E®
 The Monophonic Domination Dimension Number of a Graph

${ }^{1}$ J. SUJI PRIYA AND ${ }^{2}$ T. MUTHU NESA BEULA
${ }^{1}$ Research Scholar,(Reg. No:20113162092014), Department of Mathematics, Women's Christian College, Nagercoil.
email: sujimrthy@gmail.com
${ }^{2}$ Assistant Professor, Department of Mathematics,
Women's Christian College, Nagercoil.
email: tmnbeula@gmail.com
Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli- 627012

Abstract

Let G be a connected graph. For $M \subseteq V(G)$, for each $v \in V(G)$ the monophonic resolving set is $m r(v / M)=\left(d_{m}\left(v, v_{1}\right), d_{m}\left(v, v_{2}\right) \ldots d_{m}\left(v, v_{k}\right)\right)$, where $M=\left\{v_{1}, v_{2} \ldots . v_{k}\right\} . M$ is said to be a monophonic resolving set of G, if $\operatorname{mr}(v / M) \neq \operatorname{mr}(u / M)$ for every $u, v \in V(G)$, where $u \neq v$. The minimum cardinality of a monophonic resolving set is called the monophonic dimension of G. It is denoted by $\operatorname{mdim}(G)$. A set $M \subseteq V(G)$ is said to be a monophonic resolving dominating set of G. If G is both a monophonic resolving set and a dominating set of G.The minimum cardinality of a monophonic resolving dominating set of G is the monophonic resolving domination number of G and is denoted by $\gamma_{\operatorname{mdim}}(G)$. Any monophonic resolving set of cardinality $\gamma_{\operatorname{mdim}}(G)$ is called a $\gamma_{\text {m } \mathrm{dim}^{-}}$set of G. In this article, the monophonic domination dimension number of some standard graphs are determined.

Keywords: distance, chord, monophonic path, monophonic distance, resolving set, metric dimension, monophonic metric dimension, domination number, monophonic domination metric dimension.

AMS Subject Classification: 05C38, 05C69.

1. Introduction

Let $G=(V, E)$ be a simple undirected connected graph. The order and size of G are denoted by n and m respectively. For basic graph theoretical terminology, we refer [1]. The length of the shortest $u-v$ path in G is the distance $d(u, v)$ between vertices u and v in a connected graph G. A $u-v$ path with length $d(u, v)$ is referred to as an $u-v$ geodesic. For basic graph theoretic terminology, we refer [1]. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\} \subset V(G)$ be an ordered set and $v \in V(G)$. The representation $r(v / W)$ of v with respect to W is the k-tuple $\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)$. Then W is called a resolving set if different vertices of G have different representations with respect to W. A resolving set of minimum number of elements is called a basis for G and the cardinality of the basis is known as the metric dimension of G, represented by $\operatorname{dim}(G)$. These concepts were studied in [2].

A path $P^{\prime} s$ chord is an edge that connects two of its non-adjacent vertices. If a path between two vertices u and v in a connected graph G lacks chords, it is referred to as monophonic path. The length of the longest $u-v$ monophonic path in G is the monophonic distance $d_{m}(u, v)$ between u and v. These concepts were studied in [3-,11. 13, 15, 21, 22, 24]. In this article, we study a new metric dimension called the monophonic metric dimension of a graph. For $M=\left\{v_{1}, v_{2} \ldots v_{k}\right\} \subset V(G)$ for each $v \in V$ the representation $\operatorname{mr}(v / W)$ of v with respect to W is the k-tuple $m r(v / M)=\left(d_{m}\left(v, v_{1}\right), d_{m}\left(v, v_{2}\right) \ldots d_{m}\left(v, v_{k}\right)\right) . M$ is said to be a monophonic resolving set of G, if $\operatorname{mr}(v / M) \neq \operatorname{mr}(u / M)$ for every $u, v \in V$, where $u \neq v$. The minimum cardinality of a monophonic resolving set is called the monophonic dimension of G. It is denoted by $\operatorname{mdim}(G)$. Any monophonic resolving set of cardinality $\operatorname{mdim}(G)$ is called m dim-set of G.This concept was introduced and studied in [23]. The dominating set of a graph G is a set S of vertices G such that every vertex not in S is adjacent to a vertex in S. The domination number of G is denoted by $\gamma(G)$ is the minimum size of a dominating set. These concepts were studied in $[6,10,12,14,16,17,19,20]$

2. The Monophonic Domination Dimension Number of a Graph

Definition.2.1. Let G be a connected graph. A set $M \subseteq V(G)$ is said to be a monophonic resolving dominating set of G if G is both a monophonic resolving set and a dominating set of G.

Section A-Research paper The minimum cardinality of a monophonic resolving dominating set of G is the monophonic resolving domination number of G and is denoted by $\gamma_{\operatorname{mdim}}(G)$. Any monophonic resolving set of cardinality $\gamma_{\text {mdim }}(G)$ is called a $\gamma_{\text {mdim }}-$ set of G.

Example.2.2 For the graph G is given in Figure 1, $M_{1}=\left\{v_{3}, v_{7}\right\}$ is the unique γ-set of G, which is not a resolving set of G and so $\gamma_{\text {mdim }}(G) \geq 3$. Let $M_{2}=\left\{v_{2}, v_{3}, v_{7}\right\}$.Then

Figure 1

$$
\begin{aligned}
& m r\left(v_{1} / M_{2}\right)=(1,4,1), m r\left(v_{2} / M_{2}\right)=(0,1,4), \operatorname{mr}\left(v_{3} / M_{2}\right)=(1,0,3) \\
& m r\left(v_{4} / M_{2}\right)=(2,1,4), \ldots, m r\left(v_{5} / M_{2}\right)=(4,1,4), m r\left(v_{6} / M_{2}\right)=(3,4,1)
\end{aligned}
$$

$\operatorname{mr}\left(v_{7} / M_{2}\right)=(4,3,0)$. Since each representation are distinct, M_{2} is a monophonic resolving set of G. Also M_{2} is a dominating set of G. Hence M_{2} is a monophonic resolving dominating set of G so that $\gamma_{\text {mdim }}(G)=3$.

