$\overline{\mathrm{E} B}$
 The total vertex strong geodetic number of a graph
 ${ }^{1}$ C. Saritha and ${ }^{2}$ T.Muthu Nesa Beula,
 ${ }^{1}$ Register Number 20123182092003, Research Scholar, Department of Mathematics,
 Women's Christian College, Nagercoil - 629 001, India. email: saritha.c2012@gmail.com
 ${ }^{2}$ Assistant Professor, Department of Mathematics, Women's Christian College, Nagercoil - 629 001, India. email: tmnbeula@gmail.com
 Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India

Abstract

A vertex strong geodetic set S of x of G is called a total vertex strong geodetic set of G if $G[S]$ has no isolated vertex. The minimum cardinality of a total vertex strong geodetic set of G is called the total vertex strong geodetic number of G and is denoted by $t s g_{x}(G)$. Any total vertex strong geodetic set of cardinality $t s g_{x}(G)$ is called a $t s g_{x}$-set of G. Some of the standard graphs are determined. Necessary conditions for $t s g_{x}(G)$ to be n or $n-1$ are given for some vertex x in G. It is shown for every pair of integers a and b with $2 \leq a \leq b$, there exists a connected graph G such that $s g_{x}(G)=a$ and $t s g_{x}(G)=b$ for some vertex x in G, where $s g_{x}(G)$ is the vertex strong geodetic number of x of G. Keywords: strong geodetic number, vertex strong geodetic number, total vertex strong geodetic number geodetic number.

AMS Subject Classification: 05C12.

1. Introduction

By a graph $G=(V, E)$, we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic graph theoretic terminology, we refer to [4]. Two vertices u and v are said to be adjacent if $u v$ is an edge of G. Two edges of G are said to be adjacent if they have a common vertex. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G.

An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. An $x-y$ path of
length $d(x, y)$ is called geodesic. A vertex v is said to lie on a geodesic P if v is an internal vertex of P. The closed interval $I[x, y]$ consists of x, y and all vertices lying on some $x-y$ geodesic of G and for a non-empty set $S \subseteq V(G), I[S]=$ $\cup_{x, y \in S} I[x, y]$. A set $S \subseteq V(G)$ in a connected graph G is a geodetic set of G if $I[S]=V(G)$. The geodetic number of G, denoted by $g(G)$, is the minimum cardinality of a geodetic set of G. The geodetic concepts were studied in $[1,2,5,10-$ 14, 17-24].

Let $S \subset V(G)$ and $x \in V$ such that $x \notin S$. Let $I_{x}[y]$ be the set of all vertices that lies in x - y geodesic including x and y, where $` y \in S$ and $I_{x}[S]=\bigcup_{y \in S} I_{x}[y]$. Then S is said to be an x-geodetic set of G, if $I_{x}[S]=V$. The x-geodetic concept were studied in [10]. Let x be a vertex of G and $S \subseteq V-\{x\}$. Then for each vertex $y \in S$, $x \neq y$. Let $\tilde{g}_{x}[y]$ be a selected fixed shortest $x-y$ path. Then we set $\tilde{I}_{x}[S]=$ $\left\{\tilde{g}_{x}(y): y \in S\right\}$ and let $V\left(\tilde{I}_{x}[S]\right)=\underset{p \in \tilde{I}_{x}[S]}{V}(P)$. If $V\left(\tilde{I}_{x}[S]\right)=V$ for some $\tilde{I}_{x}[S]$ then the set S is called a vertex strong geodetic set of G. The minimum cardinality of a vertex strong geodetic set of G is called the vertex strong geodetic number of G and is denoted by $s g_{x}(G)$. These concepts were studied in [3, 5, 6-9, 16, 25]. The following theorem is used in sequel.

Theorem 1.1[25] Every extreme vertex of G other than the vertex x (whether x is extreme or not) belongs to every x-geodetic set for any vertex x in G.

2. The Total Vertex Strong Geodetic Number of a Graph

Definition 2.1. A vertex strong geodetic set S of x of G is called a total vertex strong geodetic set of G if $G[S]$ has no isolated vertex. The minimum cardinality of a total vertex strong geodetic set of G is called the total vertex strong geodetic number of G and is denoted by $t s g_{x}(G)$. Any total vertex strong geodetic set of cardinality $t s g_{x}(G)$ is called a $t s g_{x}$-set of G.

