 

Mohammed, Ayman Fathy Abd El Halim, Shimaa Abdelmoniem Mohamed, 

Elsayyed Anany Metwally 

Internal Medicine Department, Faculty of Medicine, Zagazig University 

Email: mohamedgamal070489@gmail.com 

 
 

Article History: Received 10th June, Accepted 5th July, published online 10th July 2023 

 

Abstract 
CD45 is an evolutionary highly conserved receptor protein tyrosine phosphatase exclusively 

expressed on all nucleated cells of the hematopoietic system. It is characterized by the expression 

of several isoforms, specific to a certain cell type and the developmental or activation status of the 

cell. CD45 is one of the key players in the initiation of T cell receptor signaling by controlling the 

activation of the Src family protein-tyrosine kinases Lck and Fyn. CD45 deficiency results in T- 

and B-lymphocyte dysfunction in the form of severe combined immune deficiency. It also plays a 

significant role in autoimmune diseases and cancer as well as in infectious diseases including 

fungal infections. The knowledge collected on CD45 biology is rather vast, but it remains unclear 

whether all findings in rodent immune cells also apply to human CD45. Due to increasing 

mortality from multiple myeloma and CD45 expression was seldom used before as a prognostic 

biomarker in MM patients so, it is important to find new prognostic biomarkers and to find out 

prognostic effect of immunophenotyping in MM as little reports were performed on this subject 

before.  
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CD45 is a central player of immune cell activation. The huge amount of data contributing to our understanding 

of CD45 biology is based on experiments using either human blood samples, human cell lines (Jurkat cells) 

or non-human sources (mainly rodents). Whether all findings on murine CD45 also apply to human 

physiology remains unclear as differences in T cell physiology of humans and mice have been reported 

including differences between human and mouse CD45 molecules [1,2], which are distinguished by certain 

pathogens [3]. The dispersion of the various CD45 isoforms also differs between species: in mice, B220 is a 

pan-B cell-specific CD45 isoform while this particular isoform is developmentally regulated in humans and 

downregulated upon acquisition of CD27, a memory B cell-marker [4]{h}. There are a number of excellent 

reviews covering a variety of issues of CD45 biology. This review aims to focus on CD45's role in human 

physiology and clinical pathology. Literature based on experiments using human material is indicated by {h} 

directly after the quotation. 2. CD45 expression and CD45 isoforms CD45 is a receptor protein tyrosine 

phosphatase, also known as Ly-5 [5] or leukocyte common antigen [6]{h}. CD45 is expressed on the surface 

of all nucleated hematopoietic cells and their precursors, except mature erythrocytes and platelets. It is a large 

glycoprotein of 180–220 kDa and constitutes 5–10% of the total glycoprotein on the surface of T- and B-

lymphocytes [7,8]. CD45 expression is not limited to mammals, as there are CD45 homoloques in chicken, 

shark and even mosquitos [9], an indication for a long-time existing and highly conserved genetic structure 

[10]. Although the sequence of the extracellular CD45 region strongly varies between different species, the 

cytoplasmic region of CD45 shows high conservation in all mammalians. In humans, CD45 expression is 

found on all leukocytes including peripheral blood fibrocytes [11]{h}, a leukocyte subpopulation that displays 

fibroblast-like properties [12]{h}. These cells play a role in children and young adults suffering from 

mailto:mohamedgamal070489@gmail.com


CD45 in clinical medicine and Multiple Myeloma 

Section A-Research paper 

2752 

Eur. Chem. Bull. 2023, 12(Special Issue 12): 2751-2764 

 

 

 

 

 

pulmonary hypertension [13] {h} due to their involvement in vascular remodeling, one of the key elements 

of pulmonary hypertension pathophysiology. CD45 is also found on a relatively novel cell population in 

humans called peripheral blood insulin-producing cells, whose function is not fully understood [14]{h}. 

These cells express CD45 at high levels as well as CD117 (also known as tyrosine-protein kinase Kit) and 

CD9 (a member of the transmembrane 4 superfamily). They also express embryonic stem cellassociated 

transcription factors, including Oct-4 and Nanog and are negative for CD34, CD3 (T cell marker), CD20 (B 

cell markers. 

