

¹J. SUJI PRIYA AND ²T. MUTHU NESA BEULA

 ¹ Research Scholar, (Reg. No:20113162092014), Department of Mathematics, Women's Christian College, Nagercoil. email: <u>sujimrthy@gmail.com</u>
 ²Assistant Professor, Department of Mathematics, Women's Christian College, Nagercoil. email: tmnbeula@gmail.com
 Affiliated to Manonmaniam Sundaranar University, Abishekapatti,

Tirunelveli- 627 012

Abstract

Let *G* be a connected graph. For $M \subseteq V(G)$, for each $v \in V(G)$ the monophonic resolving set is $mr(v/M) = (d_m(v, v_1), d_m(v, v_2) \dots d_m(v, v_k))$, where $M = \{v_1, v_2 \dots v_k\}$. *M* is said to be a monophonic resolving set of *G*, if $mr(v/M) \neq mr(u/M)$ for every $u, v \in V(G)$, where $u \neq v$. The minimum cardinality of a monophonic resolving set is called the monophonic dimension of *G*. It is denoted by mdim(G). A set $M \subseteq V(G)$ is said to be a monophonic resolving dominating set of *G*. If *G* is both a monophonic resolving set and a dominating set of *G*. The minimum cardinality of a monophonic resolving set and a dominating set of *G*. The minimum cardinality of a monophonic resolving dominating set of *G* is the monophonic resolving domination number of *G* and is denoted by $\gamma_{mdim}(G)$. Any monophonic resolving set of cardinality $\gamma_{mdim}(G)$ is called a γ_{mdim} - set of *G*. In this article, the monophonic domination dimension number of some standard graphs are determined.

Keywords: distance, chord, monophonic path, monophonic distance, resolving set, metric dimension, monophonic metric dimension, domination number, monophonic domination metric dimension.

AMS Subject Classification: 05C38, 05C69.

1. Introduction

Let G = (V, E) be a simple undirected connected graph. The *order* and *size of G* are denoted by *n* and *m* respectively. For basic graph theoretical terminology, we refer [1]. The length of the shortest u - v path in *G* is the distance d(u, v) between vertices *u* and *v* in a connected graph *G*. A u - v path with length d(u, v) is referred to as an u - v geodesic. For basic graph theoretic terminology, we refer [1]. Let $W = \{w_1, w_2, ..., w_k\} \subset V(G)$ be an ordered set and $v \in V(G)$. The representation r(v/W) of *v* with respect to *W* is the *k*-tuple $(d(v, w_1), d(v, w_2), ..., d(v, w_k))$. Then *W* is called a *resolving set* if different vertices of *G* have different representations with respect to *W*. A resolving set of minimum number of elements is called a *basis* for *G* and the cardinality of the basis is known as the *metric dimension* of *G*, represented by dim(G). These concepts were studied in [2].

A path *P*'s chord is an edge that connects two of its non-adjacent vertices. If a path between two vertices *u* and *v* in a connected graph *G* lacks chords, it is referred to as *monophonic path*. The length of the longest u - v monophonic path in *G* is the monophonic distance $d_m(u, v)$ between u and *v*. These concepts were studied in [3-,11. 13, 15, 21, 22, 24]. In this article, we study a new metric dimension called the *monophonic metric dimension* of a graph. For $M = \{v_1, v_2 \dots v_k\} \subset V(G)$ for each $v \in V$ the representation mr(v/W) of *v* with respect to *W* is the *k*-tuple $mr(v/M) = (d_m(v, v_1), d_m(v, v_2) \dots d_m(v, v_k))$. *M* is said to be a monophonic resolving set of *G*, if $mr(v/M) \neq mr(u/M)$ for every $u, v \in V$, where $u \neq v$. The minimum cardinality of a monophonic resolving set is called the monophonic dimension of *G*. It is denoted by mdim(G). Any monophonic resolving set of cardinality mdim(G) is called mdim-set of *G*. This concept was introduced and studied in [23]. The dominating set of a graph *G* is a set *S* of vertices *G* such that every vertex not in *S* is adjacent to a vertex in *S*. The domination number of *G* is denoted by $\gamma(G)$ is the minimum size of a dominating set. These concepts were studied in [6, 10, 12, 14, 16, 17, 19, 20]

2. The Monophonic Domination Dimension Number of a Graph

Definition.2.1. Let *G* be a connected graph. A set $M \subseteq V(G)$ is said to be a monophonic resolving dominating set of *G* if *G* is both a monophonic resolving set and a dominating set of *G*.

The minimum cardinality of a monophonic resolving dominating set of *G* is the monophonic resolving domination number of *G* and is denoted by $\gamma_{mdim}(G)$. Any monophonic resolving set of cardinality $\gamma_{mdim}(G)$ is called a γ_{mdim} - set of *G*.

