E®

The Geo Chromatic Number of Strong Product of

 Graphs${ }^{1}$ S. Beulah Samli and ${ }^{2}$ S. Robinson Chellathurai
${ }^{1}$ Department of Mathematics, Womens Christian College, Nagercoil-629 001, India.
beulahsamlisam1991@gmail.com
${ }^{2}$ Department of Mathematics, Scott Christian College (Autonomous), Nagercoil-629 003, India.

Abstract

A set $S_{c} \subseteq V(G)$ is said to be a geo chromatic set of G if S_{c} is both a geodetic set and a chromatic set of G. The minimum cardinality among all geo chromatic sets of a graph G is the geo chromatic number and is denoted by $\chi_{g c}(G)$. A set of extreme vertices E of G is said to be a weak extreme chromatic set if $\operatorname{Ext}(G)$ is a chromatic set of G. A weak extreme chromatic set is denoted by $W E x t(G)$ and the number of extreme vertices in $W \operatorname{Ext}(G)$ is its weak extreme order $\chi_{w}(G)$. A graph G is an extreme geo chromatic graph if $\chi_{g c}(G)=e x(G)$. Bounds for the geo chromatic number of strong product graphs are obtained.

Keywords: geodetic number, chromatic number, geo chromatic number, weak extreme chromatic set, extreme geo chromatic graph, strong product.
Subject Classification: 05C15, 05C12

1 Introduction

We consider finite simple connected graphs with at least two vertices. For any graph G, the set of vertices is denoted by $V(G)$ and the edge set by $E(G)$. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer to Harary [4]. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. For each vertex $v \in V(G)$, the open neighborhood of v is the set $N(v)$ containing al the vertices u adjacent to v and the closed neighborhood of v is the set $N[v]=N(v) \cup v$. If the subgraph induced by its neighbors is complete then a vertex v is called an extreme vertex of a graph G. The set of all extreme vertices of G is denoted by $\operatorname{Ext}(G)$ and $|\operatorname{Ext}(G)|=\operatorname{ex}(G)$. A vertex of G is a stem if it is adjacent to an end vertex. The set of all stem vertices is denoted by $\operatorname{Stem}(G)$. A vertex x is said to lie on an $u-v$ geodesic P, if x is a internal vertex
of P. The closed interval $I[u, v]$ consists of u, v and all vertices lying on a $u-v$ geodesic of G and for a non-empty set $S \subseteq V(G), I[S]=\cup_{u, v \in S} I[u, v]$. A set S of vertices is a geodetic set, if $I[S]=V(G)$. The minimum cardinality among all geodetic sets of G is the geodetic number and is denoted by $g(G)$. Geodetic number was introduced in [4] and further studied in [1, 5-18, 20-23]. The strong product of graph G_{1} and G_{2}, denoted by $G_{1} \otimes G_{2}$, has vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$, where two distinct vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent with respect to the strong product if
(i) $v_{1}=v_{2}$ and $u_{1} u_{2} \in E\left(G_{1}\right)$ or
(ii) $u_{1}=u_{2}$ and $v_{1} v_{2} \in E\left(G_{2}\right)$ or
(iii) $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1} v_{2} \in E\left(G_{2}\right)$

The mappings $\pi_{G_{1}}:(u, v) \rightarrow u$ amd $\pi_{G_{2}}:(u, v) \rightarrow v$ from $V\left(G_{1} \otimes G_{2}\right)$ onto G_{1} and G_{2} respectively are called projections. For a set $S \subseteq V\left(G_{1} \otimes G_{2}\right)$, we define the G_{1}-projection in G_{1} as $\pi_{G_{1}}(S)=\left\{u \in V\left(G_{1}\right): u, v \in S\right.$ for some $\left.v \in V\left(G_{2}\right)\right\}$ and the G_{2} - projection in G_{2} as $\pi_{G_{2}}(S)=\left\{v \in V\left(G_{2}\right): u, v \in S\right.$ for some $\left.u \in V\left(G_{1}\right)\right\}$. For $u_{i} \in V\left(G_{1}\right)$, the set $G_{2}^{i}=u_{i i} \times G_{2}$ is a layer of G_{2} and for $v j \in V\left(G_{2}\right)$, the set $G_{1}^{j}=G_{1} \times v_{j}$ is a layer of G_{1}. For references see [19]. A c-vertex coloring of G is an assignment of c colors, $1,2, \ldots, c$ to the vertices of G; the coloring is proper if no two distinct adjacent vertices have the same color. If $\chi(G)=c, G$ is said to be c-chromatic. A set $C \subseteq V(G)$ is called a chromatic set if C contains all c vertices of distinct colors in G. Chromatic number of G is the minimum cardinality among all chromatic sets of G. That is $\chi(G)=\min \{|C| / C$ is the chromatic set of G \}. For references on chromtic sets see [7] .