There are several isoforms of CD45 expressed on hematopoietic cells, generated by differential splicing of 

exons 4, 5, and 6, thereby generating the CD45RA, RB and RC isoforms, respectively [15–18] (Fig. 1B ). 

These exons encode a sequence of about 200 amino acids close to the extracellular N-terminus of CD45, 

which contains multiple sites for O-linked glycosylation. Thus, different CD45 isoforms vary in glycosylation 

patterns and size. The remaining extracellular domain contains a cysteine-rich region and three fibronectin 

type III repeats, which are heavily N-glycosylated. These complex N-glycans are necessary for CD45 stability 

and its transport to the cell surface [19,20]. The membrane-proximal region of CD45 is followed by a single 

transmembrane region and a long cytoplasmic tail, which harbors a tandem repeat of two tyrosine phosphatase 

domains, D1 and D2. Only D1 has tyrosine phosphatase activity (PTA) while the D2 domain binds to the 

cytoskeleton through the linker protein fodrin and acts as a regulator of D1 tyrosine PTA and specificity [21]. 

CD45 isoform expression varies depending on the stage of T-cell maturation, activation and differentiation. 

In humans, there are antibodies to CD45RA, CD45RB and CD45RO, the latter being the smallest isoform 

that contains neither exon A, nor B or C [22,23]{h}. Naive human T cells express the high molecular weight 

isoform containing exon 4, CD45RA. After cell activation, the extracellular domain of CD45RA undergoes 

alternative splicing and is replaced by CD45RO, which is also found on memory T cells [24]{h}[25]. The 

percentage of CD45RA+ T cells gradually decreases with age while the percentage of CD45RO+ T cells 

increases [16,26]. However, with regard to CD45RA+ cells as being naive and CD45RO+ T cells containing 

primed/memory T cells it has to be taken into account that human T cells can revert from CD45RO+ to 

CD45RA+ [27,28]{h}. Such highly differentiated CD45RA re-expressing CD4+ and CD8+ T cells seem to 

accumulate during aging and in patients with persistent viral infections or chronic inflammatory diseases like 

rheumatoid arthritis (RA). These cells can be reactivated to mediate potent effector function but rapidly die 

thereafter [29–31]{h}. The expression of alternatively spliced isoforms of CD45 is also modulated throughout 

T-cell development. The major populations of CD3−CD4−CD8− triple-negative human thymocytes are 

CD45RO− and can express CD45RA, CD45RB and CD45RC. Expression of these isoforms is downregulated 

on CD4+CD8+ double-positive thymocytes, which are predominantly CD45RO+RA−. Single positive 

CD3+CD4+ and CD3+CD8+ thymocytes initially express CD45RO but recover CD45RA, RB and RC before 

they exit the thymus. As a matter of fact, in human umbilical cord blood, the majority of T cells, representing 

virgin cells and recent thymic emigrants, are CD45RA+RB+RO− [22,32–34] {h}. Human natural killer (NK) 

cells have the ability to express both CD45RA and the short CD45RO form [35]{h}. Using CD45 isoforms 

to identify cells as being leukocytes is a long known technique and CD45bright lymphocytes can easily be 

distinguished from CD45dim monocyte/myeloid cells in flow cytometry. In more recent studies, new cell 

types were found with distinct CD45 co-expression patterns. The aforementioned fibrocytes for example, are 

identifiable by the combined surface expression of CD45RO, 25F9 and S100A8/A9 [11]{h}. The way CD45 

interacts with ligands is determined by the level and type of CD45 glycosylation [21]. This is achieved by 

different enzymes being active at varying expression levels based on T-cell developmental or differentiation 

states. Such enzymes include core-2 O-N-acetylgalactosamine transferase (C2GnT), alpha (2,6)-

sialyltransferase I (ST6Gal-I), alpha (2,3)-sialyltransferase IV (ST3Gal-IV), and alpha (1,3)-

fucosyltransferase VII (FucT-VII) [36,37]{h}. When these enzymes are modulated, glycosylation of CD45 

changes and, thereby, its function. For instance, C2GnT regulates galectin-3 binding to a subset of highly 

glycosylated CD45 glycoforms in patients with diffuse large B cell lymphoma (DLBCL) (see below). Also, 

the ability of Galectin-1 to bind CD45 (see below) depends on the type and the amount of glycosylation of 

the extracellular domain of CD45 [38,39]. 3. CD45 function and regulation When T cells encounter cognate 

antigen presented on MHC molecules of antigen presenting cells (APCs) they form long-lasting cell 
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conjugates and build an immunological synapse (IS) in the T cell-APC contact zone, which is essential for 