Example.2.2 For the graph *G* is given in Figure 1, $M_1 = \{v_3, v_7\}$ is the unique γ -set of *G*, which is not a resolving set of *G* and so $\gamma_{mdim}(G) \ge 3$. Let $M_2 = \{v_2, v_3, v_7\}$. Then

$$mr(v_1/M_2) = (1,4,1), mr(v_2/M_2) = (0,1,4), mr(v_3/M_2) = (1,0,3),$$

 $mr(v_4/M_2) = (2,1,4), \dots, mr(v_5/M_2) = (4,1,4), mr(v_6/M_2) = (3,4,1),$

 $mr(v_7/M_2) = (4,3,0)$. Since each representation are distinct, M_2 is a monophonic resolving set of *G*. Also M_2 is a dominating set of *G*. Hence M_2 is a monophonic resolving dominating set of *G* so that $\gamma_{mdim}(G) = 3$.

Theorem.2.3. For a star graph $G = K_{1,n-1}$ $(n \ge 3)$. Then $\gamma_{mdim}(G) = n - 1$.

Proof. Let $M = \{v_1, v_2, .., v_{n-2}\}$, Then

$$mr(x/M) = (0,1,1,...,1,1), mr(v_1/M) = (1,0,2,...,2,2), mr(v_2/M) = (1,2,0,...,2,2),$$

$$mr(v_3/M) = (1,2,2,0,...,2,2), ..., mr(v_{n-2}/M) = (1,2,...,0,2), mr(v_{n-1}/M) = (1,2,...,2,2).$$

Since each representation are distinct, M is monophonic resolving set of G. Also M is a dominating set of G. Hence M is a monophonic resolving dominating set of G so that and so $\gamma_{mdim}(G) \leq n-1$. We prove that $\gamma_{mdim}(G) = n-1$.On the contrary suppose that $\gamma_{mdim}(G) \leq n-2$. Then there exist a γ_{mdim} - set |M'| such that $|M'| \leq n-2$. Then M' is neither a domination set nor a monophonic resolving set of G, which is a contradiction. Therefore $\gamma_{mdim}(G) = n-1$.

Theorem.2.4. For the complete bipartite graph $G = K_{r,s}$ $(2 \le r \le s)$, $\gamma_{mdim}(G) = r + s - 2$.

Proof. Let $X = \{x_1, x_2, \dots, x_r\}$ and $y = \{y_1, y_2, \dots, y_s\}$ be the two bipartite sets of *G*.

Let
$$M = \{x_1, x_2, \dots, x_{r-1}\} \cup \{y_1, y_2, \dots, y_{s-1}\}$$
. Then
 $mr(x_1/M) = (0, 2, 2, \dots, 2, 1, 1, \dots, 1), mr(x_2/M) = (2, 0, 2, \dots, 2, 1, 1, \dots, 1),$
 $mr(x_3/M) = (2, 2, 0, \dots, 2, 1, 1, \dots, 1), \dots, mr(x_{r-1}/M) = (2, 2, \dots, 2, 0, 1, 1, \dots, 1),$
 $mr(x_r/M) = (2, 2, 2, \dots, 2, 1, 1, \dots, 1), mr(y_1/M) = (1, 1, 1, \dots, 0, 2, 2, \dots, 2),$
 $mr(y_2/M) = (1, 1, \dots, 1, 2, 0, 2, \dots, 2), mr(y_3/M) = (1, 1, \dots, 1, 2, 2, 0, \dots, 2), \dots,$
 $mr(y_{s-1}/M) = (1, 1, \dots, 1, 2, 2, \dots, 0), mr(y_s/M) = (1, 1, \dots, 1, 2, 2, \dots, 2).$

Since each representation are distinct, *M* is monophonic resolving set. Since the vertices x_r and y_s are dominated by at least one element of *M*, *M* is a dominating set of *G*. Therefore *M* is a monophonic resolving dominating set of *G* and so $\gamma_{mdim}(G) \leq r + s - 2$. We prove that $\gamma_{mdim}(G) = r + s - 2$. On the contrary suppose that $\gamma_{mdim}(G) \leq r + s - 3$. Then there exists a $\gamma_{mdim}(G)$ -set *M'* such that |M'| < r + s - 3. Then there exists at least three elements

 $u, v, w \in V(G)$ such that $u, v, w \notin M'$. Without loss of generality, let us assume that $u, v \notin X$. Let $u = x_{r-1}$ and $v = x_{r_0}$. Then mr(u/M') = mr(v/M') = (2, 2, ..., 2, 1, 1, ..., 1). Which is a contradiction. Therefore $\gamma_{\text{mdim}}(G) = r + s - 2$.

Theorem.2.5.For a fan graph $G = K_1 + P_{n-1}$ $(n \ge 5)$. Then $\gamma_{mdim}(G) = 2$.

