

Investigation on rg-Closed Type Sets in TOS G. Sravani¹, G.Srinivasa Rao²*

¹Research Scholar, Department of Mathematics & Statistics, School of Applied Science & Humanities, VFSTR Deemed to be University, Vadlamudi, Guntur (Dt.), Andhra Pradesh,

India.

²Department of Mathematics & Statistics, School of Applied Science & Humanities, VFSTR Deemed to be University, Vadlamudi, Guntur (Dt.), Andhra Pradesh, India. Email: Email: ¹sravanigandikota1998@gmail.com, ²gsrinulakshmi77@gmail.com

Abstract

This article introduces a new type of sets known as rg-closed sets in TOSs. rg-open sets in TOS generalised closed sets to form this new class. This new class strictly falls between the classes of closed sets and rg-closed collections in TOS.

Keywords: TOS, rg-closed set (irg, drg, brg-closed sets), r^*g^* -closed set (ir g^* , dr g^* , br g^* -closed sets).

AMS Classification: 55XX22

1. Introduction

Leopoldo Nachbin conducted the first research on TOSs [1]. In 1970, the superclass of sets known as $r^* g^*$ -closed sets was invented by Levine [19]. A brand-new category of sets [14] introduced by MKRS Veera Kumar. Which should come before the r^*g^* -closed sets and closed set classes, respectively. In [15], presented the research on i-closed, d-closed, and b-closed sets for the first time in 2001.

A Topological ordered space (TOS) is known as a triple (X, τ, \leq), in which X is a non-empty set, τ is a topology on X, and \leq is a partial order on X[5].

Definition 1.1: For any $\alpha \in X$, { $\beta \in X / \alpha \leq \beta$ } will be represented by $[\alpha, \rightarrow]$. If P = i(P), where i(P) = $\bigcup_{\alpha \in P} [\alpha, \rightarrow]$, then "a subset P of a" TOS (X, τ, \leq) is referred to as an increasing set [5, 6, 7].

Definition 1.2: For any $\alpha \epsilon X$, { $\beta \epsilon X / \beta \le \alpha$ } will be represented by [\leftarrow , α]. If P = d(P), where d(P) = $\bigcup_{\alpha \epsilon P} [\leftarrow, \alpha]$, then "a subset P of a" TOS (X, τ, \le) is known to be decreasing[5, 6, 7].

An increasing (resp. a decreasing) set is the complement of a decreasing (resp. an increasing) set. C(P) denotes the complement of 'P' in X.

icl (P) = \cap {F/F is an increasing closed subset of X containing P with F = i(F)}.

dcl (P) = \cap {F/F is a decreasing closed subset of X containing P with F = d(F)}.

bcl (P) = \cap {F/F is a closed subset of X containing P with F=i(F)=d(F)}.

IO(X) (resp. DO(X), BO(X)) represents the set of all increasing (or decreasing, both increasing and decreasing) open subsets of a $TOS(X, \tau, \leq)$.

For a subset P of a space(X, τ, \leq), cl(P) (resp. dcl(P), bcl(P)) denote the increasing (resp. decreasing, both increasing and decreasing) closure of P[5, 6, 7].

2. TOS with rg-closed sets

Definition 2.1: A topological space (X, τ) has a subset P is referred to as rg-closed [29] set if $cl(P) \subseteq R$ whenever $P \subseteq R$ and R is regular open in (X, τ) .

Definition 2.2: A topological space (X, τ) has a subset P is known as "r*g*-closed set" [29], if rcl(P) \subseteq R whenever P \subseteq R and R is g-open in (X, τ) .

Theorem 2.3: Every "r*g*-closed set" is a "rg-closed set".

Proof: suppose $P \subseteq R$ and R is "regular open". Now, R is regular open implies R is open.

W. k. t every closed set is a generalized closed set(g-closed set).

So, every open set is a "g-open set".

Since, R is open we have R is "g-open".

Therefore, $rcl(P) \subseteq R$, whenever $P \subseteq R$ and R is g-open.

Since $P \subseteq R$, there exists an open set G we have $P \subseteq G \subseteq cl(G) \subseteq R$.