Example 2.2. For the graph G given in Figure 2.1, $t s g_{x}$-sets and $t s g_{x}(G)$ for each vertex x is given in the following Table 2.1.

Figure 2.1

Table 2.1

Vertex	$t s g_{x}$-sets	$t s g_{x}(G)$
v_{1}	$\left\{v_{2}, v_{3}\right\},\left\{v_{5}, v_{6}\right\}$	2
v_{2}	$\left\{v_{1}, v_{2}, v_{3}, v_{5}, v_{6}\right\}$	5
v_{3}	$\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$	4
v_{4}	$\left\{v_{1}, v_{2}, v_{3}, v_{6}, v_{7}\right\}$	5
v_{5}	$\left\{v_{1}, v_{2}, v_{3}, v_{7}\right\}$	4
v_{6}	$\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$	4
v_{7}	$\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$	5

Observation 2.3. Let x be any vertex of a total graph G.
(i) If $y \neq x$ be a simplicial vertex of G, then y belongs to every total x - vertex strong geodetic set of G.
(ii) The eccentric vertices of x belong to every total x-vertex strong geodetic set of G.
(iii) For a total graph of order $n, 2 \leq t s g_{x}(G) \leq n$.

Theorem 2.4. For the path $G=P_{n}(n \geq 3)$,
$t s g_{x}(G)=\left\{\begin{array}{l}2, \text { if } x \text { is an end vertex of } G \\ 4, \text { if } x \text { is a cut vertex of } G\end{array}\right.$
Proof. Let P_{n} be $v_{1}, v_{2}, \ldots, v_{n}$. If $x=v_{1}$, then $S=\left\{v_{n}\right\}$ is a $s g_{x}$-set of G. Since $G[S]$ has isolated vertices, S is not a $t s g_{x}$-set of G and so $t s g_{x}(G) \geq 2$. Let $S_{1}=\left\{v_{n-1}, v_{n}\right\}$. Then S_{1} is a $t s g_{x}$-set of G so that $t s g_{x}(G)=2$. By the similar way, if $x=v_{n}$, then $\operatorname{ts} g_{x}(G)=2$. Let x be a cut vertex of G. Let $S=\left\{v_{1}, v_{2}, \ldots v_{n-1}\right.$,
$\left.v_{n}\right\}$ be the set of all end vertices and support vertices of G. Then by Theorem S is a subset of every total vertex strong geodetic set of G and so $t s g_{x}(G) \geq 4$. Now S is a $t s g_{x}$-set of G so that $t s g_{x}(G)=4$.
Theorem 2.5. For the cycle $G=C_{n}(n \geq 4), t s g_{x}(G)=2$ for every $x \in G$.
Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Without loss of generality, let us assume $x=v_{1}$.
Case (i): Let n be even. Let $n=2 k(k \geq 2)$. Then v_{k+1} is the eccentric vertex of v_{1}. $G[S]$ has isolated vertices, since $\left\{v_{k+1}\right\}$ is not a $t s g_{x}$-set of G so that $t s g_{x}(G) \geq 2$.

Let $S=\left\{v_{k+1}, v_{k+2}\right\}$. Then S is a $t s g_{x}$-set of G so that $t s g_{x}(G)=2$.

Case (ii): Let n be odd. Let $n=2 k+1(k \geq 2)$. Then $S=\left\{v_{k+1}, v_{k+2}\right\}$ is the eccentric vertices of $v_{1} . S$ is a subset of every $t s g_{x}$-set of G and so $t s g_{x}(G) \geq 2$. Since S is a $s g_{x}$-set of G and $G[S]$ has no isolated vertices, S is a $t s g_{x}$-set of G so that $\operatorname{tsg}_{x}(G)=2$.

Theorem 2.6. For the complete graph $G=K_{n}(n \geq 4)$, $t s g_{x}(G)=n-1$ for every $x \in G$.