Theorem.2.3.For a star graph $G=K_{1, n-1}(n \geq 3)$. Then $\gamma_{\text {mdim }}(G)=n-1$.
Proof. Let $M=\left\{v_{1}, v_{2}, . . v_{n-2}\right\}$, Then

$$
\begin{aligned}
& \operatorname{mr}(x / M)=(0,1,1, \ldots, 1,1), \operatorname{mr}\left(v_{1} / M\right)=(1,0,2, \ldots, 2,2), \operatorname{mr}\left(v_{2} / M\right)=(1,2,0, \ldots 2,2) \\
& \operatorname{mr}\left(v_{3} / M\right)=(1,2,2,0, \ldots 2,2), \ldots, \operatorname{mr}\left(v_{n-2} / M\right)=(1,2, \ldots, 0,2), \operatorname{mr}\left(v_{n-1} / M\right)=(1,2, \ldots, 2,2)
\end{aligned}
$$ Since each representation are distinct, M is monophonic resolving set of G. Also M is a dominating set of G. Hence M is a monophonic resolving dominating set of G so that and so $\gamma_{\text {mdim }}(G) \leq n-1$. We prove that $\gamma_{\text {mdim }}(G)=n-1$. On the contrary suppose that $\gamma_{\text {mdim }}(G) \leq n-2$. Then there exist a $\gamma_{\text {mdim }}-$ set $\left|M^{\prime}\right|$ such that $\left|M^{\prime}\right| \leq n-2$. Then M^{\prime} is neither a domination set nor a monophonic resolving set of G, which is a contradiction. Therefore $\gamma_{m \operatorname{dim}}(G)=n-1$.

Theorem.2.4. For the complete bipartite graph $G=K_{r, s}(2 \leq r \leq s), \gamma_{m d i m}(G)=r+s-2$.
Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ and $y=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$ be the two bipartite sets of G.
Let $M=\left\{x_{1}, x_{2}, . . x_{r-1}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{s-1}\right\}$. Then

$$
\begin{aligned}
& m r\left(x_{1} / M\right)=(0,2,2, \ldots, 2,1,1, \ldots, 1), \operatorname{mr}\left(x_{2} / M\right)=(2,0,2, \ldots, 2,1,1, \ldots, 1), \\
& m r\left(x_{3} / M\right)=(2,2,0, \ldots, 2,1,1, \ldots, 1), \ldots, \operatorname{mr}\left(x_{r-1} / M\right)=(2,2, \ldots 2,0,1,1, \ldots, 1), \\
& m r\left(x_{r} / M\right)=(2,2,2, \ldots, 2,1,1, \ldots, 1), \operatorname{mr}\left(y_{1} / M\right)=(1,1,1, \ldots, 0,2,2, \ldots, 2), \\
& m r\left(y_{2} / M\right)=(1,1, \ldots, 1,2,0,2, \ldots, 2), m r\left(y_{3} / M\right)=(1,1, \ldots, 1,2,2,0, \ldots, 2), \ldots, \\
& m r\left(y_{s-1} / M\right)=(1,1, \ldots, 1,2,2, \ldots, 0), \operatorname{mr}\left(y_{s} / M\right)=(1,1, \ldots, 1,2,2, \ldots, 2) .
\end{aligned}
$$

Since each representation are distinct, M is monophonic resolving set. Since the vertices x_{r} and y_{s} are dominated by at least one element of M, M is a dominating set of G.Therefore M is a monophonic resolving dominating set of G and so $\gamma_{\text {mdim }}(G) \leq r+s-2$. We prove that $\gamma_{\text {mdim }}(G)=r+s-2$.On the contrary suppose that $\gamma_{\text {mdim }}(G) \leq r+s-3$. Then there exists a $\gamma_{\text {mdim }}(G)$-set M^{\prime} such that $\left|M^{\prime}\right|<r+s-3$. Then there exists at least three elements
$u, v, w \in V(G)$ such that $u, v, w \notin M^{\prime}$. Without loss of generality, let us assume that $u, v \notin X$. Let $u=x_{r-1}$ and $v=x_{r_{0}}$.Then $\operatorname{mr}\left(u / M^{\prime}\right)=\operatorname{mr}\left(v / M^{\prime}\right)=(2,2, \ldots, 2,1,1, \ldots, 1)$. Which is a contradiction. Therefore $\gamma_{\text {mdim }}(G)=r+s-2$.

Theorem.2.5.For a fan graph $G=K_{1}+P_{n-1}(n \geq 5)$.Then $\gamma_{\text {mdim }}(G)=2$.
Proof. Let $V\left(K_{1}\right)=x$ and $V\left(P_{n-1}\right)=\left\{v_{1}, v_{2}, . ., v_{n-1}\right\}$. Let $M=\left\{x, v_{1}\right\}$.Then

Section A-Research paper
$m r(x / M)=(0,1), m r\left(v_{1} / M\right)=(1,0), m r\left(v_{2} / M\right)=(1,1), m r\left(v_{3} / M\right)=(1,2)$,
$m r\left(v_{4} / M\right)=(1,3), \ldots, m r\left(v_{n-1} / M\right)=(1, n-2)$.
Since each representations are distinct, M is a monophonic resolving set of G. Since x is a universal vertices of G and $x \in M, M$ is a dominating set of G. Hence M is a monophonic resolving dominating set of G. Therefore $\gamma_{\text {mdim }}(G)=2$.