Since $P \subseteq cl(G) \Rightarrow cl(P) \subseteq cl(cl(G)) = cl(G) \subseteq R$. $\Rightarrow cl(P) \subseteq R$. Therefore $cl(P) \subseteq R$, whenever $P \subseteq R$ and R is regular open.

The following illustration demonstrates that an rg-closed set does not always have to be an r^*g^* -closed set.

Example 2.4: Let $X = \{\alpha, \beta, \gamma\}$, $\tau = \{\emptyset, X, \{\alpha\}, \{\beta\}, \{\alpha, \beta\}\}$ and $\leq = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta), (\beta, \gamma), (\alpha, \gamma)\}$. (X, τ, \leq) is a TOS. r*g*-closed sets are $\emptyset, X, \{\gamma\}, \{\beta, \gamma\}, \{\alpha, \gamma\}$. rg-closed sets are $\emptyset, X, \{\gamma\}, \{\alpha, \beta\}, \{\beta, \gamma\}, \{\alpha, \gamma\}$. Let $P = \{\alpha, \beta\}$. P is an rg-closed set but not a r*g*-closed set.

3. Results between i(r*g*), d(r*g*) and b(r*g*) closed type sets

The following definitions are provided.

Definition 3.1: If $ircl(P) \subseteq R$ whenever $P \subseteq R$ and R is g-open in (X, τ) , then a subset P of (X, τ, \leq) is known as "i(r*g*)-closed set".

Definition 3.2: if drcl (P) \subseteq R whenever P \subseteq R and R is g-open in (*X*, τ), then a subset P of (*X*, τ , \leq) is called d(r*g*)-closed set.

Definition 3.3: if brcl (P) \subseteq R whenever P \subseteq R and R is g-open in (*X*, τ), then a subset P of (*X*, τ , \leq) is called b(r*g*)-closed set.

Theorem 3.4: Every i(r*g*)-closed set is an i(rg)-closed set.

Proof: Every r^*g^* -closed set is also a rg-closed set, as far as we can tell. Every closed set in $i(r^*g^*)$ is likewise closed in i(rg), therefore this holds. The following illustration demonstrates that a set need not be $i(r^*g^*)$ -closed in order to be i(rg)-closed.

Example 3.5: Let $X = \{ \alpha, \beta, \gamma \}, \tau = \{ \emptyset, X, \{ \alpha \}, \{ \alpha, \beta \}, \{ \alpha, \gamma \} \}$ and $\leq = \{ (\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta), (\beta, \gamma) \}$. Clearly (X, τ, \leq) is a TOS. $i(r^*g^*)$ -closed sets are $\emptyset, X, \{ \beta, \gamma \}$. i(rg)-closed sets are $\emptyset, X, \{ \gamma \}, \{ \beta, \gamma \}$. Let $P = \{ \gamma \}$. P is i(rg)-closed set but not i(r^*g^*)-closed set. **Theorem 3.6:** Any set that is d(r^*g^*)-closed is d(rg)-closed.

Proof: We know, every r^*g^* -closed set is an rg-closed set. Thus, every $d(r^*g^*)$ -closed set is a d(rg)-closed set. The following illustration demonstrates that a d(rg)-closed set need not always be a $d(r^*g^*)$ -closed set.

Example 3.7: Let $X = \{\alpha, \beta, \gamma\}, \tau = \{\emptyset, X, \{\alpha, \beta\}\}$ and $\leq = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta), (\alpha, \gamma)\}$. (X, τ, \leq) is a TOS. $\emptyset, X, \{\alpha, \gamma\}$ are d(r*g*)-closed sets. $\emptyset, X, \{\alpha\}, \{\alpha, \beta\}, \{\alpha, \gamma\}$ are d(rg)-closed sets. Let $P = \{\alpha\}$. P is a d(rg)-closed set but not a d(r*g*)-closed set. **Theorem 3.8:** Every b(r*g*)-closed set is a b(rg)-closed set. **Proof:** To the best of our knowledge, every set that is r^*g^* -closed is also rg-closed. A b(rg)closed set is equivalent to a b(r^*g^*)-closed set. A b(rg)-closed set need not necessarily be a b(r^*g^*)-closed set, as the following example shows.

