

On the doubling of intervals in the pseudo-0-distributive property in the lattice of weak congruences of chains

Gladys Mano Amirtha V $^{\rm 1}$ and D. Premalatha $^{\rm 2}$

¹Research Scholar (Register No. 20111172092013), ²Head and Associate Professor, ^{1,2} PG and Research Department of Mathematics,Rani Anna Government College for Women, Tirunelveli - 627 008, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamilnadu, India. ¹gladyspeter3@gmail.com,²lathaaedward@gmail.com

Abstract

In this paper, we examine how the doubling construction of Alan Day alters the pseudo-0-distributive property after doubling of lower, upper and intermediate intervals in $C_W(L_n)$, that is, the lattice of weak congruences of a chain of length n.

Keywords: lattice theory, doubling construction in lattices, lattices of weak congruences, weak-congruence relation, pseudo-0-distributive.

MSC2020-Mathematics Subject Classification System : 06B10, 06D99.

1 Introduction

The weak congruence relation in lattices given by Vojvodič G. and Šešelja B. [6] has seen many advances in lattice theory. Many properties of the lattice of weak congruences have been studied by various lattice theories. One of those is the property of pseudo-0-distributivity in the lattice of weak congruences of chains and it was defined by J. C. Varlet in 1968 as a generalisation of the notion of pseudo-complementedness [4]. From G. Gratzer's [3] construction of a lattice L^U from a lattice L by doubling an element a = 0 or 1 in L, Alan Day in his paper [2] introduced a similar construction popularly been referred to as 'Day's definition of doubling affects the pseudo-0-distributive property in $C_W(L_n)$. In this chapter, we discuss some preliminary results for the devel- opment of our paper.

Definition 1.1. [1] A lattice L is said to be pesudo-0-distributive if for all $x, y, z \in L, x \land y = 0, x \land z = 0$ imply that $(x \lor y) \land z = y \land z$.

Definition 1.2. [6] A weak congruence relation on an algebra A = (A, F) is a symmetric and transitive sub-universe of A^2 .

Theorem 1.3. [5] $C_W(L_n)$ is pseudo-0-distributive.

Example 1.4. The weak congruence lattice C_w (L4) of which L4 is $\{0 \prec a \prec b \prec 1\}$ is pseudo-0-distributive.

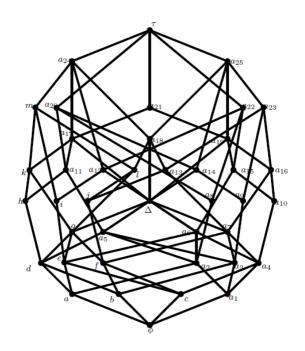


Figure 1: $C_W(L_4)$

Definition 1.5. [3] The lattice $L[I] = (L \setminus I) \cup (I \times C_2)$ where $C_2 = \{0, 1\}$ is formed by Day's definition of doubling of intervals given by the following ordering: for $x, y \in L[I]$ and $i, j \in C_2$;

$$x \leq y \text{ if } x \leq y \text{ in } L;$$

(x, i) $\leq y \text{ if } x \leq y \text{ in } L;$
$$x \leq (y, j) \text{ if } x \leq y \text{ in } L;$$

(x, i) $\leq (y, j) \text{ if } x \leq y \text{ in } L \text{ and } i \leq j \text{ in } C_2$

2 On pseduo-0-distributive property

Theorem 2.1. $[C_W(L_n)](I)$ is pseudo-0-distributive where I is a lower interval in $C_W(L_n)$.