Theorem.2.6. For a Wheel graph $G=K_{1}+C_{n-1}(n \geq 5)$. Then $\gamma_{\text {mdim }}(G)=\left\{\begin{array}{l}2 \text { for } n=5 \\ 3 \text { for } n \geq 6\end{array}\right.$
Proof. Let $V\left(K_{1}\right)=x$ and $V\left(C_{n-1}\right)=\left\{v_{1}, v_{2}, . ., v_{n-1}\right\}$. For $n=5$.Let $M=\left(v_{1}, v_{2}\right)$.Then $m r(x / M)=(1,1), m r\left(v_{1} / M\right)=(0,1), m r\left(v_{2} / M\right)=(1,0), \operatorname{mr}\left(v_{3} / M\right)=(2,1), \ldots, m r\left(v_{n-1} /\right.$ $M)=(1,2)$. Since each representations are distinct, M is a monophonic resolving set of G. Since x is a universal vertices of G and $x \in M, M$ is a dominating set of G. Hence M is a monophonic resolving dominating set of G. Therefore $\gamma_{\operatorname{mdim}}(G)=2$.

Let $n \geq 6$. It is easily verified that no two element subset of $V(G)$ is not a monophonic resolving dominating set of G, and so $\gamma_{\text {mdim }}(G) \geq 3$.

Let $M_{1}=\left\{x, v_{1}, v_{2}\right\}$.Then $\operatorname{mr}\left(x / M_{1}\right)=(0,1,1), \operatorname{mr}\left(v_{1} / M_{1}\right)=(1,0,1)$,
$m r\left(v_{2} / M_{1}\right)=(1,1,0), m r\left(v_{3} / M_{1}\right)=(1, n-3,1), m r\left(v_{4} / M_{1}\right)=(1, n-4, n-3), m r\left(v_{5} /\right.$ $\left.M_{1}\right)=(1, n-3, n-4), \ldots, m r\left(v_{n-1} / M_{1}\right)=(1,1, n-3)$.

Since each representations are distinct, M_{1} is a monophonic resolving set of G. Since x is a universal vertices of G, and $x \in M_{1} \cdot M_{1}$ is a monophonic resolving dominating set of G. Hence M_{1} is a monophonic resolving dominating set of G.Therefore $\gamma_{m \operatorname{dim}}(G)=3$.

Theorem.2.7 For the path $G=P_{n}(n \geq 4)$, Then $\gamma_{\text {maim }}(G)=\left\{\begin{array}{lr}\frac{n}{3} & \text { if } n \equiv 0(\bmod 3) \\ {\left[\frac{n}{3}\right]} & \text { Otherwise }\end{array}\right.$
Proof. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$,we have the following cases
Case (i) Let $n \equiv 0(\bmod 3)$. Let $n=3 k, k \geq 3$.Then $M=\left\{v_{2}, v_{5}, \ldots, v_{3 k-1}\right\}$ is a dominating set of G,

$$
\begin{aligned}
& \operatorname{mr}\left(v_{1} / M\right)=(1,4,7, \ldots, 3 k-2), m r\left(v_{2} / M\right)=(0,3,6, \ldots, 3 k-3), \\
& m r\left(v_{3} / M\right)=(1,2,5, \ldots, 3 k-4), \operatorname{mr}\left(v_{4} / M\right)=(2,1,4, \ldots, 3 k-5), \\
& m r\left(v_{5} / M\right)=(3,0,3, \ldots, 3 k-6), \operatorname{mr}\left(v_{6} / M\right)=(4,1,2, \ldots, 3 k-7), \\
& m r\left(v_{7} / M\right)=(5,2,1, \ldots, 3 k-8), m r\left(v_{8} / M\right)=(6,3,0, \ldots, 3 k-9), \\
& \operatorname{mr}\left(v_{9} / M\right)=(7,4,1 \ldots, 3 k-10), \ldots, m r\left(v_{3 k-4} / M\right)=(3 \mathrm{k}-5,3 \mathrm{k}-8,3 \mathrm{k}-11, \ldots, 1,4), \\
& m r\left(v_{3 k-3} / M\right)=(3 \mathrm{k}-4,3 \mathrm{k}-7,3 \mathrm{k}-10, \ldots, 2,5), m r\left(v_{3 k-2} / M\right)=(3 \mathrm{k}-3,3 \mathrm{k}-6,3 \mathrm{k}- \\
& 9, \ldots, 3,6), m r\left(v_{3 k-1} / M\right)=(3 \mathrm{k}-2,3 \mathrm{k}-5,3 \mathrm{k}-8, \ldots, 4,7) .
\end{aligned}
$$

Since each representations are distinct, M is a monophonic resolving set of G. Also M is a dominating set of G. Hence M is a monophonic resolving dominating set of G and so
$\gamma_{\text {mdim }}(G) \leq \frac{n}{3}$. We prove that $\gamma_{\text {mdim }}(G)=\frac{n}{3}$. On the contrary suppose that $\gamma_{\text {mdim }}(G)<\frac{n}{3}-1$. Then there exist a $\gamma_{\text {mdim }}$-set M^{\prime} such that $\left|M^{\prime}\right|<\frac{n}{3}-1$.Then M^{\prime} is not a dominating set of G, which is a contradiction. Therefore $\gamma_{\operatorname{mdim}}(G)=\frac{n}{3}$.