Example 3.9: Let $X = \{\alpha, \beta, \gamma\}, \tau = \{\emptyset, X, \{\alpha\}, \{\alpha, \beta\}, \{\alpha, \gamma\}\}$ and $\leq = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta), (\gamma, \beta)\}$. Clearly, (X, τ, \leq) is a TOS. \emptyset, X are $b(r^*g^*)$ -closed sets. $\emptyset, X, \{\alpha, \beta\}$ are b(rg)-closed sets. Let $P = \{\alpha, \beta\}$. P is a b(rg)-closed set but not a $b(r^*g^*)$ -closed set.

Theorem 3.10: Every b(r*g*)-closed set is i(r*g*)-closed set.

Proof: As far as we know, a balanced set is always an increasing set. Then, all $b(r^*g^*)$ -closed sets are $i(r^*g^*)$ -closed sets. The following illustration demonstrates that $i(r^*g^*)$ -closed set need not always be a $b(r^*g^*)$ -closed set.

Example 3.11: Let $X = \{\alpha, \beta, \gamma\}, \tau = \{\emptyset, X, \{\alpha\}, \{\alpha, \gamma\}\}$ and $\leq = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\beta, \alpha), (\gamma, \beta), (\gamma, \alpha)\}$. (X, τ, \leq) is a TOS. $b(r^*g^*)$ -closed sets are \emptyset, X . $i(r^*g^*)$ -closed sets are $\emptyset, X, \{\alpha, \beta\}$. Let $P = \{\alpha, \beta\}$. P is $i(r^*g^*)$ -closed set but not be a $b(r^*g^*)$ -closed set.

Theorem 3.12: Every "b(r*g*)-closed set" is a "d(r*g*)-closed set".

Proof: As we know, "Every balanced set is a decreasing set". Any set that is "b(r*g*)-closed" is also a "d(r*g*)-closed". The following illustration demonstrates that a "d(r*g*)-closed" set does not always have to be a "b(r*g*)-closed set".

Example 3.13: Let $X = \{\alpha, \beta, \gamma\}, \tau = \{\emptyset, X, \{\alpha\}, \{\alpha, \gamma\}\}$ and $\leq = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\beta, \alpha), (\gamma, \beta), (\gamma, \alpha)\}$. Clearly, (X, τ, \leq) is a TOS. $b(r^*g^*)$ -closed sets are \emptyset, X . $d(r^*g^*)$ -closed sets are $\emptyset, X, \{\beta, \gamma\}$. Let $P = \{\beta, \gamma\}$. P is a $d(r^*g^*)$ -closed set but not a $b(r^*g^*)$ -closed set.

Theorem 3.14: $i(r^*g^*)$ -closed and $d(r^*g^*)$ -closed are independent notions. The following example will demonstrate this.

Example 3.15: Let $X = \{\alpha, \beta, \gamma\}, \tau = \{\emptyset, X, \{\alpha\}, \{\alpha, \beta\}, \{\alpha, \gamma\}\}$ and $\leq = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta), (\alpha, \gamma)\}$. Clearly, (X, τ, \leq) is a TOS. $i(r^*g^*)$ -closed sets are \emptyset, X . $d(r^*g^*)$ -closed sets are $\emptyset, X, \{\beta, \gamma\}$. Let $P = \{\beta, \gamma\}$. P is a $d(r^*g^*)$ -closed set but not an $i(r^*g^*)$ -closed set.

Example 3.16: Let $X = \{\alpha, \beta, \gamma\}, \tau = \{\emptyset, X, \{\alpha\}, \{\alpha, \beta\}, \{\alpha, \gamma\}\}$ and $\leq = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\beta, \alpha), (\gamma, \beta), (\gamma, \alpha)\}$. (X, τ, \leq) is a TOS. $i(r^*g^*)$ -closed sets are $\emptyset, X, \{\beta, \gamma\}$. $d(r^*g^*)$ -closed sets are \emptyset, X . Let $P = \{\beta, \gamma\}$. P is $i(r^*g^*)$ -closed set but not be a $d(r^*g^*)$ -closed set.