Proof. Let x be a vertex of G. Let $S=V(G)-\{x\}$. Since every vertex of G is an extreme vertex of G, it follows from Observation S is the unique $t s g_{x}$-set of G so that $\operatorname{tsg}_{x}(G) \geq n-1 \quad$ for every $\quad x \quad$ in $\quad G$.

Theorem 2.7. For the fan graph $G=K_{1}+P_{n-1}(n \geq 5)$,
$t s g_{x}(G)=\left\{\begin{array}{l}n-1, \text { if } x \in V\left(K_{1}\right) \\ n-3, \text { if } x \text { is extreme vertex of } P_{n-1} \\ n-2, \text { if } x \text { is internal vertex of } P_{n-1}\end{array}\right.$
Proof. Let $V\left(K_{1}\right)=y$ and $V\left(P_{n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$.
Case (i): If $x=y$. Then $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a set of all eccentric vertices for x. By Observation. S is a subset of every $t s g_{x}$-set of G and so $t s g_{x}(G) \geq n-1$. Since $G[S]$ has no isolated vertices, S is a $t s g_{x}$-set of G so that $t s g_{x}(G)=n-1$.

Case (ii): If $x \in V\left(P_{n-1}\right)$. Let $x=v_{1}$. Then $S=\left\{v_{3}, v_{4}, \ldots, v_{n-1}\right\}$ are eccentric vertices for v_{1}. By Observation.2.3 (i) S is a subset of every $t s g_{x}$-set of G and so $t s g_{x}(G) \geq n-3$. Now S is a $s g_{x}$-set of G and $G[S]$ has no isolated vertices. Therefore S is a $t s g_{x}$-set of G so that $t s g_{x}(G)=n-3$. If $x=v_{n-1}$, by the similar way we can
prove that $t s g_{x}(G)=n-3$.

Case (iii): Let $x \in\left\{v_{2}, v_{3}, \ldots, v_{n-2}\right\}$. Without loss of generality, let us assume that $x=v_{2}$. Then $\left\{v_{1}, v_{n-1}\right\}$ is set of extreme vertices of G. By Observation 2.3 (i) $\left\{v_{4}, v_{5}, \ldots, v_{n-2}\right\}$ is the set of eccentric vertices of v_{2}. Then $\left\{v_{4}, v_{5}, \ldots, v_{n-2}\right\}$ is a subset of every $t s g_{x}$-set of G. Let $S^{\prime}=\left\{v_{1}, v_{2}, v_{4}, v_{5}, \ldots, v_{n-2}, v_{n-1}\right\}$. Then S^{\prime} is a $s g_{x}$-set of G but $G\left[S^{\prime}\right]$ has isolated vertex. Therefore $S^{\prime} \cup\{y\}$ is a $t s g_{x}$-set of G so that $t s g_{x}(G)=n-2$.

Theorem 2.8. For the wheel graph $G=K_{1}+C_{n-1}(n \geq 5)$,

$$
t s g_{x}(G)=\left\{\begin{array}{l}
n-1, \text { if } x \in v_{1} \\
n-3, \text { if } x \in V\left(C_{n-1}\right)
\end{array}\right.
$$

Proof. Let $V\left(K_{1}\right)=y$ and $V\left(C_{n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$.
Case (i): Let $x=y$. Then $S=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ is a set of all eccentric vertices for x. By Observation 2.3 (i) S is a subset of every $t s g_{x}$-set of G and so $t s g_{x}(G) \geq n-1$. Now, S is a $s g_{x}$-set of G and $G[S]$ has no isolated vertices. Therefore S is a $t s g_{x}$-set of G so that $t s g_{x}(G)=n-1$.

Case (ii): Let $x \in V\left(C_{n-1}\right)$. Without loss of generality, let us assume that $x=v_{1}$. Then $S=\left\{v_{3}, v_{4}, \ldots, v_{n-1}\right\}$ are eccentric vertices of G. By Observation 2.3 (i) S is a subset of every $t s g_{x}$-set of G and so $t s g_{x}(G) \geq n-3$. Now S is a $s g_{x}$-set of G and $G[S]$ has no isolated vertices. Therefore S is a $t s g_{x}$-set of G so that $t s g_{x}(G)=n-$ 3.