Case(ii) Let $n \equiv 1(\bmod 3)$. Let $n=3 k+1, k \geq 3$.Then $M=\left\{v_{2}, v_{5}, v_{8}, v_{10} \ldots, v_{3 k}\right\}$

$$
\begin{aligned}
& m r\left(v_{1} / M\right)=(1,4,7,9 \ldots, 3 \mathrm{k}-2,3 \mathrm{k}), m r\left(v_{2} / M\right)=(0,3,6,8, \ldots, 3 k-3,3 k-1), \\
& m r\left(v_{3} / M\right)=(1,2,5,7 \ldots, 3 k-4,3 k-2), m r\left(v_{4} / M\right)=(2,1,4,6 \ldots, 3 k-5,3 k-3), \\
& m r\left(v_{5} / M\right)=(3,0,3,5, \ldots, 3 k-6,3 k-4), \ldots, m r\left(v_{3 k-4} / M\right)=(3 \mathrm{k}-5,3 \mathrm{k}-7,3 \mathrm{k}-8,3 \mathrm{k}- \\
& 5, \ldots 4,2,1,4), m r\left(v_{3 k-3} / M\right)=(3 \mathrm{k}-6,3 \mathrm{k}-8,3 \mathrm{k}-7,3 \mathrm{k}-4, \ldots, 5,2,1,3), \\
& m r\left(v_{3 k-2} / M\right)=(3 \mathrm{k}-7,3 \mathrm{k}-9,3 \mathrm{k}-6,3 \mathrm{k}-3, \ldots, 2,0,3,6), m r\left(v_{3 k-1} / M\right)=(3 \mathrm{k}-8,3 \mathrm{k}- \\
& 10,3 \mathrm{k}-5,3 \mathrm{k}-2, \ldots 1,1,4,7), m r\left(v_{3 k} / M\right)=(3 \mathrm{k}-9,3 k-11,3 k-4,3 k-1, \ldots 0,2,5,8)
\end{aligned}
$$

Since each representations are distinct, M is a monophonic resolving set of G. Also M is a dominating set of G. Hence M is a monophonic resolving dominating set of G so that $\gamma_{\text {mdim }}(G) \leq\left\lceil\frac{n}{3}\right\rceil$. We prove that $\gamma_{\text {mdim }}(G)=\left\lceil\frac{n}{3}\right\rceil$. On the contrary suppose that

Section A-Research paper $\gamma_{\text {mdim }}(G)<\left\lceil\frac{n}{3}\right\rceil-1$.Then there exist a $\gamma_{\text {mdim }}$-set M^{\prime} such that $\left|M^{\prime}\right|<\left\lceil\frac{n}{3}\right\rceil-1$. Then M^{\prime} is not a dominating set of G, which is a contradiction. Therefore $\gamma_{\text {maim }}(G)=\left\lceil\frac{n}{3}\right\rceil$

Case(iii) Let $n \equiv 2(\bmod 3)$. Let $n=3 k+2, k \geq 1$.Then $M=\left\{v_{2}, v_{5}, v_{8}, v_{11} \ldots, v_{3 k-1}\right\}$

$$
\begin{aligned}
& m r\left(v_{1} / M\right)=(1,4,7,10 \ldots, 3 k-2), m r\left(v_{2} / M\right)=(0,3,6,9, \ldots, 3 k-3), \\
& m r\left(v_{3} / M\right)=(1,2,5,8 \ldots, 3 k-4), \operatorname{mr}\left(v_{4} / M\right)=(2,1,4,7, \ldots, 3 k-5), \\
& m r\left(v_{5} / M\right)=(3,0,3,6, \ldots, 3 k-6), \operatorname{mr}\left(v_{6} / M\right)=(4,1,2,5 \ldots, 3 k-7), \\
& m r\left(v_{7} / M\right)=(5,2,1,4 \ldots, 3 k-8), \operatorname{mr}\left(v_{8} / M\right)=(6,3,0,3 \ldots, 3 k-9), \\
& m r\left(v_{9} / M\right)=(7,4,1,2, \ldots, 3 k-10), m r\left(v_{10} / M\right)=(8,5,2,1, \ldots, 3 k-11), \\
& m r\left(v_{11} / M\right)=(9,6,3,0, \ldots, 3 k-12), \ldots ., \\
& m r\left(v_{3 k-5} / M\right)=(3 \mathrm{k}-4,3 \mathrm{k}-7,3 \mathrm{k}-8,3 \mathrm{k}-5, \ldots 4,2,1,4), \\
& m r\left(v_{3 k-4} / M\right)=(3 \mathrm{k}-3,3 k-6,3 k-9,3 k-6, \ldots 3,0,3,6), \\
& m r\left(v_{3 k-3} / M\right)=(3 \mathrm{k}-2,3 \mathrm{k}-5,3 \mathrm{k}-10,3 \mathrm{k}-7, \ldots, 2,1,4,7), \\
& m r\left(v_{3 k-2} / M\right)=(3 \mathrm{k}-1,3 \mathrm{k}-4,3 \mathrm{k}-11,3 k-8, \ldots, 1,2,5,8), \\
& m r\left(v_{3 k-1} / M\right)=(3 k, 3 k-3,3 k-12,3 k-9, \ldots, 0,3,6,9), \\
& m r\left(v_{3 k} / M\right)=(3 k-9,3 k-11,3 k-4,3 k-1, \ldots 0,2,5,8)
\end{aligned}
$$

Since each representations are distinct, M is a monophonic resolving set of G. Also M is a dominating set of G. Hence M is a monophonic resolving dominating set of G so that $\gamma_{\text {mdim }}(G) \leq\left\lceil\frac{n}{3}\right\rceil$.We prove that $\gamma_{\text {mdim }}(G)=\left\lceil\frac{n}{3}\right\rceil$. On the contrary suppose that $\gamma_{\text {mdim }}(G)<\left\lceil\frac{n}{3}\right\rceil-1$. Then there exist a $\gamma_{m d i m}$-set M^{\prime} such that $\left|M^{\prime}\right|<\left\lceil\frac{n}{3}\right\rceil-1$. Then M^{\prime} is not a dominating set of G, which is a contradiction. Therefore $\gamma_{\text {mdim }}(G)=\left\lceil\frac{n}{3}\right\rceil$.