T-cell activation. In the IS, CD45 and Lck are initially recruited to the central supramolecular activation 

cluster (cSMAC) via the TCR. CD45 is then expelled from the cSMAC and clusters in the distal SMAC 

(dSMAC) [40–44]. One model, the ‘kinetic-segregation’ model, proposes that TCR signaling requires spatial 

segregation of MHC-bound TCRs from phosphatases [45–48]. Exclusion of CD45 from the narrow-spaced 

TCR-MHC interaction zone is thought to result from steric hindrance due to the large size and rigidity of the 

CD45 extracellular domain [45,49–52]. Indeed, truncation of the CD45 ectodomain enhances CD45 

localization with ligated TCRs in the IS and inhibits TCR triggering [50,53,54]. Targeting CD45 activity to 

lipid microdomains on the T cell surface, which are associated with Srcfamily tyrosine kinase activity, also 

decreased TCR-mediated signaling [55]. The degree of CD45 segregation from TCR-MHC microclusters, 

and presumably other small-sized ligand pairs like PD-1-PD-L1 interactions, seems to be higher for 

CD45ABC than CD45RO isoforms [52]. Besides spatio-temporal organization, the cell surface density of 

CD45 molecules seems to be a decisive factor towards its functional effects. Low or medium local 

concentrations of CD45 lead to dephosphorylation of the Src family protein-tyrosine kinase Lck 

(lymphocytespecific kinase) at its C-terminal negative regulatory tyrosine Y505, thereby inducing an opening 

of the molecule and generating so-called ‘primed’ Lck [56,57]. Interaction of CD45 with Lck and Y505 

dephosphorylation of Lck seems to depend on Y192 within the Src homology 2 (SH2)-domain of Lck [58]. 

A high local concentration of CD45 leads to additional dephosphorylation of Lck at the 

auto/transphosphorylation site Y394 within the kinase domain [59,60] (Fig. 1A). Both effects are antagonistic 

to each other, the former (Y505 dephosphorylation) being activating in nature, the latter (Y394 

dephosphorylation) leading to decreased Lck kinase activity. Thus, CD45 can operate as a positive and 

negative regulator of Lck and other Src family kinases, which seems to depend on the cell type, CD45 isoform 

expression, and CD45's inclusion or exclusion from clustered signaling complexes [59,61,62]. A negative 

regulatory role of CD45 was also detected in integrin- [63] and CD44-mediated adhesion of T cells, where 

CD45 is recruited to downregulate Lck activity [64], in neutrophil migration [65], and MyD88-dependent 

Toll-like receptor (TLR) signaling [66]. In addition, CD45 dephosphorylates and inhibits tyrosine kinases of 

the Janus kinase (JAK) family [67–69]{h}, which activate transcription factors of the STAT (signal 

transducers and activators of transcription) family, crucial regulators of cytokine and chemokine gene 

expression, thus linking CD45 to cytokine/chemokine responses. The interaction between CD45 and Src 

kinases is vital for successful antigen receptor signaling in T and B cells [70–72] and is required for the 

development and activation of lymphocytes as shown by genetic experiments using CD45 mutant cell lines 

and CD45 knock-out mice [73–77]. Other CD45 substrates have been identified and include the CD3ζ and 

CD3ε chains [78–80] and tyrosine kinase Zap 70 [81]. DAP12 in NK cells [82] and the transmembrane 

adaptor molecule PAG (phosphoprotein associated with GEMs) [83]{h} in thymocytes are 

hyperphosphorylated in the absence of CD45 [84], suggesting that they are direct or indirect substrates of 

CD45. CD45 can directly dephosphorylate the receptor-like protein tyrosine phosphatase PTPα in vitro [85], 

which dephosphorylates Fyn but not Lck in T cells [86]. How various CD45 ligands (see Section 4) could 

regulate CD45 PTA is unresolved [71,87–89]. All CD45 isoforms show basal PTA, but different CD45 

isoforms differ in their capacity to modulate TCR signaling [90–97]{h}. Different CD45 monoclonal 

antibodies display differing abilities to activate or inactivate CD45 PTA independent of their CD45 cross-

linking capacity [98]. CD45 ligands may exert direct effects on CD45 PTA by ligand-induced conformational 

changes or ligand-induced compartimentalization or segregation of CD45 (see above) resulting in altered 

accessibility of CD45 to substrates. Other data proposes that spontaneous or ligand-induced dimerization of 