Theorem 3.17: Every b(rg)-closed set is an i(rg)-closed set.

Proof: As we know, a balanced set is always an increasing set. Hence, all b(rg)-closed sets are i(rg)-closed sets. Generally, the next example demonstrates that i(rg)-closed sets do not have to be b(rg)-closed sets.

Example 3.18: Let $X = \{\alpha, \beta, \gamma\}, \tau = \{\emptyset, X, \{\alpha\}, \{\alpha, \gamma\}\}$ and $\leq = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta), (\gamma, \beta)\}$. Clearly, (X, τ, \leq) is a TOS. b(rg)-closed sets are $\emptyset, X, \{\alpha, \beta\}, i(rg)$ -closed sets are $\emptyset, X, \{\beta\}, \{\alpha, \beta\}, \{\beta, \gamma\}$. Let $P = \{\alpha\}$. P is i(rg)-closed set but not a b(rg)-closed set.

Theorem 3.19: Every b(rg)-closed set is a d(rg)-closed set.

Proof: Every balanced set is a decreasing set, as we are aware. Every b(rg)-closed set is a d(rg)-closed set, hence this is true. The following illustration demonstrates that a d(rg)-closed set does not always have to be a b(rg)-closed set.

Example 3.20: Let $X = \{\alpha, \beta, \gamma\}$, $\tau = \{\emptyset, X, \{\alpha\}, \{\alpha, \gamma\}\}$ and $\leq = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\beta, \gamma), (\alpha, \gamma)\}$. Clearly (X, τ, \leq) is a TOS. "b(rg)-closed sets" are \emptyset , X. "d(rg)-closed sets" are \emptyset , X, $\{\beta\}, \{\alpha, \beta\}$. Let $P = \{\beta\}$. P is a "d(rg)-closed set" but not a "b(rg)-closed set".

Theorem 3.21: i(rg)-closed and d(rg)-closed are distinct concepts. In this case, demonstrated by the example that follows.

Example 3.22: Let $X = \{\alpha, \beta, \gamma\}, \tau = \{\emptyset, X, \{\alpha\}, \{\beta\}, \{\alpha, \beta\}\}$ and $\leq = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta), (\alpha, \gamma)\}$. (X, τ, \leq) is a TOS. "i(rg)-closed sets" are $\emptyset, X, \{\gamma\}, \{\beta, \gamma\}$. "d(rg)-closed sets" are $\emptyset, X, \{\alpha, \beta\}, \{\alpha, \gamma\}$. Let $P = \{\alpha, \gamma\}$. P is a "d(rg)-closed set" but not "i(rg)-closed set". Let $Q = \{\gamma\}$. Q is "i(rg)-closed set" but not a "d(rg)-closed set".

4. TOS with irg-closed type sets

Theorem 4.1: A set $P \cup Q$ is "irg-closed" if P and Q are "irg-closed sets".

Proof: If $P \cup Q \subseteq R$ and R is "regular-open", then $P \subseteq R$ and $Q \subseteq R$.

But P and Q are "irg-closed" and therefore $icl(P) \subseteq R$ and $icl(Q) \subseteq R$.

Therefore, $(icl (P) \cup icl (Q)) \subseteq R \Longrightarrow icl (P \cup Q) \subseteq R$.

Hence, $P \cup Q$ is irg-closed.

Example 4.2: Let $X = \{\alpha, \beta, \gamma\}$, $\tau = \{\emptyset, X, \{\alpha\}, \{\beta\}, \{\alpha, \beta\}\}$ and $\leq = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta)\}$. (X, τ, \leq) is a TOS. Take, $P = \{\gamma\}, Q = \{\alpha, \beta\}$. If $(P \cup Q) = \{\gamma\} \cup \{\alpha, \beta\} = \{\alpha, \beta, \gamma\} \subseteq R = X$ and R is regular-open, then $\{\gamma\} \subseteq R$ and $\{\alpha, \beta\} \subseteq R$. But P and Q are irg-closed and therefore icl $(P) \subseteq R$ and icl $(Q) \subseteq R$. Therefore, (icl $(P) \cup icl (Q)) \subseteq R$, and hence icl $(P \cup Q) \subseteq R$. Hence $P \cup Q$ is irg-closed.