Theorem.2.8 For the cycle graph $G=C_{n}(n \geq 3)$, Then $\gamma_{\operatorname{mdim}}(G) \begin{cases}2 & \text { if } n \in\{3,4,5\} \\ \frac{n}{3} & \text { if } n \equiv 0(\bmod 3) \\ \left\lceil\frac{n}{3}\right\rceil & \text { Otherwise }\end{cases}$
Proof. Let C_{n} be $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}, v_{1}\right\}$ if $n=3$.

If $n=4$, then $M=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a $\gamma_{m d i m}-$ set of G so that $\gamma_{\text {mdim }}(G)=2$.

If $n=5$, then $M=\left\{v_{1}, v_{3}, v_{4}\right\}$ is a $\gamma_{m d i m}$-set of G so that $\gamma_{m d i m}(G)=2$.

For $n \geq 6$, we consider three cases

Case (i) Let $n \equiv 0(\bmod 3) . n=3 k, k \geq 3$. Let $M_{1}=\left\{v_{1}, v_{4}, \ldots, v_{3 k-2}, v_{3 k}\right\}$.Then M_{1} is a dominating set of G. To prove M_{1} is a monophonic resolving set of G.

$$
\begin{aligned}
& \operatorname{mr}\left(\mathrm{v}_{1} / M_{1}\right)=(0,6,6, \ldots, 3 \mathrm{k}-3), \operatorname{mr}\left(\mathrm{v}_{2} / M_{1}\right)=(1,7,5, \ldots, 3 k-4) \\
& \operatorname{mr}\left(v_{3} / M_{1}\right)=(7,1,5, \ldots, 3 k-4), \operatorname{mr}\left(v_{4} / M_{1}\right)=(6,0,6, \ldots, 3 k-3) \\
& \operatorname{mr}\left(v_{5} / M_{1}\right)=(5,1,7, \ldots, 3 k-2), \ldots, \operatorname{mr}\left(v_{3 k-3} / M_{1}\right)=(3 \mathrm{k}-8,3 \mathrm{k}-2,3 k-4, \ldots 1,7,5) \\
& \operatorname{mr}\left(v_{3 k-2} / M_{1}\right)=(3 k-9,3 k-3,3 k-3, \ldots 0,6,6) \\
& \operatorname{mr}\left(v_{3 k-1} / M_{1}\right)=(3 \mathrm{k}-8,3 k-4,3 \mathrm{k}-2, \ldots 1,5,7) \\
& \operatorname{mr}\left(v_{3 k} / M_{1}\right)=(3 k-2,3 k-4,3 \mathrm{k}-8, \ldots, 7,5,1)
\end{aligned}
$$

Since each representations are distinct, M_{1} is a monophonic resolving set of G. Hence M_{1} is a monophonic resolving dominating set of G and so $\gamma_{\text {mdim }}(G) \leq \frac{n}{3}$. We prove that $\gamma_{\text {mdim }}(G)=\frac{n}{3}$.On the contrary suppose that $\gamma_{\operatorname{mdim}}(G)<\frac{n}{3}-1$. Then there exist a $\gamma_{m d i m}$-set $M_{1}{ }^{\prime}$ such that $\left|M_{1}{ }^{\prime}\right|<\frac{n}{3}-1$.Then M_{1}^{\prime} is not a dominating set of G, which is a contradiction. Therefore $\gamma_{\text {maim }}(G)=\frac{n}{3}$

Case(ii) Let $n \equiv 1(\bmod 3)$. Let $n=3 k+1, k \geq 3$.Then $M_{2}=\left\{v_{1}, v_{4}, \ldots, v_{3 k-2}, v_{3 k+1}\right\}$.Then M_{2} is a dominating set of G. To prove M_{2} is a monophonic resolving set of G. Then

$$
\begin{aligned}
& \operatorname{mr}\left(v_{1} / M_{2}\right)=(0,7,6,1, \ldots, 3 k-8), \operatorname{mr}\left(v_{2} / M_{2}\right)=(1,8,5,8, \ldots, 3 k-1), \\
& \operatorname{mr}\left(v_{3} / M_{2}\right)=(8,1,6,7 \ldots, 3 k-2), \operatorname{mr}\left(v_{4} / M_{2}\right)=(7,0,7,6, \ldots, 3 k-3), \\
& \operatorname{mr}\left(v_{5} / M_{2}\right)=(6,1,8,5, \ldots, 3 k-4), \ldots, \operatorname{mr}\left(v_{3 k-3} / M_{2}\right)=(3 k-3,3 k-8,3 k-1,3 k- \\
& 4, \ldots 6,1,8,5), \operatorname{mr}\left(v_{3 k-2} / M_{2}\right)=(3 k-2,3 k-9,3 k-2,3 k-3, \ldots, 7,0,7,6), \\
& \operatorname{mr}\left(v_{3 k-1} / M_{2}\right)=(3 \mathrm{k}-1,3 \mathrm{k}-8,3 \mathrm{k}-3,3 \mathrm{k}-2, \ldots 8,1,6,7), \operatorname{mr}\left(v_{3 k} / M_{2}\right)=(3 \mathrm{k}-8,3 \mathrm{k}- \\
& 1,3 \mathrm{k}-4,3 \mathrm{k}-1, \ldots 1,8,5,8), \operatorname{mr}\left(v_{3 k+1} / M_{2}\right)=(3 \mathrm{k}-9,3 \mathrm{k}-2,3 \mathrm{k}-3,3 \mathrm{k}-8, \ldots, 0,7,6,1) .
\end{aligned}
$$