Proof. Let *I* be a lower interval say $I = [0, \theta_1]$ where $\theta_1 = \{0, x_1, x_2, ..., x_k\}^2$, k < n. Let *A*, *B*, $C \in [C_W(L_n)](I)$ such that $A \wedge B = (0, 0)$ and $A \wedge C = (0, 0)$. Claim: $(A \vee B) \wedge C = B \wedge C$. We observe that $A \in [(0, 0), 1]$ or $A \in ((0, 0), (\theta, 0)]$. (I) Assume that $A \notin [(0, 0), 1]$. (Ii) *B*, $C \in [(0, 1), 1]$. (Iii) *B*, $C \in [(0, 1), (\theta, 1)]$ then $A_1 \wedge B_1 = 0$ and $A_1 \wedge C_1 = 0$ where $A = (A_1, 0), B = (B_1, 0), C = (C_1, 0)$.

```
Let ((x_i, x_j), 1) \in (A \lor B) \land C = [(A_1, 0) \lor (B_1, 1)] \land (C_1, 1)
= [(A_1 \vee B_1), 1] \land (C_1, 1)
= [(A_1 \vee B_1) \wedge (C_1, 1)]
 \Rightarrow (x_i, x_i) \in (A_1 \vee B_1) \wedge C_1
 \Rightarrow (x_i, x_i) \in A_1 \lor B_1 and (x_i, x_i) \in C_1
Then, (A_1 \vee B_1) \wedge C_1 = B_1 \wedge C_1 since A_1, B_1, C_1 \in C_W(L_n)
 So, ((x_i, x_i), 1) \in (B_1 \wedge C_1, 1) = (B_1, 1) \wedge (C_1, 1) = B \wedge C
 Hence, (A \lor B) \land C = B \land C is true in this case.
(Iib) Let B \in [(0,1), (\theta,1)] and C \notin [(0,1), (\theta,1)] and C \in C_w(L_n)
B_1 \wedge C \leq B_1 and C \notin [(0,0), (\theta,0)]
Therefore, B_1 \wedge C = (\theta_1, 1)
((x_i, x_i), 1) \in (A \lor B) \land C = [(A_1, 0) \lor (B_1, 1)] \land C
= ((A_1, B_1) \land C, 1)
(x_i, x_j) \in (A_1 \vee B_1) \wedge C
\Rightarrow (x_i, x_j) \in B_1 \wedge C
\Rightarrow ((x_i, x_i), 1) \in (B_1 \wedge C_1, 1) = ((B_1, 1) \wedge C = B \wedge C
So, in this case, (A \lor B) \land C = B \land C holds good.
(Iic) B, C \in [(0,0), (\theta,0)] where B = (B_1,0), C = (C_1,0).
(A \lor B) \land C = B \lor C is true by a similar argument as in Case(Iia).
(II) Assume that A \in [(0,1),1]
Therefore, B, C \in [(0, 0), (\theta, 0)]
(IIa) A \in [(0,1), (\theta,1)]
(A \lor B) \land C = [(A_1, 1) \lor (B_1, 0)] \land (C_1, 0)
= ((A_1 \vee B_1), 1) \wedge (C_1, 0)
= ((A_1 \vee B_1) \wedge C_1, 0)
= (B_1 \wedge C_1, 0)
= B \wedge C
(IIb) Let A \notin [(0, 1), (\theta, 1)]
(A \lor B) \land C = [A \lor (B_1, 0)] \land (C_1, 0)
= (A \lor B_1, 0) \land (C_1, 0)
= ((A \vee B_1) \wedge C_1, 0)
= (B_1 \wedge C_1, 0)
= B \wedge C
In this case, we get [C_W(L_n)](I) is pseudo-0-distributive.
Hence, [C_W(L_n)](I) is pseudo-0-distributive for a lower interval I.
```

Example 2.2. Now, consider the interval $I = [0, a_{32}]$ in the lattice $C_W(L_4)$ (figure: 1). We can form the new lattice $[C_W(L_4)](I) = \{C_W(L_4) \setminus I\} \cup (I \times C_2)$ as in figure: 2 by doubling the interval I. The resultant lattice is also pseudo-0-distributive.

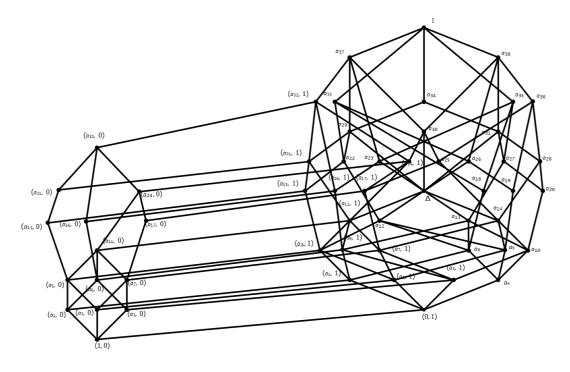


Figure 2: $[C_W(L_4)](l)$ where $l=[0,\,a_{32}]$

Theorem 2.3. $[C_W(L_n)](I)$ is pseudo-0-distributive where I is an upper interval in $C_W(L_n)$.