Theorem 4.3: Suppose that $Q \subseteq P \subseteq X$, Q is an "ig-closed open" subset of X and Q is an "irg-closed set" to P. Then, Q is "irg-closed" to X.

Proof: Let $Q \subseteq R$ and let R be regular-open. We have $Q \subseteq (P \cap R)$.

But Q is an irg-closed set relative to P.

Hence $icl_P(Q) \subseteq (P \cap R)$. $\rightarrow (1)$

Note that $P \cap R$ is regular-open in P.

```
But icl_P(Q) = icl(Q) \cap P \longrightarrow (2)
```

From (1) and (2),

 $(P \cap icl(Q)) \subseteq (P \cap R)$

Consequently $P \cap icl(Q) \subseteq R$. Hence, $P \cap (icl(Q) \cup C(icl(Q))) \subseteq R \cup C(icl(Q))$.

That is $P \cap X \subseteq (R \cup C(icl(Q)))$.

So $P \subseteq (R \cup C(icl(Q))) = G$, say \rightarrow (3)

But then G is an open set. Since P is "ig-closed" in X, from (3) we have

$$icl(P) \subseteq (R \cup C(icl(Q))) = G \longrightarrow (4)$$

But
$$icl(Q) \subseteq icl(P) \rightarrow (5)$$

From (4) and (5) we have $icl(Q) \subseteq (R \cup C(icl(Q)))$.

Hence $icl(Q) \subseteq R$ because $icl(Q) \cap C(icl(Q)) = \emptyset \implies Q$ is irg-closed relative to X.

Corollary 4.4: Let P be an "ig-closed", open set. Suppose that Q is an "i-closed set". Then P \cap Q is an "irg-closed set" relative to X.

Proof: We have that $P \cap Q$ is closed in P. Hence $icl(P \cap Q) = P \cap Q$ in P. Let $P \cap Q \subseteq R$, Where R is regular-open in P. That is $icl(P \cap Q) \subseteq R$. Hence $P \cap Q$ is an irg-closed set in the ig-closed P. By the theorem [4.3], $P \cap Q$ is an irg-closed set relative to X.

Theorem 4.5: If a set P is "irg-closed" then $icl(P)\P$ contains no nonempty "regular-closed set".

Proof: Suppose that P is "irg-closed". Let S be a "regular-closed" subset of $icl(P)\P$.

Then $S \subseteq (icl(P) \cap C(P))$ and so $P \subseteq C(S)$. But P is irg-closed.

Therefore $icl(P) \subseteq C(S)$. \rightarrow (1)

Consequently $S \subseteq C(icl(P)) \rightarrow (2)$

We have already $S \subseteq icl(P) \rightarrow (3)$

From (2) and (3), $S \subseteq (icl(P) \cap C(icl(P))) = \emptyset$

Thus $S = \emptyset$. Therefore icl(P)\P contains no nonempty "regular-closed set".

Corollary 4.6: Let P be an "irg-closed set". If P is "regular-closed" then $cl(int(P))\setminus P$ is "regular-closed".

Proof: Let P be an "irg-closed". If P is "regular-closed" i.e., cl(int(P)) = P. Then $cl(int(P)) \setminus P = P \setminus P = \emptyset$. But, \emptyset is always regular-closed. As a result, $cl(int(P)) \setminus P$ is "regular-closed".

On the other hand, imagine that $cl(int(P))\P$ is "regular-closed". However, P is irg-closed. Additionally, the regular-closed set $cl(int(P))\P$ is contained in $icl(P)\P$. By the above theorem [4.5], $cl(int(P))\P = \emptyset$. Hence cl(int(P)) = P. Therefore P is "regular-closed".

Theorem 4.7: If P is "ig-closed" then P is "irg-closed".

Proof: Suppose that $P \subseteq R$, Where R is regular-open. Now R regular-open \Rightarrow R is open. Thus $P \subseteq R$ and R is open. But P is ig-cosed. Hence $icl(P) \subseteq R$. Therefore, P is irg-closed.