A set $S_{c} \subseteq V(G)$ is said to be a geo chromatic set of G if S_{c} is both a geodetic set and a chromatic set of . The minimum cardinality among all geo chromatic sets of a graph G is the geo chromatic number and is denoted by $\chi_{g c}(G)$. For references see $[2,3]$.The following theorems are used in sequel.
Theorem 1.1. [19] Let G_{1} and G_{2} be connected graphs and $P:(u, v)-\left(u^{\prime}, v^{\prime}\right)$ geodesic in $G_{1} \otimes G_{2}$ of length p. If $d_{G_{1}}\left(u, u^{\prime}\right) \geq d_{G_{2}}\left(v, v^{\prime}\right)$, then $\pi_{G_{1}}(P)$ is a $u-u^{\prime}$ geodesic in G_{1} of length p, and if $d_{G_{1}}\left(u, u^{\prime}\right) \leq d_{G_{2}}\left(v, v^{\prime}\right)$, then $\pi_{G_{2}}(P)$ is a $v-v^{\prime} \quad$ geodesic in $\quad G_{2} \quad$ of length p.

Theorem 1.2. [19] Let G_{1} and G_{2} be connected graphs. Then $\operatorname{Ext}\left(G_{1} \otimes G_{2}\right)=$ $\operatorname{Ext}\left(G_{1}\right) \times \operatorname{Ext}\left(G_{2}\right)$.
Theorem 1.3. [19] Let $S_{1} \subseteq V\left(G_{1}\right)$ and $S_{2} \subseteq V\left(G_{2}\right)$ for graphs G_{1} and G_{2}, then $I_{G_{1}}\left[S_{1}\right] \times I_{G_{2}}\left[S_{2}\right] \subseteq I_{I_{G_{1} \otimes G_{2}}}\left[S_{1} \times S_{2}\right]$.
Theorem 1.4.[6] Let G be a connected graph of order p and diameter d. Then $g(G) \leq$
$p-d+1$.
Theorem 1.5.[2] For the complete graph $K_{p}(p \geq 2), \chi_{g c}\left(K_{p}\right)=p$.

2 .Weak Extreme Chromatic Set

Definition 2.1. A set of extreme vertices E of G is said to be a weak extreme chromatic set if $\operatorname{Ext}(G)$ is a chromatic set of G. A weak extreme chromatic set is denoted by $\operatorname{WExt}(G)$ and the number of extreme vertices in $\operatorname{WExt}(G)$ is its weak extreme order $\chi_{w}(G)$.
Example 2.2. Let the path $P_{2 n}: v_{1}, v_{2}, \ldots, v_{2 n}(n \geq 1)$. Then $\operatorname{Ext}\left(P_{2 n}\right)=$ $\left\{v_{1}, v_{2 n}\right\}$.
Clearly $\operatorname{Ext}\left(P_{2 n}\right)$ is a chromatic set and so $\operatorname{WExt}\left(P_{2 n}\right)=\left\{v_{1}, v_{2 n}\right\}$. For the path $P_{2 n+1}: v_{1}, v_{2}, \ldots, v_{2 n+1}(n \geq 1)$, let $\operatorname{Ext}\left(P_{2 n+1}\right)=\left\{v_{1}, v_{2 n+1}\right\}$. It is clear that $\operatorname{Ext}\left(P_{2 n+1}\right)$ is not a chromatic set. Therefore $P_{2 n+1}$ does not have a weak extreme chromatic set.
Observation 2.3. Let G be a connected graph of order p. Then

1. no cut vertex belongs to a weak extreme chromatic set of G.
2. $W E x t(G)$ is the set of all extreme vertices of G.