Theorem 2.9. For the star graph $G=K_{1, n-1}(n \geq 3)$,
$t s g_{x}(G)=\left\{\begin{array}{l}n-1, \text { if } x \text { is end vertex of } G \\ n, \text { if } x \text { is the cut vertex of } G\end{array}\right.$ for every $x \in G$.
Proof. Let y be the cut vertex of G and $S=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ is a set of all eccentric vertices of G. Let $x=y$ is a set of all eccentric vertices for x. By Observation S is a subset of every $t s g_{x}$-set of G and so $t s g_{x}(G) \geq n-1$. Since $G[S]$ has isolated vertices, S is not a $s g_{x}$-set of G and so $t s g_{x}(G)=n$. Then $S=V(G)$ is the unique $t s g_{x}$-set of G so that $t s g_{x}(G)=n$ for every vertex x in G.

Let $x \in\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ without loss of generality, let us assume that $x=v_{1}$. Then $S=S-\{x\}$ is a subset of every $t s g_{x}$-set of G and so $t s g_{x}(G) \geq n-2$. Since $G\left[S_{1}\right]$ has isolated vertices, S_{1} is not a $s g_{x}$-set of G and so $t s g_{x}(G) \geq n-1$. Let $S_{2}=S_{1} \cup\{y\}$. Then S_{2} is a $t s g_{x}$-set of G so that $t s g_{x}(G)=n-1$.

Theorem 2.10. For the double star graph $G=B_{r, s}(r, s \geq 2)$,
$t s g_{x}(G)=\left\{\begin{array}{c}n, \text { if } x \text { is a cut vertex of } G \\ n-1, \text { if } x \text { is an end vertex of } G\end{array}\right.$.
Proof. Let $X=\{x, y\}$ be the set of cut vertices of G and $Z=\left\{y_{1}, y_{2}, \ldots, y_{r}\right\} \cup=$ $\left\{z_{1}, z_{2}, \ldots, z_{s}\right\}$ be the end vertices of G. Let $x \in X$. Then Z is a subset of every $t s g_{x^{-}}$ set of G and so $t s g_{x}(G) \geq n-1$. Since $G[S]$ has isolated vertices, S is not a $s g_{x}$-set of G and so $t s g_{x}(G) \geq n$. Then $S=V(G)$ is the unique $t s g_{x}$-set of G so that $\operatorname{ts} g_{x}(G)=n$. Let $x \in Z$ without loss of generality, let us assume that $x=x_{1}$. Then $S_{1}=S-\{x\}$ is a subset of every $\operatorname{ts} g_{x}$-set of G and so $t s g_{x}(G) \geq n-1$. Let $S_{2}=$ $S_{1} \cup X$. Then S_{2} is a $s g_{x}$-set of G. Since $G\left[S_{2}\right]$ has no isolated vertices, S_{2} is a $t s g_{x}$-set of G so that $t s g_{x}(G)=n-1$.

Theorem 2.11. For the Peterson graph $G, t s g_{x}(G)=6$ for every $x \in G$.
Proof. Case (i) Let $x \in\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Without loss of generality, let us assume that $x=v_{1}$. Then $S=\left\{v_{2}, v_{5}, v_{7}, v_{8}, v_{9}, v_{10}\right\}$ is a set of all eccentric vertices of x. By Observation (ii) S is a subset of every $t s g_{x}$-set of G and so $t s g_{x}(G) \geq 6$. Since S is a $s g_{x}$-set of G and $G[S]$ has no isolated vertices. Then S is a $t s g_{x}$-set of G so that $t s g_{x}(G)=6$.

Case (ii) Let $x \in\left\{v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\}$. Without loss of generality, let us assume $x=v_{6}$. Then $S=\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{8}, v_{9}\right\}$ is the set of all eccentric vertices of x. By Observation (ii) S is a subset of every $t s g_{x}$-set of G and so $t s g_{x}(G) \geq 6$. Since S is a $s g_{x}$-set of G and $G[S]$ has no isolated vertices. Then S is a $t s g_{x}$-set of G so that $t s g_{x}(G)=6$.

Figure 2.2

Theorem 2.12. For every pair of integers a and b with $2 \leq a \leq b$, there exists a connected graph G such that $s g_{x}(G)=a$ and $t s g_{x}(G)=b$ for some x in G.