The following illustration demonstrates that an "irg-closed" set need not always be an "ig-closed set".

Example 4.8: Let $X = \{\alpha, \beta, \gamma\}, \tau = \{\emptyset, X, \{\alpha\}, \{\beta\}, \{\alpha, \beta\}\}$ and $\leq = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta), (\gamma, \beta)\}$. Clearly (X, τ, \leq) is a TOS. "irg-closed" sets are $\emptyset, X, \{\alpha, \beta\}, \{\beta, \gamma\}$. "ig-closed" sets are $\emptyset, X, \{\beta, \gamma\}$. Let $P = \{\alpha, \beta\}$. Clearly, P is an irg-closed set but not an ig-closed set.

Theorem 4.9: If P is "irg-closed" and $P \subseteq Q \subseteq icl(P)$ then $icl(Q)\setminus Q$ contains no nonempty "regular-closed sets".

Proof: Suppose P is "irg-closed" and $P \subseteq Q \subseteq icl(P)$.

Since $P \subseteq Q \Longrightarrow C(Q) \subseteq C(P) \rightarrow (1)$

Since $Q \subseteq icl(P) \Longrightarrow icl(Q) \subseteq icl(icl(P)) \subseteq icl(P) \rightarrow (2)$

That is $icl(Q) \subseteq icl(P)$.

From (1) and (2), $(icl(Q) \cap C(Q)) \subseteq (icl(P) \cap C(P)).$

Which implies $(icl(Q)\backslash Q) \subseteq (icl(P)\backslash P)$. Now P is irg-closed. Hence, $icl(P)\backslash P$ has no nonempty regular-closed subsets neither does $icl(Q)\backslash Q$.

Theorem 4.10: Assume that P is "irg-closed" in X and $P \subseteq Y \subseteq X$. If Y is open in X, Then P is "irg-closed" relative to Y.

Proof: Assume that R is regular-open in X and that $P \subseteq Y \cap R$. Therefore, $P \subseteq R$ and hence $icl(P) \subseteq R$. This implies that $(Y \cap icl(P)) \subseteq Y \cap R$. Therefore P is irg-closed to Y.

Theorem 4.11: Let X be a regular space. Prove that every compact subset of X is an irgclosed set.

Proof: Suppose that $P \subseteq R$ where R is "regular-open". Now that R is "regular-open" implies R is "open". But P is compact in the regular space X. Hence, \exists an open set $O \ni P \subseteq O \subseteq$

 $cl(O) \subseteq R$. Since $P \subseteq cl(O) \Longrightarrow icl(P) \subseteq icl(cl(O)) = cl(O) \subseteq R$. That is $icl(P) \subseteq R$. Hence P is irg-closed in X.

5. ir*g*-closed type sets in TOS:

Theorem 5.1: A set $P \cup Q$ is "ir*g*-closed" if P and Q are "ir*g*-closed sets".

Proof: If $P \cup Q \subseteq R$ and R is "g-open", then $P \subseteq R$ and $Q \subseteq R$. But P and Q are "ir*g*-closed" and therefore ircl $(P) \subseteq R$ and ircl $(Q) \subseteq R$. Therefore, $(ircl(P) \cup ircl(Q)) \subseteq R$, and hence $ircl(P \cup Q) \subseteq R$. Hence $P \cup Q$ is "ir*g*-closed".

Example 5.2: Let $X = \{\alpha, \beta, \gamma\}, \tau = \{\emptyset, X, \{\alpha\}, \{\beta\}, \{\alpha, \beta\}\}$ and $\leq = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta), (\beta, \gamma)\}$. Clearly (X, τ, \leq) is a TOS. Take $P = \{\gamma\}, Q = \{\beta, \gamma\}$. If $(P \cup Q) = \{\gamma\} \cup \{\beta, \gamma\} = \{\beta, \gamma\} \subseteq R = X$ and R is "g-open", then $\{\gamma\} \subseteq R$ and $\{\alpha, \beta\} \subseteq R$. But P and Q are "ir*g*-closed" and therefore ircl $(P) \subseteq R$ and ircl $(Q) \subseteq R$. Therefore, $(ircl(P) \cup ircl(Q)) \subseteq R$, and hence $ircl(P \cup Q) \subseteq R$. Hence $P \cup Q$ is "ir*g*-closed".