Theorem 2.4. Let G be a connected graph of order p and diameter d. Then $\chi_{w}(G) \leq$ $p-d+1$.
Proof. Let $W \operatorname{Ext}(G)=\left\{u_{1}, u_{2}, \ldots, u_{p-d+1}\right\}$ is a weak extreme chromatic set of G. It is clear that $W \operatorname{Ext}(G)$ is $\operatorname{Ext}(G)$. Then $\operatorname{Ext}(G)=\left\{u_{1}, u_{2}, \ldots, u_{p-d+1}\right\}$ is an extreme set of G. Also by Theorem 1.4, we have $\operatorname{ex}(G) \leq p-d+1$ and so $\chi_{w}(G) \leq p-d+1$.
Remark 2.5. The upper bound in Theorem 2.4 is sharp. For the graph G given in Figure
2.1, $\operatorname{WExt}(G)=\left\{u_{1}, u_{5}, u_{6}, u_{7}\right\}, p=7$ and $d=4$. Therefore $\chi_{w}(G)=4=$ $p-d+1$

Figure 2.1: G.
Theorem 2.6. Let T be a tree of order $p \geq 2$. Then one of the following condition hold.

1. $\chi_{g c}(T)=g(T)$
2. $\chi_{g c}(T)=g(T)+1$

Proof. For any tree $T, \operatorname{Ext}(T)=L(T)$ is a unique geodetic set of T. Let $V(T)=$ $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. We consider two cases.
Case 1. Suppose that $\operatorname{Ext}(T)$ is $W E x t(T)$.
Clearly, $\operatorname{Ext}(T)$ is a unique minimum geo chromatic set of T. Hence $\chi_{g c}(T)=g(T)$.
Case 2. Suppose that $\operatorname{Ext}(T)$ is not a $W E x t(T)$.
It is clear that $\operatorname{Ext}(T)$ is not a chromatic set of T. Clearly $\chi_{g c}(T)>g(T)$. Since $\chi(T)=2$, the vertices from one color class, say $C_{l 1}$ belong to S and no vertex from another color class, say $C_{l 2}$ belongs to S. For obtaining S as a chromatic set, choose at least one vertex from $C_{l 2}$. Let $v_{p-1} \in C_{l 2}$. If $v_{p-1} \in S$, then $S_{c}=S \cup$ $\left\{v_{p-1}\right\}$ is a geo chromatic set of T and $\chi_{g c}(T) \leq g(T)+1$. It is clear that the removal of at least one vertex from $S_{c}=S \cup\left\{v_{p-1}\right\}$ is not a geo chromatic set of T. Hence $\chi_{g c}(T)=g(T)+1$.

3. Extreme Geo Chromatic Graph

Definition 3.1. A graph G is an extreme geo chromatic graph if $\chi_{g c}(G)=e x(G)$.
Example 3.2. For the graph G given in Figure 2.2, $\operatorname{Ext}(G)=\left\{v_{1}, v_{8}\right\}$. Therefore $\operatorname{ex}(G)=2$. Also $S_{c}=\left\{v_{1}, v_{8}\right\}$ is a minimum geo chromatic set of G and so $\chi_{g c}(G)$ $=e x(G)=2$. Hence G is an extreme geo chromatic graph.

Figure 2.2: G.
Remark 3.3. Let G_{1} be the graph obtained from Figure 2.2 by joining one vertex, say v_{9} to v_{8}. The graph G_{1} is shown in Figure 2.3. Clearly $\operatorname{ex}\left(G_{1}\right)=2$. But $S_{c}=$ $\left\{v_{1}, v_{8}, v_{9}\right\}$ is a minimum geo chromatic set of G_{1} and so $\chi_{g c}\left(G_{1}\right)=3$. Therefore $\chi_{g c}\left(G_{1}\right) \neq \operatorname{ex}\left(G_{1}\right)$ and G_{1} is not a extreme geo chromatic graph.