Proof. For $a=b$, let $G=K_{a+1}$. Then by Theorems $s g_{x}(G)=t s g_{x}(G)=a$ for all $x \in V(G)$. So let $2 \leq a<b$. Let $V\left(\bar{K}_{2}\right)=\{y, z\}$ and $V\left(\bar{K}_{a-1}\right)=\left\{z_{1}, z_{2}, \ldots, z_{a-1}\right\}$. Let $P_{i}: u_{i}, v_{i}(1 \leq i \leq b-a+1)$ be a copy of path on two vertices. Let G be the graph obtained from $\bar{K}_{2}, \bar{K}_{a-1}$ and $P_{i}(1 \leq i \leq b-a+1)$, by introducing the edges $y z_{i}(1 \leq i \leq a-1), y u_{i}$ and $z v_{i}(1 \leq i \leq b-a+1)$. The graph G is shown in Figure 2.3. Let $x=z$. Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{a-1}\right\}$.

First we prove that $s g_{x}(G)=a$. By Theorem $1.1, Z$ is a subset of $s g_{x}$-set of G and so $s g_{x}(G) \geq a-1$. Since Z is a $s g_{x}$-set of $G, \operatorname{s} g_{x}(G) \geq a$. Let $S=Z \cup\{y\}$. Then Z is a $s g_{x}$-set of G so that $s g_{x}(G)=a$.

Next we prove that $t s g_{x}(G)=b$. Now $Z \cup\{y\}$ is a subset of every $t s g_{x}$-set of G. We fix $x-v_{1}-u_{1}-y-z_{1}$ geodesic. Hence it follows that every $t s g_{x}$-set of G contains each $u_{i}(2 \leq i \leq b-a+1)$ and so $t s g_{x}(G) \geq a-b-a=b$. Let $S_{1}=S \cup\left\{u_{2}, u_{3}, \ldots, u_{b-a+1}\right\}$. Then S_{1} is a $t s g_{x}$-set of G so that $\operatorname{ts} g_{x}(G)=b$.

Figure 2.3

Theorem 2.13. For a positive integers r, d and $l \geq 3$ with $r \leq d \leq 2 r$, there exists a connected graph G with $\operatorname{radG}=r, \operatorname{diam} G=d$ and $t s g_{x}(G)=l$ for some vertex x in G.

Proof. Let $r=1$. Then $d=1$ or 2 . If $d=1$, let $G=K_{l+1}$ satisfies the given condition
for any vertex. If $d=2$, let $G=K_{1, l-1}$. Let x be the cut vertices of G. By Theorem 2.9
$t s g_{x}(G)=l$ for the cut vertex x in G. Let $r \geq 2$. Let $C_{2 r}: v_{1}, v_{2}, \ldots, v_{2 r}, v_{1}$ be a cycle of order $2 r$ and let $P_{d-r+1}: u_{0}, u_{1}, u_{2}, \ldots, u_{d-r}$ be a path of length $d-r+1$. Let H be the graph obtained from $C_{2 r}$ and P_{d-r+1} by identifying v_{1} in $C_{2 r}$ and u_{0} in P_{d-r+1}. Now add $l-2$ vertices $w_{1}, w_{2}, \ldots, w_{l-2}$ to H and join each $w_{i}(1 \leq i \leq l-2)$ to the vertex u_{d-r+1} and obtain the graph G is shown in Figure 2.4. Then G has radius r and diameter d. Let $x=v_{r+1}$. Let $M=\left\{u_{d-r}, w_{1}, w_{2}, \ldots, w_{l-2}\right\}$ be the cut vertices of G. Then M is a subset of every $t s g_{x}$-set of G and so $t s g_{x}(G) \geq l-1$. Since $G[M]$ has isolated vertices, M is not a $t s g_{x}$-set of G. Let $M_{1}=M \cup\left\{u_{d-r-1}\right\}$. Then M is a $t s g_{x}$-set of G so that $t s g_{x}(G)=l$.