Theorem 5.3: If a set P is "ir*g*-closed" then $ircl(P)\P$ contains no nonempty "regularclosed set".

Proof: Suppose that P is "ir*g*-closed". Let S be a "regular-closed" subset of ircl(P)\P.

Then $S \subseteq (ircl(P) \cap C(P))$ and so $P \subseteq C(S)$. But P is ir*g*-closed.

Therefore $\operatorname{ircl}(P) \subseteq C(S)$. $\rightarrow(1)$

Consequently $S \subseteq C(ircl(P)) \rightarrow (2)$

We have already $S \subseteq ircl(P) \rightarrow (3)$

From (2) and (3) $S \subseteq (ircl(P) \cap C(ircl(P))) = \emptyset$.

Thus $S = \emptyset$. Therefore, ircl (P)\P contains no nonempty regular-closed set.

Corollary 5.4: If P is an "ir*g*-closed set", then P is "regular-closed" \Leftrightarrow cl(int (P))\P is "regular closed".

Proof: Make P an irg-closed. If cl(int(P)) = P, then P is "regular-closed". If so, $cl(int(P)) \setminus P = \emptyset$. However, \emptyset is always "regular closed". $cl(int(P)) \setminus P$ is hence "regular-closed".

Assume, on the other hand, that $cl(int(P))\setminus P$ is regular-closed. P is, however, irg-closed. The regular-closed set $cl(int(P))\setminus P$ is also contained in $ircl(P)\setminus P$. The statement " $cl(int(P))\setminus P = \emptyset$." is based on the aforementioned theorem. As a result, cl(int(P)) = P. As a result, P is "regular closed".

Theorem 5.5: If P is ir*g*-closed and $P \subseteq Q \subseteq ircl(P)$, then $ircl(Q)\setminus Q$ does not include any nonempty "regular-closed sets".

Proof: If P is "ir*g*-closed" and $P \subseteq Q \subseteq ircl(P)$.

Since $C(P) \subseteq C(Q)$ follows from $P \subseteq Q \rightarrow (1)$

 $Q \subseteq ircl(P)$ implies that $ircl(Q) \subseteq ircl(ircl(P)) = ircl(P)$

In this case $ircl(Q) \subseteq ircl(P) \rightarrow (2)$

From (1) & (2) $(\operatorname{ircl}(Q) \cap C(Q)) \subseteq (\operatorname{ircl}(P) \cap C(P))$

Implies $(ircl(Q)\backslash Q) \subseteq (ircl(P)\backslash P)$.

P is now ir*g*-closed. As a result, neither $ircl(P)\setminus P$ nor $ircl(Q)\setminus Q$ have any nonempty regular-closed subsets.

Theorem 5.6: Let $P \subseteq Y \subseteq X$ and suppose that P is "ir*g*-closed" in X. Then P is "ir*g*-closed" relative to Y, provided Y is "open" in X.

Proof: Let $P \subseteq Y \cap R$ and suppose that R is "g-open" in X. Then $P \subseteq R$ and hence $ircl(P) \subseteq R$. This implies that $(Y \cap ircl(P)) \subseteq Y \cap R$. Thus P is ir*g*-closed relative to Y.

Conclusion

We presented "(r*g*)*closed sets" and "(r*g*)*open sets" in this study and looked at some of their features. This class of sets can be extended to other topological spaces, such as fuzzy and bi-topological spaces, and used to examine the concepts of "continuity, compactness, and connectedness".