Since each representations are distinct, M_{2} is a monophonic resolving set of G. Also M is a dominating set of G.Hence M_{2} is a monophonic resolving dominating set of G.Therefore $\gamma_{\text {mdim }}(G) \leq\left\lceil\frac{n}{3}\right]$. We prove that $\gamma_{\text {maim }}(G)=\left\lceil\frac{n}{3}\right\rceil$. On the contrary suppose that $\gamma_{\text {mdim }}(G)<$ $\left\lceil\frac{n}{3}\right\rceil-1$. Then there exist a $\gamma_{\text {mdim }}(G)$-set $M_{2}{ }^{\prime}$ such that $\left|M_{2}{ }^{\prime}\right|<\left\lceil\frac{n}{3}\right\rceil-1$. Then M^{\prime} is not a dominating set of G, which is a contradiction. Therefore $\gamma_{\text {mdim }}(G)=\left\lceil\frac{n}{3}\right\rceil$.

Case (iii) Let $n \equiv 2(\bmod 3)$. Let $n=3 k+2, k \geq 3$.Then $M_{3}=\left\{v_{1}, v_{4}, \ldots, v_{3 k-2}, v_{3 k+1}\right\}$.Then M_{3} is a dominating set of G.To prove M_{2} is a monophonic resolving set of G. Then

$$
\begin{aligned}
& \operatorname{mr}\left(v_{1} / M_{3}\right)=(0,8,6,9, \ldots, 3 k-3,3 k), \operatorname{mr}\left(v_{2} / M_{3}\right)=(1,9,6,8, \ldots, 3 k-3,3 k-1), \\
& \operatorname{mr}\left(v_{3} / M_{3}\right)=(9,1,7,7, \ldots, 3 k-2,3 k-2), \operatorname{mr}\left(v_{4} / M_{3}\right)=(8,0,8,6, \ldots, 3 k-1,3 k-3), \\
& \operatorname{mr}\left(v_{5} / M_{3}\right)=(7,1,9,6, \ldots, 3 k, 3 k-3), \ldots, \operatorname{mr}\left(v_{3 k-3} / M_{3}\right)=(3 k-3,3 k-8,3 k-1,3 k- \\
& 4, \ldots 6,1,8,5), \operatorname{mr}\left(v_{3 k-2} / M_{3}\right)=(3 k-1,0,3 k-1,3 k-3, \ldots, 8,0,8,6), \\
& \operatorname{mr}\left(v_{3 k-1} / M_{3}\right)=(3 k, 1,3 k-2,3 k-2, \ldots 9,1,7,7), \operatorname{mr}\left(v_{3 k} / M_{3}\right)=(1,3 k, 3 k-3,3 k- \\
& 1, \ldots 1,9,6,8), \operatorname{mr}\left(v_{3 k+1} / M_{3}\right)=(0,3 k-1,3 k-3,3 k, \ldots, 0,8,6,9) . \\
& \operatorname{mr}\left(v_{3 k+2} / M_{3}\right)=(1,3 k-2,3 k-2,1, \ldots, 1,7,7,1) .
\end{aligned}
$$

Since each representations are distinct, M_{2} is a monophonic resolving set of G. Also M is a dominating set of G.Hence M_{2} is a monophonic resolving dominating set of G.Therefore $\gamma_{\text {mdim }}(G) \leq\left\lceil\frac{n}{3}\right]$. We prove that $\gamma_{\text {maim }}(G)=\left\lceil\frac{n}{3}\right\rceil$. On the contrary suppose that $\gamma_{\text {mdim }}(G)<$
$\left\lceil\frac{n}{3}\right\rceil-1$.Then there exist a $\gamma_{\text {mdim }}(G)$-set $M_{3}{ }^{\prime}$ such that $\left|M_{3}{ }^{\prime}\right|<\left\lceil\frac{n}{3}\right\rceil-1$. Then M^{\prime} is not a dominating set of G, which is a contradiction. Therefore $\gamma_{\text {mdim }}(G)=\left\lceil\frac{n}{3}\right\rceil$.

Theorem.2.9. For the Alternate triangular cycle graph $G=A\left(C_{2 n}\right), \gamma_{\text {mdim }}(G)=3$.
Proof. An alternate triangular cycle $A\left(C_{2 n}\right)$ is obtained from even cycle $C_{2 n}=\left\{v_{1}, u_{1}, v_{2}, u_{2}, \ldots, v_{n}, u_{n}\right\}$ by joining v_{i} and u_{i} to a new vertex w_{i}. That is every alternate edge of a cycle is replaced by C_{3}. Let $n=4, M=\left\{v_{1}, v_{2}, v_{4}\right\}$.Then $\operatorname{mr}\left(v_{1} / M\right)=(0,1,1)$, $m r\left(v_{2} / M\right)=(1,0, n-2), m r\left(v_{3} / M\right)=(n-2,1,1), m r\left(v_{4} / M\right)=(1, n-2,0)$, $m r\left(u_{1} / M\right)=(1,1, n-1), m r\left(u_{2} / M\right)=(n-1, n-1,1)$. Since each representations are distinct, M is a monophonic resolving set of G. Also M is a dominating set of G. Hence M is a monophonic resolving dominating set of G and so $\gamma_{\text {mdim }}(G) \leq 3$. We have to prove that $\gamma_{\text {mdim }}(G)=3$.Suppose that $\gamma_{\text {mdim }}(G) \leq 2$.Then there exist a $\gamma_{m d i m}$-set M^{\prime} such that $\left|M^{\prime}\right|<2$. Then M^{\prime} is not a dominating set of G. Which is a contradiction. There fore $\gamma_{\text {mdim }}(G)=3$.