References

[1] D. Anusha, J. John and S. Joseph Robin, The geodetic hop domination number of complementary prisms, Discrete Mathematics, Algorithms and Applications, 13(6), (2021),2150077
[2] S. Beulah Samli, J. John and S. Robinson Chellathurai, The double geo chromatic number of a graph, Bulletin of the International Mathematical virtual Institute, 11(1), 2021, 25-38.
[3] L. G. Bino Infanta and D. Antony Xavier, Strong upper geodetic number of graphs, Communications in Mathematics and Applications 12(3), (2021)737-748.
[4] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990
[5] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39, (2002), 1-6.
[6] V. Gledel, V. Irsic, and S. Klavzar, Strong geodetic cores and cartesian product graphs, arXiv:1803.11423 [math.CO] (30 Mar 2018).
[7] Huifen Ge, Zao Wang-and Jinyu Zou Strong geodetic number in some networks, Journal of Mathematical Resarch-11(2), (2019), 20-29.
[8] V. Irsic, Strong geodetic number of complete bipartite graphs and of graphs with specified diameter, Graphs and Combin. 34 (2018) 443-456.
[9] V. Irsic, and S. Klavzar, Strong geodetic problem on Cartesian products of graphs, RAIRO Oper. Res. 52 (2018) 205-216.
[10] J.John, The forcing monophonic and the forcing geodetic numbers of a graph, Indonesian Journal of Combinatorics .4(2), (2020) 114-125.
[11] J. John and D.Stalin,The edge geodetic self decomposition number of a graph, RAIRO Operations Research, RAIRO- 55,(2021), S1935-S1947
[12] J. John and D.Stalin, Distinct edge geodetic decomposition in Graphs, Communication in Combinatorics and Optimization, 6 (2),(2021), 185-196
[13] J. John, On the vertex monophonic, vertex geodetic and vertex Steiner numbers of graphs, Asian-European Journal of Mathematics 14 (10), (2021), 2150171 [14] J.John, and V. Sujin Flower, The edge-to-edge geodetic domination number of a graph, Proyecciones journal of Mathematics, 40(3), (2021), 635-658.
[15] P. Manuel, S. Klavzar, A. Xavier, A. Arokiaraj, and E. Thomas, Strong edge geodetic problem in networks, Open Math. 15 (2017) 1225-1235.
[16] A.L. Merlin Sheela, J.John and M. Antony, The edge-to-vertex strong geodetic number of a graph, 12(1), (2023), 1243-1251.
[17] A. P. Santhakumaran and J. John, Edge Geodetic Number of a Graph, Journal of Discrete Mathematical Sciences and Cryptography 10(3), (2007) ,415-432.
[18] A. P. Santhakumaran and J. John, The edge Steiner number of a graph, Journal of Discrete Mathematical Sciences and Cryptography, 10 (2007), 677-696.
[19] A. P. Santhakumaran, and J. John, The upper edge geodetic number and the forcing edge geodetic number of a graph, Opuscula Mathematica 29, 4, (2009), 427-441.
[20] A. P. Santhakumaran, P. Titus and J. John, The upper connected geodetic number and the forcing connected geodetic number of a graph, Discrete Applied Mathematics, 157 (7), (2009), 1571-1580.
[21] A. P. Santhakumaran, P. Titus and J. John, On the connected geodetic number of a graph, Journal of Comb. Math. and Comb. Comp., 69, (2009), 219-229.
[22] A.P. Santhakumaran and J. John, The connected edge geodetic number of a graph, SCIENTIA Series A: Mathematical Sciences, 17, (2009), 67-82.
[23] A.P. Santhakumaran and J. John, On the forcing geodetic and forcing Steiner numbers of a graph, Discussiones Mathematicae Graph Theory,(2011),31, 611-

624
[24] A. P. Santhakumaran and J. John, The upper connected edge geodetic number of a graph, Filomat, 26(1), (2012), 131-141.
[25]C. Saritha and T.Muthu Nesa Beula, The vertex strong geodetic number of a graph (Communicated)
[26] D. Stalin and J. John, The forcing edge geodetic domination number of a graph, Journal of Advanced Research in Dynamical and Control Systems, 10(4),(2018), 172-177.
[27] D. Stalin and J. John, Edge geodetic dominations in graphs, International Journal of Pure and Applied Mathematics, 116,(22),(2017), 31-40.