References

- A.Narmadha&Nagaveni, On regular b-open sets in Topological spaces, Int.Journal of math. Analysis, Vol. 7, 2013, No.19, 937-948.
- [2] C. Mugundan, N. Nagaveni, A Weaker form of closed sets, 2011, 949-961.
- [3] D.Andrijevic, Semi-pre opensets, Mat. Vesnik, 38(1) 1986, 24-32.
- [4] Y. Gnanambal, "On generalized pre-regular closed sets in Topological Spaces", Indian J. Pure App. Maths, 28(1997), 351-360.
- [5] G. SRINIVASA RAO, et al. "g-CLOSED TYPE SETS AND g*-CLOSED TYPE SETS IN TOSS.", 5(6)2014, 1276-1285.
- [6] G. Srinivasarao., D. Madhusudanrao, and N. Srinivasarao. "Applications of ig, dg, bg-Closed type sets in TOSs".8(1) (2015), 12-22
- [7] G. Srinivasarao, D. Madhusudanarao, and N. Srinivasarao. "Separation Axioms using ig*, dg*, bg*-Closed Type Sets in TOSs". *International Journal of Advances in Engineering & Technology* 7.6 (2015): 1840-1850.
- [8] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T1/2 Mem. Fac. Sci. kochi univ. ser. a, math., 17(1996), 33-42.
- [9] H. Maki R. Devi, and K. Balachandran, Associated topologies of generalized α-closed and α-generalized closed sets, Mem. Fac. Sci. kochiuniv. ser. a, math., 15(1994), 51-63.
- [10] J. Dontchev, On Genralizing semi-pre-open sets, Mem. Fac. Sci. Kochiser. a. Math., 16(1995),35-48.
- [11] K. Balachandran, P. Sundaram, and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi univ. Ser. A. Maths., 12(1991)5-13.
- [12] K. Mariappa and S. Sekar, On Regular Generalised b-closed Set, Int. Journal of Math. Analysis, vol, 2013, No.13, 613-624.
- [13] M. E. Abd El-Monsef, S. N. El. Deeb and R. A. Mohamoud, β open sets and β continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-80.
- [14] M. K. R. S. Veerakumar, Between closed sets and g closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 21 (2000) 1-19.
- [15] M. K. R. S. Veera Kumar, g#-closed sets in topological spaces, Mem. Fac. Sci. Kochi Univ Ser. A., Math., 24(2003),1-13.
- [16] M. Pauline Mary Helen and A. Kulandai Therese, (gsp)*- closed sets in topological spaces, IJMTT-Volume 6, February 2014, ISSN NO2231-5373.
- [17] M. Stone, Application of the Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 374-481.
- [18] N. Biswas, "On Characterizations of semi-continuous functions", Atti. Accad. Naz. Lincei Rend. Cl. Fis. Mat. Natur., 48(8) (1970), 399-402.
- [19] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970),89-96.

- [20] N. Meenakumari and T. Indira, r*g* closed sets in topological spaces, Annals of Pure and Applied Mathematics vol.6, No. 2, 2014, 125-132.
- [21] N. Nagaveni, Studies on Generalisation of Homeomorphisms in Topological spaces, Ph.D. Thesis, Bharathiyar University, Coimbatore.
- [22] N. Palaniappan & K. C. Rao, Regular generalized closed sets, Kyungpook Math. 3 (2) (1993), 211.
- [23] Pauline Mary Helen. M, Veronica Vijayan, Ponnuthai Selvarani, g** closed sets in Topological Spaces, IJMA 3 (5), (2012), 1-15.
- [24] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math, 29(3) (1987), 375-382.
- [25] P. Jayakumar, K. Mariyappa, S. Sekar, on generalized gp* closed sets in topological spaces et.al, int. journal of Math analysis, Vol.7 2013, No. 33, 1635-1645.
- [26] R. Devi, H. Maki, and K. Balachandran, Generalized α closed maps and α generalized closed maps, Indian J. Pure. Appl. Math, 29(1)(1998), 37-49.
- [27] Savithri. D & Janaki. C, On Regular Generalized closed sets in Topological spaces, IJMA- 4(4)2013, 162-169.
- [28] S. P. Arya and T. M. Nour, characterizations of S normal spaces, Indian J. Pure app. Math, 21(1990)
- [29] S. S. Benchelli and R. S. Wali, On rw-closed sets in topological spaces, Bull. malayas. math. soc (2007), 99 - 110.