Figure 2.3: G_{1}.
Theorem 3.4. Let G be an extreme geo chromatic graph of order p. Then $W \operatorname{Ext}(G) \subseteq S_{c}$.
Proof. Let $S_{c}, \operatorname{Ext}(G)$ and $W \operatorname{Ext}(G)$ be a geo chromatic set, extreme set and weak extreme chromatic set of G respectively. Since $S \subseteq S_{c}, \operatorname{Ext}(G) \subseteq S_{c}$. Also by Observation 2.3(2) , $W \operatorname{Ext}(G)$ is $\operatorname{Ext}(G)$. It follows that $W \operatorname{Ext}(G) \subseteq S_{c}$.
Theorem 3.5. Let G be an extreme geo chromatic graph of order $p \geq 2$. Then $\chi_{g c}(G)=p$ if and only if $G=K_{p}$.
Proof. If $G=K_{p}$, then $\chi_{g c}(G)=p$ (Theorem 1.5). Conversely, suppose that $\chi_{g c}(G)=p$. Since G is an extreme geo chromatic graph, $\chi_{g c}(G)=e x(G)$. It is clear that ex $(G)=p$. Therefore, every vertex of G is an extreme vertex. Hence $G=K_{p}$.

4 .The Geo Chromatic Number of a strong product graph

Theorem 4.1. For a connected graph $P_{k} \otimes P_{2}(k<p)$,
$\chi_{g c}\left(P_{k} \otimes P_{2}\right)=\left\{\begin{array}{l}4 \text { if } k \text { is even } \\ 6 \text { if } k \text { is odd }\end{array}\right.$
Proof. Let $G=P_{k} \otimes P_{2}$ and $\left\{\left(a_{i}, b_{j}\right): 1 \leq i \leq k, j=1,2\right\}$ be the set of all vertices of G. It is clear that $S=\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{k}, b_{1}\right),\left(a_{k}, b_{2}\right)\right\}$ is a geodetic set of G, where $\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right)$ are the vertices of the first layer of G and $\left(a_{k}, b_{1}\right),\left(a_{k}, b_{2}\right)$ are the vertices of the $k^{\text {th }}$ layer of G. Let us consider two cases.
Case 1. Suppose that k is even.
Define a proper coloring of G such that different vertices of S receive distinct colors, say color 1 , color 2, color 3, color 4 and the vertices of $G \backslash S$ repeated by the four colors of S. Therefore $\chi(G)=4$. It is clear that S is a chromatic set of G. Thus S is a geo chromatic set S_{c} of G and $\chi_{g c}(G) \leq 4$. Removal of at least one vertex from S is not a geo chromatic set of G. Hence $\chi_{g c}(G)=4$.
Case 2. Suppose that k is odd.
Define a proper coloring of G such that $\left(a_{1}, b_{1}\right),\left(a_{k}, b_{1}\right)$ receive color 1 , $\left(a_{1}, b_{2}\right),\left(a_{k}, b_{2}\right)$ receive color 2 and the vertices of $G \backslash S$ repeated by four color, say color 1 , color 2 , color 3 , color 4 . Therefore $\chi(G)=4$. Let the vertices which receive color 1 , color 2 , color 3 and color 4 belong to the color classes, namely $C_{l 1}$, $C_{l 2}, C_{l 3}$ and $C_{l 4}$. Since no vertex from $C_{l 3}, C_{l 4}$ belongs to S, S is not a chromatic set of G. Let $\left(a_{2}, b_{1}\right) \in C_{l 3}$ and $\left(a_{2}, b_{2}\right) \in C_{l 4}$. If $\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right) \in S$, then $S_{c}=S \cup$ $\left\{\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right)\right\}$ is a geo chromatic set of G and $\chi_{g c}(G) \leq 6$. But, the removal of at least one from $S \cup\left\{\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right)\right\}$ is not a geo chromatic set of G. Hence $\chi_{g c}(G)=6$.

Theorem 4.2. Let G_{1} and G_{2} be non - trivial connected graphs. Then
$\chi_{g c}\left(G_{1} \otimes G_{2}\right) \geq 4$.
Proof. Since K_{4} is an induced subgraph of $G_{1} \otimes G_{2}$, by assigning a proper coloring, at least four colors are needed for $G_{1} \otimes G_{2}$. It is clear that at least four vertices must belong to a geo chromatic set of $G_{1} \otimes G_{2}$. Hence $\chi_{g c}\left(G_{1} \otimes G_{2}\right) \geq 4$.