Let $n \geq 6$ and let $M_{1}=\left\{u_{1}, u_{2}, u_{3} \ldots u_{n}\right\}$, Then
$m r\left(v_{1} / M_{1}\right)=(1, \mathrm{n}-2, \mathrm{n}-1, \ldots, n-1), m r\left(v_{2} / M_{1}\right)=(1, n-1, n-2, \ldots, n-2)$, $\operatorname{mr}\left(v_{3} / M_{1}\right)=(n-1,1, n-2, \ldots, n-2), \operatorname{mr}\left(v_{4} / M_{1}\right)=(n-2,1, n-1, \ldots, n-1), \ldots$,
$m r\left(v_{n-1} / M_{1}\right)=(n-2, n-1,1, \ldots, 1), m r\left(v_{n} / M_{1}\right)=(n-1, n-2,1, \ldots, 1)$,
$m r\left(u_{1} / M_{1}\right)=(0, n-1, n-1, \ldots, n-1), m r\left(u_{2} / M_{1}\right)=(n-1,0, n-1, \ldots, n-1)$,
$m r\left(u_{3} / M_{1}\right)=(n-1, n-1,0, \ldots, 0), \ldots, m r\left(u_{n-1} / M_{1}\right)=(n-1,0, n-1, \ldots, n-1)$,
$m r\left(u_{n} / M_{1}\right)=(n-1, n-1,0, \ldots, 0)$.
Since each representations are distinct, M_{1} is a monophonic resolving set of G. Also M_{1} is a dominating set of G. Hence M_{1} is a monophonic resolving dominating set of G and so $\gamma_{\text {mdim }}(G) \leq n$.We have to prove that $\gamma_{\text {mdim }}(G)=n$. On the contrary suppose that $\gamma_{\text {mdim }}(G) \leq n-1$.Then there exist a $\gamma_{m d i m}$-set M_{1}^{\prime} such that $\left|M_{1}{ }^{\prime}\right|<n-1$.Then M_{1}^{\prime} is not a dominating set of G, which is a contradiction. Therefore $\gamma_{\operatorname{mdim}}(G)=n$.

Theorem.2.10 For the double wheel graph $G=D W_{n},(n \geq 4), \gamma_{\text {mdim }}(G)=3$.
Proof. A double wheel graph $D W_{n}$ of size n can be composed of $2 C_{n}+K_{1}$. It consists of two cycles of size n where vertices of two cycles are all connected to a central vertex.

Let $M=\left\{x, v_{1}, v_{2}, u_{1}, u_{2}\right\}, n \geq 4$.Then

$$
\begin{aligned}
& m r(x / M)=(0,1,1,1,1), \operatorname{mr}\left(v_{1} / M\right)=(1,0,1, n-2, n-2), \\
& m r\left(v_{2} / M\right)=(1,1,0, n-2, n-2), \operatorname{mr}\left(v_{3} / M\right)=(1, n-2,1, n-2, n-2), \ldots, \\
& m r\left(v_{n-1} / M\right)=(1, n-2,1, n-2, n-2), m r\left(v_{n} / M\right)=(1,1, n-2, n-2, n-2), \\
& m r\left(u_{1} / M\right)=(1, n-2, n-2,0,1), m r\left(u_{2} / M\right)=(1, n-2, n-2,1,0), \\
& m r\left(u_{3} / M\right)=(1, n-2, n-2, n-2,1), \ldots, m r\left(u_{n-1} / M\right)=(1, n-2, n-2, n-2,1), \\
& m r\left(u_{n} / M\right)=(1, n-2, n-2,1, n-2) .
\end{aligned}
$$

Since each representations are distinct, M is a monophonic resolving set of G. Also M is a dominating set of G. Hence M is a monophonic resolving dominating set of G and so $\gamma_{\text {mdim }}(G) \leq 5$.We have to prove that $\gamma_{\text {mdim }}(G)=5$. On the contrary suppose that
$\gamma_{\text {mdim }}(G)=4$.Then there exist a $\gamma_{\text {mdim }}$-set M^{\prime} such that $\left|M^{\prime}\right|<4$. Then M^{\prime} is a monophonic resolving set, but not a dominating set, which is a contradiction. Next assume that $x \in M^{\prime}$. Then there exist two distinct vertices $y, z \in V\left(C_{n-1}\right)$, such that $m r\left(u_{3} / M\right)=m r\left(u_{4} / M\right)$. Which is a contradiction. Therefore $\gamma_{\text {mdim }}(G)=5$.

Theorem.2.11. For the crown graph $G=H_{n, n},(n \geq 5)$. Then $\gamma_{m d i m}(G)=r+s-2$.
Proof. An undirected graph with $2 n$ vertices in the two sets $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ and $\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$ and with an edge from u_{i} to v_{j}, whenever $i \neq j$.

Let $X=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ and $Y=\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$ be the two bipartite sets of G.

Let $M=\left\{v_{1}, v_{2} \ldots, v_{r-1}, u_{1}, u_{2} \ldots, u_{s-1}\right\}$. Then $\operatorname{mr}\left(v_{1} / M\right)=(0,2, \ldots, 3,1,1, \ldots, 1)$,

$$
\begin{aligned}
& \operatorname{mr}\left(v_{2} / M\right)=(2,0,2, \ldots, 1,1, \ldots, 1), m r\left(v_{3} / M\right)=(2,2,0, \ldots, 2,1,1, \ldots, 1), \\
& \operatorname{mr}\left(v_{4} / M\right)=(2,2,2,0, \ldots, 2,1,1, \ldots, 1), \ldots, m r\left(v_{r-1} / M\right)=(2,2, \ldots 2,0,1,1, \ldots, 1), \\
& \operatorname{mr}\left(v_{\mathrm{r}} / M\right)=(2,2,2, \ldots, 2,1,1, \ldots, 1), m r\left(u_{1} / M\right)=(3,1,1, \ldots 1,0,2,2, \ldots, 2), \\
& \operatorname{mr}\left(u_{2} / M\right)=(1,1, \ldots, 1,2,0, \ldots, 2), m r\left(u_{3} / M\right)=(1,1, \ldots, 1,2,2,0, \ldots, 2), \\
& \operatorname{mr}\left(u_{4} / M\right)=(1,1, \ldots, 1,2,2,2,0, \ldots, 2), \ldots, m r\left(u_{s-1} / M\right)=(1,1, \ldots, 1,2,2, \ldots 2,0), \\
& \operatorname{mr}\left(u_{s} / M\right)=(1,1, \ldots, 1,2,2, \ldots, 2) .
\end{aligned}
$$