Proof. Let $V(K_1) = x$ and $V(P_{n-1}) = \{v_1, v_2, \dots, v_{n-1}\}$. Let $M = \{x, v_1\}$. Then

Section A-Research paper
$$mr(x/M) = (0,1), mr(v_1/M) = (1,0), mr(v_2/M) = (1,1), mr(v_3/M) = (1,2),$$

$$mr(v_4/M) = (1,3), \dots, mr(v_{n-1}/M) = (1, n-2).$$

Since each representations are distinct, *M* is a monophonic resolving set of *G*. Since *x* is a universal vertices of *G* and $x \in M$, *M* is a dominating set of *G*. Hence *M* is a monophonic resolving dominating set of *G*. Therefore $\gamma_{mdim}(G) = 2$.

Theorem.2.6. For a Wheel graph
$$G = K_1 + C_{n-1}$$
 $(n \ge 5)$. Then $\gamma_{mdim}(G) = \begin{cases} 2 \text{ for } n = 5 \\ 3 \text{ for } n \ge 6 \end{cases}$

Proof. Let $V(K_1) = x$ and $V(C_{n-1}) = \{v_1, v_2, ..., v_{n-1}\}$. For n = 5.Let $M = (v_1, v_2)$.Then $mr(x/M) = (1,1), mr(v_1/M) = (0,1), mr(v_2/M) = (1,0), mr(v_3/M) = (2,1), ..., mr(v_{n-1}/M) = (1,2)$. Since each representations are distinct, M is a monophonic resolving set of G. Since x is a universal vertices of G and $x \in M$, M is a dominating set of G. Hence M is a monophonic resolving dominating set of G. Therefore $\gamma_{mdim}(G) = 2$.

Let $n \ge 6$. It is easily verified that no two element subset of V(G) is not a monophonic resolving dominating set of *G*, and so $\gamma_{mdim}(G) \ge 3$.

Let
$$M_1 = \{x, v_1, v_2\}$$
. Then $mr(x/M_1) = (0,1,1), mr(v_1/M_1) = (1,0,1),$

$$mr(v_2/M_1) = (1,1,0), mr(v_3/M_1) = (1, n - 3, 1), mr(v_4/M_1) = (1, n - 4, n - 3), mr(v_5/M_1) = (1, n - 3, n - 4), \dots, mr(v_{n-1}/M_1) = (1, 1, n - 3).$$

Since each representations are distinct, M_1 is a monophonic resolving set of G. Since x is a universal vertices of G, and $x \in M_1$. M_1 is a monophonic resolving dominating set of G. Hence M_1 is a monophonic resolving dominating set of G. Therefore $\gamma_{mdim}(G) = 3$.

Theorem.2.7 For the path $G = P_n (n \ge 4)$, Then $\gamma_{mdim}(G) = \begin{cases} \frac{n}{3} & \text{if } n \equiv 0 \pmod{3} \\ \left\lfloor \frac{n}{3} \right\rfloor & \text{Otherwise} \end{cases}$

Proof. Let $V(P_n) = \{v_1, v_2, v_3, \dots, v_n\}$, we have the following cases

Case (i) Let $n \equiv 0 \pmod{3}$. Let $n = 3k, k \ge 3$. Then $M = \{v_2, v_5, \dots, v_{3k-1}\}$ is a dominating set of G,

Eur. Chem. Bull. 2023, 12(Special Issue 7), 1755-1769

$$mr(v_1/M) = (1,4,7,...,3k-2), mr(v_2/M) = (0,3,6,...,3k-3),$$

$$mr(v_3/M) = (1,2,5,...,3k-4), mr(v_4/M) = (2,1,4,...,3k-5),$$

$$mr(v_5/M) = (3,0,3,...,3k-6), mr(v_6/M) = (4,1,2,...,3k-7),$$

$$mr(v_7/M) = (5,2,1,...,3k-8), mr(v_8/M) = (6,3,0,...,3k-9),$$

$$mr(v_9/M) = (7,4,1...,3k-10), ..., mr(v_{3k-4}/M) = (3k-5,3k-8,3k-11,...,1,4),$$

$$mr(v_{3k-3}/M) = (3k-4,3k-7,3k-10,...,2,5), mr(v_{3k-2}/M) = (3k-3,3k-6,3k-9),$$

$$mr(v_{3k-3}/M) = (3k-2,3k-5,3k-8,...,4,7).$$

Since each representations are distinct, *M* is a monophonic resolving set of *G*. Also *M* is a dominating set of *G*. Hence *M* is a monophonic resolving dominating set of *G* and so $\gamma_{mdim}(G) \leq \frac{n}{3}$. We prove that $\gamma_{mdim}(G) = \frac{n}{3}$. On the contrary suppose that $\gamma_{mdim}(G) < \frac{n}{3} - 1$. Then there exist a γ_{mdim} -set *M'* such that $|M'| < \frac{n}{3} - 1$. Then *M'* is not a dominating set of *G*, which is a contradiction. Therefore $\gamma_{mdim}(G) = \frac{n}{3}$.