Remark 4.3. The bound in Theorem 4.2 is sharp. For example, if $G_{1}=P_{2}$ and $G_{2}=P_{2}$, then $G_{1} \otimes G_{2}=4$.
Theorem 4.4. Let G_{1} and G_{2} be connected graphs and S_{c} a geo chromatic set of $G_{1} \otimes G_{2}$. If $x t\left(G_{1}\right) \neq \phi$, then $\pi_{G_{2}}\left(S_{c}\right)$ is a geo chromatic set of G_{2}.
Proof. Let S_{c} be a geo chromatic set of $G_{1} \otimes G_{2}$ and $\operatorname{Ext}\left(G_{1}\right) \neq \phi$. We have to prove that $\pi_{G_{2}}\left(S_{c}\right)$ is a geo chromatic set of G_{2}.

First we prove that $\pi_{G_{2}}\left(S_{c}\right)$ is a chromatic set of G_{2}. Suppose not, $\pi_{G_{2}}\left(S_{c}\right)$ is not a chromatic set of G_{2}. Then there exists a color class, say C_{l} such that no vertex from C_{l} belongs to $\pi_{G_{2}}\left(S_{c}\right)$. Clearly S_{c} is not a chromatic set of $G_{1} \otimes G_{2}$, which is a contradiction. Hence $\pi_{G_{2}}\left(S_{c}\right)$ is a chromatic set of G_{2}.

Again we prove that $\pi_{G_{2}}\left(S_{c}\right)$ is a geodetic set of G_{2}. Let $u \in \operatorname{WExt}\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. Since S_{c} is a $\chi_{g c}$-set of $G_{1} \otimes G_{2}$, the vertex (u, v) lies on a geodesic $P^{\prime}:\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{i}, y_{i}\right)=(u, v), \ldots,\left(x_{p}, y_{p}\right)$ of length p with $\left(x_{0}, y_{0}\right)$, $\left(x_{p}, y_{p}\right) \in S_{c}$. First, suppose that $d_{G_{1}}\left(x_{0}, x_{p}\right) \leq d_{G_{2}}\left(y_{0}, y_{p}\right)$. Then it follows that that $\pi_{G_{2}}\left(P^{\prime}\right)$ is a $y_{0}-y_{p}$ geodesic in G_{2} containing the vertex v, with $y_{0}, y_{p} \in \pi_{G_{2}}\left(S_{c}\right)$. Similarly assume that $d_{G_{1}}\left(x_{0}, x_{p}\right)>d_{G_{2}}\left(y_{0}, y_{p}\right)$. Then, as above, by Proposition 1.1, $\pi_{G_{1}}\left(P^{\prime}\right)$ is a $x_{0}-x_{p}$ geodesic in G_{1} containing u. Since u is the weak extreme vertex, either $u=x_{0}$ or $u=x_{p}$ and it follows that either $v=y_{0}$ or $v=y_{p}$ so that $\pi_{G_{2}}\left(S_{c}\right)$ is a geodetic set of G_{2}. Hence $\pi_{G_{2}}\left(S_{c}\right)$ is a geo chromatic set of G_{2}.
Theorem 4.5. Let G_{1} and G_{2} be connected graphs such that $\operatorname{WExt}\left(G_{1}\right) \neq \phi$. Then $\chi_{g c}\left(G_{2}\right) \leq \chi_{g c}\left(G_{1} \otimes G_{2}\right)$.
Proof. Let $W \operatorname{Ext}\left(G_{1}\right) \neq \phi$ and S_{c} be a geo chromatic set of $G_{1} \otimes G_{2}$. Then by Theorem 4.4, $\pi_{G_{2}}\left(S_{c}\right)$ is a geo chromatic set of G_{2} so that $\chi_{g c}\left(G_{2}\right)=\left|\pi_{G_{2}}\left(S_{c}\right)\right| \leq$ $\left|S_{c}\right|=\chi_{g c}\left(G_{1} \otimes G_{2}\right)$.