Hence it follows that M is a monophonic resolving set of G. Since the vertices v_{r} and u_{s} are dominated by at least one element of M, M is a dominating set of G.Therefore M is a monophonic resolving dominating set of G, and so $\gamma_{\text {mdim }}(G) \leq r+s-2$.We prove that $\gamma_{\text {mdim }}(G)=r+s-2$.On the contrary suppose that $\gamma_{\text {mdim }}(G) \leq r+s-3$. Then there exist a $\gamma_{\text {mdim }}(G)$-set M^{\prime} such that $\left|M^{\prime}\right|<r+s-3$. If $M^{\prime} \subset X$ or Y. Then M^{\prime} is not a dominating set of G.Therefore $M^{\prime} \subseteq X \cup Y$.Then there exists $u \in X$ and $v \in Y$ with $u, v \in M^{\prime}$, such that $m r(u /$ $\left.M^{\prime}\right)=m r\left(v / M^{\prime}\right)$, which is a contradiction. Therefore $\gamma_{\operatorname{mdim}}(G)=r+s-2$.

References

[1] F. Buckley, and F. Harary, Distance in graphs, Addison-Wesley, Redwood City, CA, (1990).
[2] G. Chartrand, L. Eroh, M.A. Johnson and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (1-3), (2000),99-113.
[3] M. C. Dourado, F. Protti, and J. L. Szwarcfiter, Complexity results related to monophonic convexity, Discrete Applied Mathematics, 158, (2010), 1268-1274.
[4] J. John and S. Panchali, The upper monophonic number of a graph, Int. J. Math. Combin. 4, (2010), 46 - 52.
[5] J. John and S. Panchali, The forcing monophonic number of a graph, International Journal of 1766

Mathemametical Archive, (3)(3),(2012), 935-938.
[6] J. John and P.Arul Paul Sudhahar, The monophonic domination number of a graph, Proceeding of the International conference on Mathematics and Business Management, 1, (2012), 142-145.
[7] J. John and P. Arul Paul Sudhahar and A. Vijayan, The connected edge monophonic number of a graph, 3(2), (2012), 132-136.
[8] J. John,P.Arul Paul Sudhahar, and A.Vijayan, The connected monophonic number of a graph, International Journal of Combinatorial graph theory and applications.5(1), (2012), 41-48.
[9] J. John and P. Arul Paul Sudhahar, The upper connected monophonic number and forcing connected monophonic number of a graph, International Journal of Mathematics Trends and Technology 3 (1), (2012), 29-33.
[10]] J. John, G. Edwin and P. Arul Paul Sudhahar, The Steiner domination number of a graph, International Journal of Mathematics and Computer Applications Research, 3(3), (2013), 37-42.
[11] J. John and P. Arul Paul Sudhahar, The upper edge -to-vertex monophonic number of a graph, International Journal of Mathematics and Computer Applications Research 3 (1),(2013), 291296.
[12] J. John and N. Arianayagam, The detour domination number of a graph, Discrete Mathematics Algorithms and Applications, 09, 01,(2017), 1750006.
[13] J John and K. Uma Samundesvari, Total and forcing total edge-to-vertex monophonic number of a graph, Journal of Combinatorial Optimization 35, (2018), 134-147.
[14] J. John, P. Arul Paul Sudhahar, and D. Stalin, On the (M.D) Number of a graph Proyecciones Journal of Mathematics ,38(2), (2019), 255-266.
[15] J.John, The forcing monophonic and the forcing geodetic numbers of a graph, Indonesian Journal of Combinatorics .4(2) (2020) 114-125.
[16] J. John, and V. Sujin Flower, The edge-to-edge geodetic domination number of a graph, Proyecciones Journal of Mathematics, 40(3), (2021), 635-658.
[17] J. John and M.S. Malchijah, The forcing non-split domination number of a graph, Korean journal of mathematics, 29(1), (2021), 1-12.
[18] J. John, On the vertex monophonic, vertex geodetic and vertex Steiner numbers of graphs, Asian-European Journal of Mathematics 14 (10), (2021), 2150171
[19] J.John, and V. Sujin Flower, On the forcing domination and the forcing total domination numbers of a graph, Graphs and Combinatorics, 38, (2022)142.
[20] S.Kavitha, S.Chellathurai and J.John, On the forcing fonnected domination number of a graph, Journal of Discrete Mathematical Sciences and Cryptography, 3(20) (2017) 611-624.
[21] E. M. Paluga, and S. R. Canoy Jr., Monophonic numbers of the join and Composition of connected graphs, Discrete Mathematics, 307, (2007), 1146 -1154.
[22] A.P.Santhakumaran P.Titus, Monophonic distance in Graphs, Discrete Mathematics Algorithms and Applications (3),(2011),159.
[23] J.Suji Priya and. T. Muthu Nesa Beula, The monophonic metric dimension of some graphs under join operation. (communicated)
[24] K. Uma Samundesvari and J. John, The edge fixing edge-to-vertex monophonic number of a graph, Applied Mathematics E-Notes 15, (2015), 261-275.

The Monophonic Domination Dimension Number of a Graph