Case(ii) Let
$$n \equiv 1 \pmod{3}$$
. Let $n = 3k + 1, k \ge 3$. Then $M = \{v_2, v_5, v_8, v_{10} \dots, v_{3k}\}$
 $mr(v_1/M) = (1,4,7,9 \dots, 3k - 2,3k), mr(v_2/M) = (0,3,6,8, \dots, 3k - 3,3k - 1),$
 $mr(v_3/M) = (1,2,5,7 \dots, 3k - 4,3k - 2), mr(v_4/M) = (2,1,4,6 \dots, 3k - 5,3k - 3),$
 $mr(v_5/M) = (3,0,3,5, \dots, 3k - 6,3k - 4), \dots, mr(v_{3k-4}/M) = (3k - 5,3k - 7,3k - 8,3k - 5, \dots, 4,2,1,4), mr(v_{3k-3}/M) = (3k - 6,3k - 8,3k - 7,3k - 4, \dots, 5,2,1,3),$
 $mr(v_{3k-2}/M) = (3k - 7,3k - 9,3k - 6,3k - 3, \dots, 2,0,3,6), mr(v_{3k-1}/M) = (3k - 8,3k - 10,3k - 5,3k - 2, \dots, 1,1,4,7), mr(v_{3k}/M) = (3k - 9,3k - 11,3k - 4,3k - 1, \dots, 0,2,5,8)$
Since each representations are distinct, M is a monophonic resolving set of G . Also M is a dominating set of G . Hence M is a monophonic resolving dominating set of G so that $\gamma_{mdim}(G) \le \left[\frac{n}{3}\right]$. We prove that $\gamma_{mdim}(G) = \left[\frac{n}{3}\right]$. On the contrary suppose that

Section A-Research paper $\gamma_{mdim}(G) < \left[\frac{n}{3}\right] - 1$. Then there exist a γ_{mdim} -set M' such that $|M'| < \left[\frac{n}{3}\right] - 1$. Then M' is not a dominating set of G, which is a contradiction. Therefore $\gamma_{mdim}(G) = \left[\frac{n}{3}\right]$

Case(iii) Let
$$n \equiv 2 \pmod{3}$$
. Let $n = 3k + 2, k \ge 1$. Then $M = \{v_2, v_5, v_8, v_{11}, ..., v_{3k-1}\}$
 $mr(v_1/M) = (1,4,7,10 ..., 3k - 2), mr(v_2/M) = (0,3,6,9, ..., 3k - 3),$
 $mr(v_3/M) = (1,2,5,8 ..., 3k - 4), mr(v_2/M) = (2,1,4,7, ..., 3k - 5),$
 $mr(v_5/M) = (3,0,3,6, ..., 3k - 6), mr(v_6/M) = (4,1,2,5 ..., 3k - 7),$
 $mr(v_7/M) = (5,2,1,4 ..., 3k - 6), mr(v_8/M) = (6,3,0,3 ..., 3k - 9),$
 $mr(v_9/M) = (7,4,1,2, ..., 3k - 10), mr(v_{10}/M) = (8,5,2,1, ..., 3k - 11),$
 $mr(v_{11}/M) = (9,6,3,0, ..., 3k - 12), ...,$
 $mr(v_{3k-5}/M) = (3k - 4,3k - 7,3k - 8,3k - 5, ...4,2,1,4),$
 $mr(v_{3k-4}/M) = (3k - 3,3k - 6,3k - 9,3k - 6, ... 3,0,3,6),$
 $mr(v_{3k-3}/M) = (3k - 1,3k - 4,3k - 11,3k - 8, ...,1,2,5,8),$
 $mr(v_{3k-1}/M) = (3k, 3k - 3,3k - 12,3k - 9, ...,0,3,6,9),$
 $mr(v_{3k}/M) = (3k - 9,3k - 11,3k - 4,3k - 1, ... 0,2,5,8).$

Since each representations are distinct, *M* is a monophonic resolving set of *G*. Also *M* is a dominating set of *G*. Hence *M* is a monophonic resolving dominating set of *G* so that $\gamma_{mdim}(G) \leq \left[\frac{n}{3}\right]$. We prove that $\gamma_{mdim}(G) = \left[\frac{n}{3}\right]$. On the contrary suppose that $\gamma_{mdim}(G) < \left[\frac{n}{3}\right] - 1$. Then there exist a γ_{mdim} -set *M'* such that $|M'| < \left[\frac{n}{3}\right] - 1$. Then *M'* is not a

dominating set of *G*, which is a contradiction. Therefore $\gamma_{mdim}(G) = \left[\frac{n}{3}\right]$.

Theorem.2.8 For the cycle graph $G = C_n (n \ge 3)$, Then $\gamma_{mdim}(G) \begin{cases} 2 & \text{if } n \in \{3,4,5\} \\ \frac{n}{3} & \text{if } n \equiv 0 \pmod{3} \\ \left[\frac{n}{3}\right] & \text{Otherwise} \end{cases}$

Proof. Let C_n be $\{v_1, v_2, v_3, ..., v_n, v_1\}$ if n = 3.