Corollary 4.6. Let G_{1} and G_{2} be connected graphs such that $W \operatorname{Ext}\left(G_{1}\right) \neq \phi$ and $W \operatorname{Ext}\left(G_{2}\right) \neq \phi$. Then $\max \left\{\chi_{g c}\left(G_{1}\right), \chi_{g c}\left(G_{2}\right)\right\} \leq \chi_{g c}\left(G_{1} \otimes G_{2}\right)$.
Proof. This follows from Theorem 4.5.
Theorem 4.7. Let G_{1} and G_{2} be connected graphs. If $S_{c_{1}}$ and $S_{c_{2}}$ are geo chromatic sets of G_{1} and G_{2} respectively, then $S_{c_{1}} \times S_{c_{2}}$ is a geo chromatic set of $G_{1} \otimes G_{2}$.

Proof. Let $S_{C_{1}}$ and $S_{c_{2}}$ be a geo chromatic sets of G_{1} and G_{2} respectively. Let S_{1} and S_{2} be a geodetic sets of G_{1} and G_{2}. Then $I_{G_{1}}\left[S_{1}\right]=V\left(G_{1}\right)$ and $I_{G_{2}}\left[S_{2}\right]=V\left(G_{2}\right)$. By Theorem 1.3, $I_{G_{1}}\left[S_{1}\right] \times I_{G_{2}}\left[S_{2}\right] \subseteq I_{G_{1} \otimes G_{2}}\left[S_{1} \times S_{2}\right]$. Also, let C_{1} and C_{2} be a chromatic sets of G_{1} and G_{2}. Clearly, $C_{1} \times C_{2}$ is a chromatic set of $G_{1} \otimes G_{2}$. Hence $S_{c_{1}} \times S_{c_{2}}$ is a geo chromatic set of $G_{1} \otimes G_{2}$.

Theorem 4.8. Let G_{1} and G_{2} be connected graphs. Then $\chi_{g c}\left(G_{1} \otimes G_{2}\right) \leq$ $\chi_{g c}(G 1) \cdot \chi_{g c}\left(G_{2}\right)$.
Proof. Let $S_{c_{1}}$ and $S_{c_{2}}$ be a minimum geo chromatic sets of G_{1} and G_{2} respectively.
Clearly $\chi_{g c}\left(G_{1}\right)=\left|S_{c_{1}}\right|$ and $\chi_{g c}\left(G_{2}\right)=\left|S_{c_{2}}\right|$. By Theorem 4.7, $S_{c_{1}} \times S_{c_{2}}$ is a geo chromatic set of $G_{1} \otimes G_{2}$. Hence $\chi_{g c}\left(G_{1} \otimes G_{2}\right) \leq\left|S_{c_{1}} \times S_{c_{2}}\right|=\left|S_{c_{1}}\right| \cdot\left|S_{c_{2}}\right|=$ $\chi_{g c}\left(G_{1}\right) \cdot \chi g c(G 2)$.
Remark 4.9. The bound in Theorem 4.8 is sharp. If $G_{1}=K m$ and $G_{2}=K n$, then $\chi_{g c}\left(K_{m} \otimes K_{n}\right)=m n=\chi_{g c}\left(K_{m}\right) \cdot \chi_{g c}\left(K_{n}\right)$.
Theorem 4.10. Let G_{1} and G_{2} be connected graphs. Then $W \operatorname{Ext}\left(G_{1} \otimes G_{2}\right)=$ $W \operatorname{Ext}\left(G_{1}\right) \times W \operatorname{Ext}\left(G_{2}\right)$.
Proof. By Observation 2.3(2), $W \operatorname{Ext}\left(G_{1} \otimes G_{2}\right)$ is $\operatorname{Ext}\left(G_{1} \otimes G_{2}\right)$ and by Theorem 1.2, $\operatorname{Ext}\left(G_{1} \otimes G_{2}\right)=\operatorname{Ext}\left(G_{1}\right) \times \operatorname{Ext}\left(G_{2}\right)$. It follows that $\operatorname{WExt}\left(G_{1} \otimes G_{2}\right)=$ $W \operatorname{Ext}\left(G_{1}\right) \times W E x t\left(G_{2}\right)$.
Theorem 4.11. Let G_{1} and G_{2} be extreme geo chromatic graphs. Then $\operatorname{WExt}\left(G_{1}\right)$ and $\operatorname{WExt}\left(G_{2}\right)$ are geo chromatic sets of G_{1} and G_{2} if and only if $W \operatorname{Ext}\left(G_{1} \otimes G_{2}\right)$ is a geo chromatic set of $G_{1} \otimes G_{2}$.
Proof. Suppose that $W \operatorname{Ext}\left(G_{1}\right)$ and $W \operatorname{Ext}\left(G_{2}\right)$ are geo chromatic sets of G_{1} and G_{2} respectively. By Theorems 4.7 and 4.10, $\operatorname{WExt}\left(G_{1} \otimes G_{2}\right)=W \operatorname{Ext}\left(G_{1}\right) \times$ $W \operatorname{Ext}\left(G_{2}\right)$ is a geo chromatic set of $G_{1} \otimes G_{2}$. Conversely, suppose that $W \operatorname{Ext}\left(G_{1} \otimes\right.$ $\left.G_{2}\right)$ is a geo chromatic set of $G_{1} \otimes G_{2}$. It is clear that $\operatorname{WExt}\left(G_{1}\right) \neq \phi$ and $W \operatorname{Ext}\left(G_{2}\right) \neq \phi$. Then by Theorem 4.5 and by Theorem $4.7, W \operatorname{Ext}\left(G_{1}\right)$ and $W \operatorname{Ext}\left(G_{2}\right)$ are geo chromatic sets of G_{1} and G_{2} respectively. Now, we proceed to characterize graphs G_{1} and G_{2} for which $\chi_{g c}\left(G_{1} \otimes G_{2}\right)=\chi_{w}\left(G_{1}\right) \cdot \chi_{w}\left(G_{2}\right)$.