CD45 inhibits CD45 PTA [99–103]{h}. Dimerization of EGFR-CD45 chimera proteins in CD45- deficient 

cells resulted in the loss of TCR signaling [104]. Different CD45 isoforms exhibit differing capabilities for 

homodimerization, with CD45RO isoforms dimerizing more efficiently than CD45ABC isoforms [105]. 

Recently, it was reported that hypoxic conditions in monocytic myeloid-derived suppressor cells (MDSC) at 

tumor sites facilitate the transport of sialic acid to the cell surface and its binding to CD45. This seems to 

result in disruption of CD45 dimerization, enhanced CD45 PTA and dephosphorylation of STAT3, thereby 

promoting MDSC differentiation into tumor-associated macrophages [106]. Further, posttranslational 
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modification of CD45 might become accessible after ligand binding. Phytohemagglutinin (PHA) [107]{h}, 

CD3 antibodies [108]{h} and activated tyrosine kinase C-terminal Src kinase (Csk) [109], which 

phosphorylates the inhibitory tyrosine in Src kinases, lead to a transient phosphorylation of CD45 tyrosines 

and an increase of CD45 PTA. In contrast, the calcium ionophore ionomycin decreases phosphorylation of 

serine residues in CD45 reducing CD45 activity [110]. Another mode to regulate control of substrate access 

or CD45 PTA could result from association of CD45 with other molecules at the cell surface or within the 

cell [87]. CD45 was found to associate with CD2, CD7, CD28, CD26, CD100 [111–115]{h}, CD4/CD8 

[116]{h}, [117], and Thy-1 [118]. Intracellularly, CD45 interacts with the cytoskeleton proteins fodrin and 

spectrin, presumably stimulating CD45 PTA [119,120]. Other molecules interacting with CD45 include 

proteins of 29–34 kDa [121–123], one of them being lymphocyte phosphatase associated phosphoprotein 

(LPAP) [124,125]{h} as well as CD45-associated protein (CD45-AP) in murine cells [126]. However, 

deletion of LPAP in Jurkat cells had no major effect on CD45 enzymatic activity [127]{h} and LPAP- or 

CD45-AP-deficient mice showed modest and controversial phenotypes [128–130]. The currently available 

data makes it clear that CD45 acts as a rheostat for signal transduction. It is conceivable that CD45 ligands 

may employ different modes (utilizing a variety of mechanisms) of CD45 regulation, an issue which remains 

controversial and requires further experimentation. Although the function of CD45 was investigated for many 

years in T cells and to a lesser extend in B cells, it seems that the entire sequence of CD45-dependent signaling 

events has never been delineated in experiments where only human blood samples were used. As a result, it 

is possible that there are CD45 functions exclusive to human cells that are still undiscovered. There are only 

a few publications on humans with CD45 deficiency or minimal CD45 surface expression, a condition leading 

to severe combined immunodeficiency (SCID) [131–133]{h}. The first case of an immune cell tyrosine 

phosphatase deficiency in humans reports on a 2-year old patient showing a large deletion at one CD45 allele 

and a point mutation at the other allele. The peripheral blood T lymphocyte population was greatly diminished 

and unresponsive to mitogen stimulation. Moreover, serum immunoglobulin levels decreased with age, 

however, the long-term clinical parameters in this child were not further described [131]{h}. At least in mice, 

CD45-deficiency might not fully unmask the role of CD45 in B cells due to the expression of the receptor 

protein tyrosine phosphatase CD148 [134]{h}. CD45 and CD148 share a certain level of functional 

redundancy in B cells and the myeloid lineage [135]. Indeed, mice doubly deficient in CD45 and CD148 

show a very early block in Bcell development [136]. To date, there is no publication of any clinical case of 