If n = 4, then $M = \{v_1, v_2, v_3\}$ is a γ_{mdim} - set of G so that $\gamma_{mdim}(G) = 2$.

If n = 5, then $M = \{v_1, v_3, v_4\}$ is a γ_{mdim} -set of G so that $\gamma_{mdim}(G) = 2$.

For $n \ge 6$, we consider three cases

Case (i) Let $n \equiv 0 \pmod{3}$. $n = 3k, k \ge 3$. Let $M_1 = \{v_1, v_4, \dots, v_{3k-2}, v_{3k}\}$. Then M_1 is a dominating set of *G*. To prove M_1 is a monophonic resolving set of *G*.

$$\begin{split} mr(\mathbf{v}_1/M_1) &= (0,6,6,\ldots,3\mathbf{k}-3), mr(\mathbf{v}_2/M_1) = (1,7,5,\ldots,3k-4), \\ mr(\mathbf{v}_3/M_1) &= (7,1,5,\ldots,3k-4), mr(\mathbf{v}_4/M_1) = (6,0,6,\ldots,3k-3), \\ mr(\mathbf{v}_5/M_1) &= (5,1,7,\ldots,3k-2), \ldots, mr(\mathbf{v}_{3k-3}/M_1) = (3\mathbf{k}-8,3\mathbf{k}-2,3k-4,\ldots,1,7,5), \\ mr(\mathbf{v}_{3k-2}/M_1) &= (3k-9,3k-3,3k-3,\ldots,0,6,6), \\ mr(\mathbf{v}_{3k-1}/M_1) &= (3\mathbf{k}-8,3k-4,3\mathbf{k}-2,\ldots,1,5,7), \\ mr(\mathbf{v}_{3k}/M_1) &= (3k-2,3k-4,3\mathbf{k}-8,\ldots,7,5,1). \end{split}$$

Since each representations are distinct, M_1 is a monophonic resolving set of G. Hence M_1 is a monophonic resolving dominating set of G and so $\gamma_{mdim}(G) \leq \frac{n}{3}$. We prove that $\gamma_{mdim}(G) = \frac{n}{3}$. On the contrary suppose that $\gamma_{mdim}(G) < \frac{n}{3} - 1$. Then there exist a γ_{mdim} -set M_1' such that

 $|M_1'| < \frac{n}{3} - 1$. Then M_1' is not a dominating set of G, which is a contradiction. Therefore

$$\gamma_{mdim}(G) = \frac{n}{3}.$$

Case(ii) Let $n \equiv 1 \pmod{3}$. Let $n = 3k + 1, k \ge 3$. Then $M_2 = \{v_1, v_4, \dots, v_{3k-2}, v_{3k+1}\}$. Then M_2 is a dominating set of *G*. To prove M_2 is a monophonic resolving set of *G*. Then

$$mr(v_1/M_2) = (0,7,6,1, ..., 3k - 8), mr(v_2/M_2) = (1,8,5,8, ..., 3k - 1),$$

$$mr(v_3/M_2) = (8,1,6,7 ..., 3k - 2), mr(v_4/M_2) = (7,0,7,6, ..., 3k - 3),$$

$$mr(v_5/M_2) = (6,1,8,5, ..., 3k - 4), ..., mr(v_{3k-3}/M_2) = (3k - 3, 3k - 8, 3k - 1, 3k - 4, ..., 6,1,8,5), mr(v_{3k-2}/M_2) = (3k - 2, 3k - 9, 3k - 2, 3k - 3, ..., 7,0,7,6),$$

$$mr(v_1 - 2k - 2k - 2, 2k - 2, 2k - 2, 3k - 3, ..., 7,0,7,6),$$

$$mr(v_{3k-1}/M_2) = (3k - 1, 3k - 8, 3k - 3, 3k - 2, \dots 8, 1, 6, 7), mr(v_{3k}/M_2) = (3k - 8, 3k - 1, 3k - 4, 3k - 1, \dots 1, 8, 5, 8), mr(v_{3k+1}/M_2) = (3k - 9, 3k - 2, 3k - 3, 3k - 8, \dots, 0, 7, 6, 1).$$

Since each representations are distinct, M_2 is a monophonic resolving set of G. Also M is a dominating set of G. Hence M_2 is a monophonic resolving dominating set of G. Therefore $\gamma_{mdim}(G) \leq \left[\frac{n}{3}\right]$. We prove that $\gamma_{mdim}(G) = \left[\frac{n}{3}\right]$. On the contrary suppose that $\gamma_{mdim}(G) < \left[\frac{n}{3}\right] - 1$. Then there exist a $\gamma_{mdim}(G)$ -set M_2' such that $|M_2'| < \left[\frac{n}{3}\right] - 1$. Then M' is not a dominating set of G, which is a contradiction. Therefore $\gamma_{mdim}(G) = \left[\frac{n}{3}\right]$.