Theorem 4.12. Let G_{1} and G_{2} be connected graphs. Then G_{1} and G_{2} are extreme geo chromatic graphs if and only if $G_{1} \otimes G_{2}$ is a extreme geo chromatic graph.

Proof. Suppose that G_{1} and G_{2} be extreme geo chromatic graphs. Clearly, $W \operatorname{Ext}\left(G_{1}\right)$ and $W \operatorname{Ext}\left(G_{2}\right)$ are geo chromatic sets of G_{1} and G_{2} respectively. Then by Theorems 4.10 and $4.11, W \operatorname{Ext}\left(G_{1} \otimes G_{2}\right)=\operatorname{WExt}\left(G_{1}\right) \times \operatorname{WExt}\left(G_{2}\right)$ is a geo chromatic set of $G_{1} \otimes G_{2}$. Hence $G_{1} \otimes G_{2}$ is an extreme geo chromatic graphs.

Conversely, Suppose that $G_{1} \otimes G_{2}$ is an extreme geo chromatic graph. Then $W \operatorname{Ext}\left(G_{1} \otimes G_{2}\right)$ is a geo chromatic set of $G_{1} \otimes G_{2}$. Then by Theorem 4.11, $\operatorname{WExt}\left(G_{1}\right)$ and $W E x t\left(G_{2}\right)$ are geo chromatic sets of G_{1} and G_{2} respectively. Hence G_{1} and G_{2} are extreme geo chromatic graphs.
Theorem 4.13. Let G_{1} and G_{2} be connected graphs. Then G_{1} and G_{2} are extreme geo chromatic graphs if and only if $\chi_{g c}\left(G_{1} \otimes G_{2}\right)=\chi_{w}\left(G_{1}\right) \cdot \chi_{w}\left(G_{2}\right)$.
Proof. This follows from Theorems 4.8, 4.11 and 4.12.
Remark 4.14. If G_{1} and G_{2} are not an extreme geo chromatic graph, then $\chi_{g c}\left(G_{1} \otimes\right.$ $\left.G_{2}\right) \neq \operatorname{ex}\left(G_{1}\right) \cdot \operatorname{ex}\left(G_{2}\right)$. For example, if $G_{1}=P_{3}$ and $G_{2}=P_{3}$, then $\operatorname{ex}\left(G_{1}\right)=$ $e x\left(G_{2}\right)=2$. But $\chi_{g c}\left(G_{1} \otimes G_{2}\right)=6$.