CD45-CD148-double-deficiency or CD148-single-deficiency in humans. Yet, there seems to be an 

involvement of CD148 in Cogan's Syndrome, a rare inflammatory disease characterized by ocular and 

audiovestibular symptoms [137]. Its pathogenesis is unclear, but the current hypothesis favors autoimmune 

mechanisms with CD148 as an autoantigen. IgG antibodies purified from patients‘ sera, among others, 

recognize CD148, which is also expressed on the sensory epithelia of the inner ear and on endothelial cells 

[138]. 4. CD45 and its natural ligands For a long time, it has been unclear whether there is any natural CD45 

ligand at all. There is a variety of artificially created extracellular ligands, but this review will only focus on 

natural extracellular CD45 ligands. A number of CD45 ligands has been identified, but most of them are not 

binding exclusively to CD45. Some of the ligands are only present under certain clinical conditions like an 

ongoing infection or in pregnancy and there seems to be no natural extracellular ligand that can be found in 

all healthy adults (Fig. 2). 

One CD45 ligand is pUL11, a transmembrane protein of the cytomegalovirus RL11 (CMV RL11) family 

[139]{h}. It is generated from the UL11 open reading frame in CMV-infected human cells. The extracellular 

domain of pUL11 interacts with CD45RA and CD45R0, leading to disrupted TCR signaling and inhibition 

of T cell proliferation [3]{h}, suggesting that pUL11 reduces CD45 PTA. Indeed, the same group reported 

later that high concentrations of pUL11 (in vitro) lead to phosphorylation of the inhibitory Y505 residue of 

Lck. This increase in Y505 phosphorylation was mostly lost at intermediate and low concentrations of pUL11. 

The activatory Y394 residue of Lck showed comparatively increased phosphorylation at all concentrations 

of pUL11. Therefore, the effect on CD45 PTA seems to depend on pUL11's concentration [140]{h}. pUL11 

can currently be seen as an exclusive, natural ligand of CD45, although it is a ‘situational‘ ligand as it requires 

a CMV-infection. A CD45 ligand that does not require any pathological condition is placental protein 14 
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(PP14), also known as Glycodelin-A or PAEP (progesterone-associated endometrial protein) [141]. It is a 

glycoprotein expressed by endometrial decidua during the first and second trimesters of pregnancy [142]{h}. 

Due to its lectin-like properties, it binds to CD45 (but also other targets on T cells), allegedly leading to 

dimerization and disruption of CD45 PTA [143]{h}. It seems that CD45RA+ T cells are significantly more 

sensitive to PP14-mediated inhibition than CD45RO+ T cells, but the underlying mechanisms are not fully 

understood. CD45 inhibition by PP14 leads to decreased T cell activity, which can be considered a ‘healthy' 

response in a pregnant woman as in formal terms of biological systems, pregnancy is a hostparasite situation 

with the fetus being the parasite. Therefore, PP14 can be seen to provide a form of immune suppression during 

pregnancy. 5. CD45 and lectins Another group of ligands binding CD45 are lectins. They are hardly exclusive 

CD45 binding partners as they are ubiquitously expressed and are known to interact with a large variety of 

molecules. One of the lectins binding CD45 is CD22, a B cell surface molecule belonging to the SIGLEC 

family of lectins [144]. CD22 exerts an inhibitory effect on basal B cell receptor (BCR) signaling. CD45 

restricts the inhibitory function of CD22 in a phosphatase independent manner, presumably by sequestering 

CD22 from the BCR via its ectodomain [145]. Among others, CD22 binds to alpha-2-6-linked sialic acid. 

Van der Merwe and colleagues [146] compared the affinity of CD22 binding to CD45, CD22 binding to CD4 

carrying alpha-2-6-linked sialic acid and CD22 binding to a synthetic alpha-2-6-sialoglycoconjugate. The 

authors found that the affinity of CD22 to either ligand did not differ significantly. Thus, CD22 may bind to 

CD45 not because CD45 presents a higher affinity ligand but because it carries multiple copies of alpha-2-6-

linked sialic acid. Galectin-1 is another phylogenetically conserved lectin and binds beta-galactoside-rich 

glycoconjugates [147]. Galectin-1 is involved in fetomaternal tolerance [148], at least in mice, and a variety 

of other processes in reproduction and reproductive organs [149]. In addition, it plays a role as a possible 

predictive marker to evaluate a patient's prognosis in perineurally spread cutaneous head and neck cancer 