Proof. Let I be an upper interval say $I = [\{(x_k, x_k)\}, 1]$ of $C_W(L_n)$. To prove that $[C_W(L_n)](I)$ is pseudo-0-distributive i.e., to prove that for all $A, B, C \in [C_W(L_n)](I)$ whenever $A \wedge B = 0$ and $A \wedge C = 0$, $(A \lor B) \land C = B \land C.$ We observe that when $A \in I \times C_2$, we have $B, C \in C_W(L_n) \setminus I$. (I) $A \in I \times C_2$, then $A = (A_1, j), j = 0$ or 1 and $B, C \in C_W(L_n) \setminus I$. We claim that, $(A \lor B) \land C = B \land C$. $(A \lor B) \land C = [(A_1, j) \lor B] \land C$ $= (A_1 \vee B, j) \wedge C$ $= (A_1 \lor B) \land C$ $= B \wedge C$ (As $C_W(L_n)$ is pseudo-0-distributive) (II) $A \notin I \times C_2$ There are three possibilities: (a) $B, C \in I \times C_2$ (b) $B, C \in C_W(L_n) \setminus I$ (c) $B \in C_W(L_n) \setminus I$ and $C \in I \times C_2$ (IIa) $B, C \in I \times C_2$. Let $B = (B_1, j), C = (C_1, j)$ where j = 0 or 1. Now, $(A \lor B) \land C = [A \lor (B_1, j)] \land (C_1, j)$ $= (A \lor B_1, j) \land (C_1, j)$ $= ((A \vee B_1) \wedge C_1, j)$ $= (B_1 \wedge C_1, j)$ $= (B_1, j) \wedge (C_1, j)$ $= B \wedge C$ (As $C_W(L_n)$ is pseudo-0-distributive)

(IIb) If $B, C \in C_W(L_n) \setminus I$, then $(A \vee B) \wedge C = B \wedge C$, as $C_W(L_n)$ is pseudo-0distributive. (IIc) If $B \in C_W(L_n) \setminus I$ and $C \in I \times C_2$, then $(A \vee B) \wedge C = (A \vee B) \wedge (C_1, j)$ $= (A \vee B) \wedge C_1$ $= B \wedge C_1$, as $C_W(L_n)$ is pseudo-0-distributive. Therefore, we conclude that $[C_W(L_n)](I)$ is pseudo-0-distributive.

Example 2.4. Consider the interval $[a_1, 1]$ in figure: 1. The lattice formed by the doubling of the interval is given in (figure: 3). The resultant lattice also preserves the pseudo-0-distributive property.

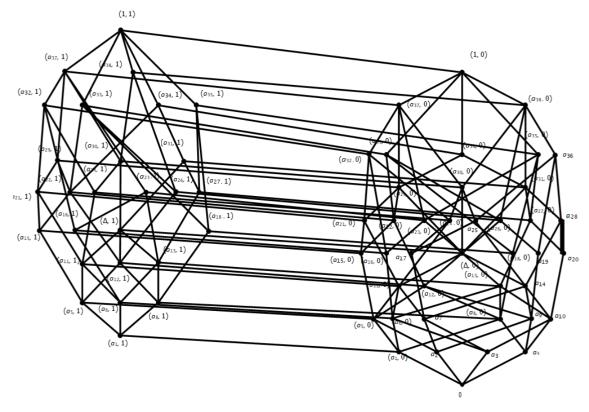


Figure 3: $[C_W(L_4)](l)$ where $l = [a_1, 1]$

Theorem 2.5. $[C_W(L_n)](I)$ is pseudo-0-distributive where I is an intermediate interval in $C_W(L_n)$.

Proof. Assume 1 < i < k < n. Without loss of generality, let us assume that $I = [\{x_i, x_k\}^2, \{x_{i-1}, x_i, x_{i+1}, ..., x_k\}^2]$. Claim: $[C_W(L_n)](I)$ is pseudo-0-distributive. That is, to prove that $A \land B = 0, A \land C = 0 \Rightarrow (A \lor B) \land C = B \land C$ is true in $[C_W(L_n)](I)$. We observe that either $A \in I \times C_2$ or $A \in C_W(L_n) \setminus I$.

- (i) $A \in I \times C_2$, then $B, C \in C_W(L_n) \setminus I$
- (ii) $A \in C_W(L_n) \setminus I$, then $B, C \in C_W(L_n) \setminus I$ or $B \in I \times C_2$ and $C \in C_W(L_n) \setminus I$ or $B, C \in I \times C_2$