References

[1] D. Anusha, J. John and S. Joseph Robin, The geodetic hop domination number of complementary prisms, Discrete Mathematics, Algorithms and Applications , 13(6), (2021),2150077.
[2] Beulah Samli. S and Robinson Chellathurai. S, Geo Chromatic Number of a Graph, International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(2018), 259-264.
[3] S. Beulah Samli, J. John and S. Robinson Chellathurai, The Double Geo Chromatic number of a Graph, Bull. Int. Math. Virtual Inst., 11(1),(2021), 55-68.
[4] F. Buckley and F. Harary, Distance in Graphs, Addison - Wesly Publishing company, Redwood city, CA, 1990.
[5] G. Chatrand and F. Harary and P. Zhang, Geodetic sets in Graphs, Discussiones Mathematicae Graph Theory 20(2000), 129-138.
[6] G. Chatrand and F. Harary and P. Zhang, On the Geodetic number of a Graph, Networks, 39(2002), 1-6.
[7] G. Chatrand and P. Zhang, Chromatic Graph Theory, Chapman and Hall, CRC, 2009.
[8] J. John and D.Stalin, Edge geodetic self decomposition in Graphs, Discrete
Mathematics, Algorithms and Applications, 12(5), (2020), 2050064, 7 pages.
[9] J.John, The forcing monophonic and the forcing geodetic numbers of a graph, Indonesian Journal of Combinatorics .4(2), (2020) 114-125.
[10] J. John and D.Stalin,The edge geodetic self decomposition number of a graph, RAIRO Operations Research, RAIRO- 55,(2021), S1935-S1947
[11] J. John, On the vertex monophonic, vertex geodetic and vertex Steiner numbers of graphs, Asian-European Journal of Mathematics 14 (10), (2021), 2150171
[12] J. John and D.Stalin, Distinct edge geodetic decomposition in Graphs, Communication in Combinatorics and Optimization, 6 (2),(2021), 185-196
[13] A. P. Santhakumaran and J. John, Edge Geodetic Number of a Graph, Journal of Discrete Mathematical Sciences and Cryptography 10(3), (2007) ,415-432.
[14] A. P. Santhakumaran and J. John, The edge Steiner number of a graph, Journal of Discrete Mathematical Sciences and Cryptography, 10 (2007), 677-696.
[15] A. P. Santhakumaran, and J. John, The upper edge geodetic number and the forcing edge geodetic number of a graph, Opuscula Mathematica 29, 4, (2009), 427-441.
[16] A. P. Santhakumaran, P. Titus and J. John, The upper connected geodetic number and the forcing connected geodetic number of a graph, Discrete Applied

Mathematics, 157 (7), (2009), 1571-1580.
[17] A. P. Santhakumaran, P. Titus and J. John, On the connected geodetic number of a graph, Journal of Comb. Math. and Comb. Comp., 69, (2009), 219-229.
[18] A.P. Santhakumaran and J. John, The connected edge geodetic number of a graph, SCIENTIA Series A: Mathematical Sciences, 17, (2009), 67-82.
[19] A.P. Santhakumaran and S. V. Ullas Chandran, The geodetic number of strong product graphs, Discuss. Math. Graph Theory, 30 no. 4(2010), 687-700.
[20] A.P. Santhakumaran and J. John, On the forcing geodetic and forcing Steiner numbers of a graph, Discussiones Mathematicae Graph Theory,(2011),31, 611-624
[21] A. P. Santhakumaran and J. John, The upper connected edge geodetic number of a graph, Filomat, 26(1), (2012), 131-141.
[22] D. Stalin and J. John, The forcing edge geodetic domination number of a graph, Journal of Advanced Research in Dynamical and Control Systems, 10(4),(2018), 172177.
[23] D. Stalin and J. John, Edge geodetic dominations in graphs, International Journal of Pure and Applied Mathematics, 116,(22),(2017), 31-40.