Case (iii) Let $n \equiv 2 \pmod{3}$. Let $n = 3k + 2, k \ge 3$. Then $M_3 = \{v_1, v_4, \dots, v_{3k-2}, v_{3k+1}\}$. Then M_3 is a dominating set of *G*. To prove M_2 is a monophonic resolving set of *G*. Then

$$mr(v_1/M_3) = (0,8,6,9, \dots, 3k - 3,3k), mr(v_2/M_3) = (1,9,6,8, \dots, 3k - 3,3k - 1),$$

$$mr(v_3/M_3) = (9,1,7,7, \dots, 3k - 2,3k - 2), mr(v_4/M_3) = (8,0,8,6, \dots, 3k - 1,3k - 3),$$

$$mr(v_5/M_3) = (7,1,9,6, \dots, 3k, 3k - 3), \dots, mr(v_{3k-3}/M_3) = (3k - 3,3k - 8,3k - 1,3k - 4, \dots, 6,1,8,5), mr(v_{3k-2}/M_3) = (3k - 1,0,3k - 1,3k - 3, \dots, 8,0,8,6),$$

$$mr(v_{3k-1}/M_3) = (3k, 1, 3k - 2, 3k - 2, ..., 9, 1, 7, 7), mr(v_{3k}/M_3) = (1, 3k, 3k - 3, 3k - 1, ..., 1, 9, 6, 8), mr(v_{3k+1}/M_3) = (0, 3k - 1, 3k - 3, 3k, ..., 0, 8, 6, 9).$$

$$mr(v_{3k+2}/M_3) = (1,3k - 2,3k - 2,1,...,1,7,7,1).$$

Since each representations are distinct, M_2 is a monophonic resolving set of *G*. Also *M* is a dominating set of *G*. Hence M_2 is a monophonic resolving dominating set of *G*. Therefore $\gamma_{mdim}(G) \leq \left[\frac{n}{3}\right]$. We prove that $\gamma_{mdim}(G) = \left[\frac{n}{3}\right]$. On the contrary suppose that $\gamma_{mdim}(G) < \gamma_{mdim}(G) <$

 $\left[\frac{n}{3}\right] - 1$. Then there exist a $\gamma_{mdim}(G)$ -set M_3' such that $|M_3'| < \left[\frac{n}{3}\right] - 1$. Then M' is not a dominating set of G, which is a contradiction. Therefore $\gamma_{mdim}(G) = \left[\frac{n}{3}\right]$.

Theorem.2.9. For the Alternate triangular cycle graph $G = A(C_{2n})$, $\gamma_{mdim}(G) = 3$.

Proof. An alternate triangular cycle $A(C_{2n})$ is obtained from even cycle $C_{2n} = \{v_1, u_1, v_2, u_2, ..., v_n, u_n\}$ by joining v_i and u_i to a new vertex w_i . That is every alternate edge of a cycle is replaced by C_3 . Let $n = 4, M = \{v_1, v_2, v_4\}$. Then $mr(v_1/M) = (0,1,1)$,

$$mr(v_2/M) = (1,0,n-2), mr(v_3/M) = (n-2,1,1), mr(v_4/M) = (1,n-2,0),$$

 $mr(u_1/M) = (1,1,n-1), mr(u_2/M) = (n-1,n-1,1)$. Since each representations are distinct, *M* is a monophonic resolving set of *G*. Also *M* is a dominating set of *G*. Hence *M* is a monophonic resolving dominating set of G and so $\gamma_{mdim}(G) \leq 3$. We have to prove that $\gamma_{mdim}(G) = 3$. Suppose that $\gamma_{mdim}(G) \leq 2$. Then there exist a γ_{mdim} -set *M'* such that

|M'| < 2. Then M' is not a dominating set of G. Which is a contradiction. There fore

 $\gamma_{mdim}(G) = 3.$

Let $n \ge 6$ and let $M_1 = \{u_1, u_2, u_3 \dots u_n\}$, Then $mr(v_1/M_1) = (1, n - 2, n - 1, \dots, n - 1), mr(v_2/M_1) = (1, n - 1, n - 2, \dots, n - 2),$ $mr(v_3/M_1) = (n - 1, 1, n - 2, \dots, n - 2), mr(v_4/M_1) = (n - 2, 1, n - 1, \dots, n - 1), \dots,$ $mr(v_{n-1}/M_1) = (n - 2, n - 1, 1, \dots, 1), mr(v_n/M_1) = (n - 1, n - 2, 1, \dots, 1),$ $mr(u_1/M_1) = (0, n - 1, n - 1, \dots, n - 1), mr(u_2/M_1) = (n - 1, 0, n - 1, \dots, n - 1),$ $mr(u_3/M_1) = (n - 1, n - 1, 0, \dots, 0), \dots, mr(u_{n-1}/M_1) = (n - 1, 0, n - 1, \dots, n - 1),$ $mr(u_n/M_1) = (n - 1, n - 1, 0, \dots, 0).$

Since each representations are distinct, M_1 is a monophonic resolving set of G. Also M_1 is a dominating set of G. Hence M_1 is a monophonic resolving dominating set of G and so $\gamma_{\text{mdim}}(G) \leq n$. We have to prove that $\gamma_{mdim}(G) = n$. On the contrary suppose that

Section A-Research paper $\gamma_{mdim}(G) \leq n - 1$. Then there exist a γ_{mdim} -set M'_1 such that $|M'_1| < n - 1$. Then M'_1 is not a dominating set of G, which is a contradiction. Therefore $\gamma_{mdim}(G) = n$.