Case (i): Let $A \in I \times C_2$ and $B, C \in C_W(L_n) \setminus I$ Therefore, $A = (A_1, j), j = 0$ or 1. Definitely, $x_i, x_k \notin B$ and $x_i, x_k \notin C$. **Case** (ia): B does not contain any of $x_{i-1}, x_{i+1}, ..., x_{k-1}$ in their generating set. Then $A \lor B \in C_W(L_n) \setminus I.$ $(A \lor B) \land C = [(A_1, j) \lor B] \land C = (A_1 \lor B) \land C = B \land C$ (As $C_W(L_n)$ is pseudo-0distributive) **Case (ib):** Suppose the atoms in B are exactly some of the atoms in θ_2 then $A \vee B \in$ $I \times C_2$ **Subcase** (ib₁): If C does not contain any of the atoms of θ_2 , then $(A \lor B) \land C = (\theta_3, j) \land C, j = 0 \text{ or } 1$ $= \theta_3 \wedge C = 0$ $B \wedge C = 0$ definitely. So, $(A \lor B) \land C = B \land C$. **Subcase** (ib₂): If C also contains exactly some of the atoms of θ_2 , then $(A \lor B) \land C = (\theta_4, j) = B \land C.$ **Case** (ic): Suppose the atoms in B are some in common with that of θ_2 and some outside and $A \vee B \in C_W(L_n) \setminus I$ Therefore, $(A \lor B) \land C = (A_1 \lor B) \land C$ (Since $C_W(L_n)$ is pseudo-0-distributive) $= B \wedge C$ **Case (ii):** Let $A \in C_W(L_n) \setminus I$. **Case (iia):** Let $B, C \in C_W(L_n) \setminus I$. $(A \lor B) \land C = B \land C$ is true as $C_W(L_n)$ is pseudo-0-distributive. **Case (iib):** Let $B \in I \times C_2$ and $C \in C_W(L_n) \setminus I$. Let $B = (B_1, j)$. $A \lor B = (A \lor B_1, j)$, if A contains exactly atoms inside θ_2 . Now, $(A \lor B) \land C = (A \lor B_1, j) \land C$ $= (B_1, j) \wedge C$, if C contains exactly some common atoms of θ_2 . $= B \wedge C$ (Since $A \wedge C = 0$) **Case (iic):** Let $B, C \in I \times C_2$. Then, $B = (B_1, j), C = (C_1, j)$ **Subcase** (iic₁): If A contains exactly some atoms of θ_2 , then $A \lor B = A \lor (B_1, j)$ $= (A \vee B_1, j)$ $(A \lor B) \land C = (A \lor B_1, j) \land (C_1, j)$ $= ((A \lor B_1) \land C_1, j)$ $= (B_1 \wedge C_1, j)$ $(B_1, j) \wedge (C_1, j)$ $= B \wedge C$ **Subcase** (iic₂): If A contains some atoms outside θ_2 that is no atoms inside $B \wedge C$ then $A \vee B \in C_W(L_n) \setminus I$ Therefore, $(A \lor B) \land C = (A \lor B) \land (C_1, j)$ $= (A \vee B_1) \wedge (C_1, j)$ $(B_1 \wedge C_1, j) = B \wedge C$ Therefore, we conclude that $[C_W(L_n)](I)$ is pseudo-0-distributive.

Example 2.6. Consider the intermediate interval $I = [a_4, a_{38}]$ in $C_W(L_4)$. On doubling this interval I, we get the lattice $[C_W(L_4)](I)$ which remains pseudo-0-distributive.

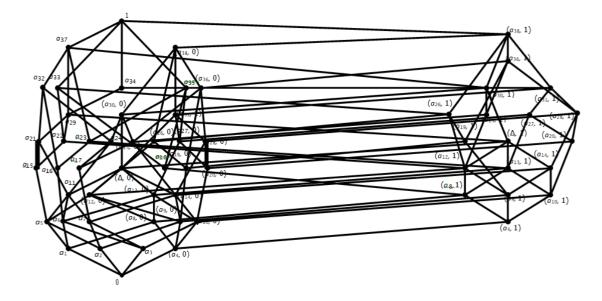


Figure 4: $[C_W(L_4)](I)$ where $I = [a_{4}, a_{38}]$

References

- [1] I Chajda and S Radeleczki. 0-conditions and tolerance schemes. *Acta Mathematica Universitatis Comenianae. New Series*, 72(2):177–184, 2003.
- [2] Alan Day. Doubling constructions in lattice theory. *Canadian journal of mathematics*, 44(2):252–269, 1992.
- [3] George Grätzer. *Lattice theory: foundation*. Springer Science & Business Media, 2011.
- [4] J C Varlet. A generalization of notion of pseudo-complementedness. Bulletin de la Société Royale des Sciences de Liège, 37:149–158, 1968.
- [5] A. Veeramani. A study on characterisations of some lattices. PhD thesis, Bharathidasan University, 2012.
- [6] Gradimir Vojvodić and Branimir Šešelja. On the lattice of weak congruence relations. *Algebra universalis*, 25(1):121–130, 1988.