[150] {h} or after liver transplantation [151]{h}. CD45 PTA is inhibited by galectin-1. This appears to be 

essential for galectin-1-induced death of CD45-expressing T cells [2,152,153]{h}. CD45 also enhances 

phagocytic clearance of T cells killed by galectin-1 [154]{h}. During galectin1-induced T cell death, CD45-

associated fodrin, a spectrin family member which attaches CD45 to the cytoskeleton, undergoes proteolytic 

degradation. CD45 is essential for fodrin degradation, which accompanies apoptosis triggered by many death 

signals in many cell types. Macrophages phagocytose dying T cells with cleaved fodrin more efficiently than 

dying cells in which fodrin proteolysis is prevented. Another lectin interacting with CD45 is galectin-3, which 

is involved in the pathophysiology of different diseases like cancer [155], heart failure [156]{h}, and renal 

fibrosis [157]. Galectin-3 also plays a role in DLBCL where it regulates the susceptibility to cell death by 

binding to glycans on CD45, thereby reducing CD45 PTA [158]. CD45 function depends on its glycosylation 

pattern and can be modified via its N-acetylgalactosamine (GalNAc) moieties. Macrophage galactose-type 

lectin (MGL) binds to CD45 carrying terminal GalNAc, thereby regulating macrophage and T-cell 

interactions. MGL recognizes all CD45 isoforms, except CD45RO [159]. It reduces the proliferation of 

human effector T cells and the production of proinflammatory cytokines and is able to induce T-cell death 

[160]{h}. Furthermore, an interaction between the macrophage mannose receptor (MR) and CD45 has been 

shown, particularly with low molecular weight isoforms of CD45 [161]. In a recent study, the presence of the 

MR on dendritic cells inhibited CD45 PTA of CD8+ T cells and led to cytotoxic T-lymphocyteassociated 

protein 4 (CTLA-4) upregulation and induction of CD8+ Tcell tolerance [162]. Thus, endocytic MRs 

expressed on DCs contribute to the regulation of T-cell functionality 

CD45 possible expression in MM patients 

Several studies have confirmed the presence of significant intra-clonal heterogeneity within the clonal PC 

population of patients with MM [20], [21], [22], [23]. Similarly, with respect to CD45 expression on clonal 

PCs, prior studies have demonstrated the presence of two subsets of clonal PCs within patients with MM [24]; 

i.e. those that highly express CD45 and those that have dim or do not express CD45. Furthermore, CD45 is 

expressed mostly in early stages of clonal PCs and subsequent more mature clonal PCs in patients with MM 

lose their CD45 expression [5]. Prior functional studies have evaluated the role of CD45 and its relationship 

to the IL-6 cytokine axis and have demonstrated that CD45 expression on clonal PCs can be induced by IL-

6 [25], [26]. However, only the CD45 (+) PC population, but not the CD45 (−) clonal PCs proliferate after 

https://06101qeow-1104-y-https-www-sciencedirect-com.mplbci.ekb.eg/science/article/pii/S0145212616300303#bib0100
https://06101qeow-1104-y-https-www-sciencedirect-com.mplbci.ekb.eg/science/article/pii/S0145212616300303#bib0105
https://06101qeow-1104-y-https-www-sciencedirect-com.mplbci.ekb.eg/science/article/pii/S0145212616300303#bib0110
https://06101qeow-1104-y-https-www-sciencedirect-com.mplbci.ekb.eg/science/article/pii/S0145212616300303#bib0115
https://06101qeow-1104-y-https-www-sciencedirect-com.mplbci.ekb.eg/science/article/pii/S0145212616300303#bib0120
https://06101qeow-1104-y-https-www-sciencedirect-com.mplbci.ekb.eg/science/article/pii/S0145212616300303#bib0025
https://06101qeow-1104-y-https-www-sciencedirect-com.mplbci.ekb.eg/science/article/pii/S0145212616300303#bib0125
https://06101qeow-1104-y-https-www-sciencedirect-com.mplbci.ekb.eg/science/article/pii/S0145212616300303#bib0130
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IL-6 stimulation. Furthermore, CD45 (+) clonal PCs have been found to be the predominantly proliferative 

fraction when compared to the CD45 (−) clonal PC population and the proliferation decreases parallel to that 

of CD45 expression [27].  
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