Theorem.2.10 For the double wheel graph $G = DW_n$, $(n \ge 4)$, $\gamma_{mdim}(G) = 3$.

Proof. A double wheel graph DW_n of size *n* can be composed of $2C_n + K_1$. It consists of two cycles of size *n* where vertices of two cycles are all connected to a central vertex.

Let
$$M = \{x, v_1, v_2, u_1, u_2\}, n \ge 4$$
. Then
 $mr(x/M) = (0,1,1,1,1), mr(v_1/M) = (1,0,1, n - 2, n - 2),$
 $mr(v_2/M) = (1,1,0, n - 2, n - 2), mr(v_3/M) = (1, n - 2, 1, n - 2, n - 2), ...,$
 $mr(v_{n-1}/M) = (1, n - 2, 1, n - 2, n - 2), mr(v_n/M) = (1,1, n - 2, n - 2, n - 2),$
 $mr(u_1/M) = (1, n - 2, n - 2, 0, 1), mr(u_2/M) = (1, n - 2, n - 2, 1, 0),$
 $mr(u_3/M) = (1, n - 2, n - 2, n - 2, 1), ..., mr(u_{n-1}/M) = (1, n - 2, n - 2, n - 2, 1),$
 $mr(u_n/M) = (1, n - 2, n - 2, 1, n - 2).$

Since each representations are distinct, *M* is a monophonic resolving set of *G*. Also *M* is a dominating set of *G*. Hence *M* is a monophonic resolving dominating set of *G* and so $\gamma_{mdim}(G) \leq 5$. We have to prove that $\gamma_{mdim}(G) = 5$. On the contrary suppose that

 $\gamma_{mdim}(G) = 4$. Then there exist a γ_{mdim} -set M' such that |M'| < 4. Then M' is a monophonic resolving set, but not a dominating set, which is a contradiction. Next assume that $x \in M'$. Then there exist two distinct vertices $y, z \in V(C_{n-1})$, such that $mr(u_3/M) = mr(u_4/M)$. Which is a contradiction. Therefore $\gamma_{mdim}(G) = 5$.

Theorem.2.11. For the crown graph $G = H_{n,n}$, $(n \ge 5)$. Then $\gamma_{mdim}(G) = r + s - 2$.

Proof. An undirected graph with 2n vertices in the two sets $\{v_1, v_2, ..., v_r\}$ and $\{u_1, u_2, ..., u_s\}$ and with an edge from u_i to v_j , whenever $i \neq j$.

Let $X = \{v_1, v_2, \dots, v_r\}$ and $Y = \{u_1, u_2, \dots, u_s\}$ be the two bipartite sets of G.

Eur. Chem. Bull. 2023, 12(Special Issue 7), 1755-1769

Section A-Research paper
Let
$$M = \{v_1, v_2, ..., v_{r-1}, u_1, u_2, ..., u_{s-1}\}$$
. Then $mr(v_1/M) = (0, 2, ..., 3, 1, 1, ..., 1)$,
 $mr(v_2/M) = (2, 0, 2, ..., 1, 1, ..., 1), mr(v_3/M) = (2, 2, 0, ..., 2, 1, 1, ..., 1),$
 $mr(v_4/M) = (2, 2, 2, 0, ..., 2, 1, 1, ..., 1), ..., mr(v_{r-1}/M) = (2, 2, ..., 2, 0, 1, 1, ..., 1),$
 $mr(v_r/M) = (2, 2, 2, ..., 2, 1, 1, ..., 1), mr(u_1/M) = (3, 1, 1, ..., 1, 0, 2, 2, ..., 2),$
 $mr(u_2/M) = (1, 1, ..., 1, 2, 0, ..., 2), mr(u_3/M) = (1, 1, ..., 1, 2, 2, 0, ..., 2),$
 $mr(u_4/M) = (1, 1, ..., 1, 2, 2, ..., 2),$
 $mr(u_s/M) = (1, 1, ..., 1, 2, 2, ..., 2).$

Hence it follows that *M* is a monophonic resolving set of *G*. Since the vertices v_r and u_s are dominated by at least one element of *M*, *M* is a dominating set of *G*. Therefore *M* is a monophonic resolving dominating set of *G*, and so $\gamma_{mdim}(G) \leq r + s - 2$. We prove that $\gamma_{mdim}(G) = r + s - 2$. On the contrary suppose that $\gamma_{mdim}(G) \leq r + s - 3$. Then there exist a $\gamma_{mdim}(G)$ -set *M'* such that |M'| < r + s - 3. If $M' \subset X$ or *Y*. Then *M'* is not a dominating set of *G*. Therefore $M' \subseteq X \cup Y$. Then there exists $u \in X$ and $v \in Y$ with $u, v \in M'$, such that mr(u / M') = mr(v / M'), which is a contradiction. Therefore $\gamma_{mdim}(G) = r + s - 2$.

References

- [1] F. Buckley, and F. Harary, *Distance in graphs*, Addison-Wesley, Redwood City, CA, (1990).
- [2] G. Chartrand, L. Eroh, M.A. Johnson and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (1-3), (2000),99-113.
- [3] M. C. Dourado, F. Protti, and J. L. Szwarcfiter, Complexity results related to monophonic convexity, *Discrete Applied Mathematics*, 158, (2010), 1268 - 1274.
- [4] J. John and S. Panchali, The upper monophonic number of a graph, Int. J. Math. Combin. 4, (2010), 46 – 52.
- J. John and S. Panchali, The forcing monophonic number of a graph, International Journal of 1766
 Eur. Chem. Bull. 2023, 12(Special Issue 7), 1755-1769

Mathemametical Archive, (3)(3),(2012), 935-938.

- [6] J. John and P.Arul Paul Sudhahar, The monophonic domination number of a graph, Proceeding of the International conference on Mathematics and Business Management, 1, (2012), 142-145.
- [7] J. John and P. Arul Paul Sudhahar and A. Vijayan, The connected edge monophonic number of a graph, 3(2), (2012), 132-136.
- [8] J. John, P.Arul Paul Sudhahar, and A.Vijayan, The connected monophonic number of a graph, International Journal of Combinatorial graph theory and applications. 5(1), (2012), 41-48.
- [9] J. John and P. Arul Paul Sudhahar, The upper connected monophonic number and forcing connected monophonic number of a graph, International Journal of Mathematics Trends and Technology 3 (1), (2012), 29-33.
- [10] J. John, G. Edwin and P. Arul Paul Sudhahar, The Steiner domination number of a graph, International Journal of Mathematics and Computer Applications Research, 3(3), (2013), 37 - 42.
- [11] J. John and P. Arul Paul Sudhahar, The upper edge –to-vertex monophonic number of a graph, International Journal of Mathematics and Computer Applications Research 3 (1),(2013), 291-296.
- [12] J. John and N. Arianayagam, The detour domination number of a graph, Discrete Mathematics Algorithms and Applications, 09, 01,(2017), 1750006.
- [13] J John and K. Uma Samundesvari, Total and forcing total edge-to-vertex monophonic number of a graph, Journal of Combinatorial Optimization 35, (2018), 134-147.
- [14] J. John, P. Arul Paul Sudhahar, and D. Stalin, On the (M.D) Number of a graph Proyecciones Journal of Mathematics ,38(2), (2019), 255-266.
- [15] J.John, The forcing monophonic and the forcing geodetic numbers of a graph, Indonesian Journal of Combinatorics .4(2) (2020) 114-125.
- [16] J. John, and V. Sujin Flower, The edge-to-edge geodetic domination number of a graph, Proyecciones Journal of Mathematics, 40(3), (2021), 635-658.

Eur. Chem. Bull. 2023, 12(Special Issue 7), 1755-1769

- [17] J. John and M.S. Malchijah, The forcing non-split domination number of a graph, Korean journal of mathematics, 29(1), (2021), 1-12.
- [18] J. John, On the vertex monophonic, vertex geodetic and vertex Steiner numbers of graphs, Asian-European Journal of Mathematics 14 (10), (2021), 2150171
- [19] J.John, and V. Sujin Flower, On the forcing domination and the forcing total domination numbers of a graph, Graphs and Combinatorics, 38, (2022)142.
- [20] S.Kavitha, S.Chellathurai and J.John, On the forcing fonnected domination number of a graph, Journal of Discrete Mathematical Sciences and Cryptography, 3(20) (2017) 611-624.
- [21] E. M. Paluga, and S. R. Canoy Jr., Monophonic numbers of the join and Composition of connected graphs, Discrete Mathematics, 307, (2007), 1146–1154.
- [22] A.P.Santhakumaran P.Titus, Monophonic distance in Graphs, Discrete Mathematics Algorithms and Applications (3) ,(2011),159.
- [23] J.Suji Priya and. T. Muthu Nesa Beula, The monophonic metric dimension of some graphs under join operation. (communicated)
- [24] K. Uma Samundesvari and J. John, The edge fixing edge-to-vertex monophonic number of a graph, Applied Mathematics E-Notes 15, (2015), 261-275.