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Abstract 

In the event of an epidemic, inhibitory effects play a critical role in limiting the pandemic's 

influence on society. The majority of infectious diseases that affect humans are still on the 

verge of becoming epidemics over the world. Mathematical models have long been used to 

investigate the complicated dynamics of infectious illnesses. This research investigates a 

stochastic SVIR epidemic model with Holling type II incidence and treatment rates. The 

Fourier transform approach is used to analyse stochastic stability around an internal steady 

state. Finally, numerical simulations are presented with appropriate parameter selections in 

order to test the efficiency of the theoretical results. 

Keywords: Holling type II treatment rate, incidence rate, SVIR model, epidemiology, 

Fourier transform  

1. Introduction 

Many infectious diseases are common and prevalent, posing a serious concern for healthcare 

workers and politicians around the world. In recent years, controlling infectious diseases has 

become a more difficult task. A comprehensive grasp of the mechanics of a disease's 

progression is essential to control or eliminate it.  Epidemiologists [1–13] have attempted to 

create mathematical models based on the observed characteristics of infectious diseases in 
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order to comprehend various features of many diseases and recommend techniques for their 

control. The manner in which an infectious disease is transmitted is a critical consideration in 

the research of its transmission. The incidence rate, defined as the average number of new 

cases of a disease per unit period in epidemiology, determines the transmission of an 

infectious disease. As a result, the incidence rate is critical in the study of the qualitative 

description of infectious disease transmission dynamics. Many scholars [14–17] developed 

nonlinear transmission laws to examine the dynamics of infectious diseases, such as the 

Holling type II functional, Crowley–Martin functional, Beddington–DeAngelis functional, 

and others. 

 

Even in the face of catastrophic disasters, humans continue to progress. Throughout history, 

many significant infectious diseases have killed a large number of people, and the number of 

people killed is far more than the number of people killed in world wars. According to World 

Health Statistics 2019, infectious illnesses still account for six of the top ten causes of 

mortality in low-income countries, including malaria, tuberculosis, and HIV  [18]. In 2018, 

HIV, TB, and malaria caused 0.8, 1.2, and 0.4 million fatalities, respectively, according to 

World Health Statistics 2020 [19]. As a result, it is critical that the government and 

professionals take the required steps to study and limit infectious illness spread. Daniel 

Bernoulli, a great mathematician, utilised differential equations to assess the availability of 

variation in healthy humans infected with the smallpox virus as early as 1760. Since Daniel 

Bernoulli's groundbreaking discovery, other epidemic models have been constructed to 

research and study the spread law of infectious illnesses. For instance, the SIS [20-22],  SIR 

[23-27], SEIS [28-31], SEIR [32-35] , SEIRS [36–38] epidemic models, and various other 

models involving vaccination [39–42]  and quarantine [43-44]. Goel et al. [45] suggested a 

time-delayed SVIRS epidemic model to examine the influence of saturated incidence and 

saturated therapy and in the proposed system, they looked at local stability and the 

occurrence of Hopf bifurcation. Also,   Zizhen Zhang et al. [46] proposed a deterministic 

SVIRS epidemic model with Holling type II incidence and treatment rates, as well as three 

delays and examined the dynamics. Hopf bifurcation and the local stability of disease 

equilibrium are thoroughly described. The direction and stability of bifurcated periodic 

solutions are then determined.  

 

This work is coordinated as follows. In Section 2, we figure the numerical model of our 

concern. Segment 3 gives the elements of the model without noise. Segment 4 furnishes the 

elements of the model with noise. Dissemination examination of the numerical model is 

talked about in segment 5. Computational recreations are acted in Section 6. In the last 

segment, Section 7, we close and give a few comments and future works. 

 

2. Mathematical model with noise: 

In this section, we considered a SVIR stochastic epidemic model in which we are considering   

four compartments like susceptible, vaccinated, infected and recovered with Holling type II   
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incidence rate, treatment rate by the motivation of [46]. Specifically we are investigating the 

effect of Gaussian white noise on the model (without delay) proposed by Zizhen Zhang et.al 

[46] for various low, medium and high intensities. The schematic representation of the 

proposed model is as follows. 

 

                               
 

Figure (H) 

Figure (H) represents schematic representation of SVIR model system 

 

 

The following system of nonlinear differential equations with noise describes the dynamics of 

the proposed model. 

 

1 1( ) ( )
1

SI
S t A S S R t

I


    


      


                                                              (2.1) 

2 2( ) ( )
1

VI
V t S V t

I


   


    


                                                                            (2.2) 

  3 3( ) ( )
1 1 1

SI VI aI
I t d I I t

I I bI

 
   

 
       

  
                                               (2.3) 

4 4( ) ( )
1

aI
R t I R R t

bI
         


                                                                                   (2.4) 

where 𝑆(𝑡), 𝑉 (𝑡), 𝐼(𝑡) and 𝑅(𝑡) represent numbers of susceptible, vaccinated, infective and 

recovered at time 𝑡, respectively. 𝐴 represents the rate at which susceptible individuals 

become infected, 𝛽 represents the force of infection, 𝛼 represents the infected inhibition 

measures, 𝛾 represents the rate at which people who have been immunised become infected, 

𝛿 shows the proportion of vaccinated people who become infected and infected people who 



Stochastic analysis of an epidemic SVIR model with Holling type II incidence  

and treatment rates 

Section: Research Paper 

 

1689 
Eur. Chem. Bull. 2023, 12(Special Issue 1), 1686-1702 
 

become infected, and 𝜃  reflects the rate of transfer from recovered to susceptible people, 𝜀 is 

the rate at which infected people become infected again, 𝜇  is the average natural mortality 

rate of all people 𝑑  is the disease-related death rate, 𝑎  is the rate of treatment, and 𝑏  is the 

rate at which medical resources are scarce. 

3. Dynamical behaviour without noise 

By the motivation of [45] and [46], we are studying the effect of noise on the SVIR disease 

system (2.1-2.4). In this process, we are adopting some observations done by [46] in this 

section without additive white noise.  

The majority of infectious diseases that affect humans are still on the verge of becoming 

epidemics over the world. Mathematical models have long been used to investigate the 

complicated dynamics of infectious illnesses. The researchers [46] looked at a three-delay 

deterministic SVIRS epidemic model with a Holling type II incidence and treatment rates. 

Hopf bifurcation and the local stability of disease equilibrium are thoroughly described. The 

bifurcated periodic solution’s direction and stability are then determined. Finally, numerical 

simulations with appropriate parameter selections are presented in order to assess the efficacy 

of the theoretical results obtained. 

4. Dynamical behaviour with noise 

Ecological systems are characterised by a number of forces that are not constant in time but 

change, such as climate and natural disturbances. Due to the uncertainty inherent in weather 

patterns, climate fluctuations, and episodic disturbances such as earthquakes, landslides, fires, 

insect outbreaks, and so on, a significant portion of environmental variability is random, with 

the exception of processes dominated by deterministic oscillations. The existence of random 

drivers in bio-geophysical processes motivates the study of how a stochastic environment 

might alter and characterise the dynamics of natural systems. Now we'll look at the stochastic 

models (2.1)-(2.4) to see how random environmental variations affect stability. The model's 

parameters swing around their average values due to random variations. With additive white 

noises, we consider the randomness of the model (2.1)-(2.4). The white noise perturbation 

will modify any model parameter   as  t  , where   is the noise amplitude and  t  is 

a Gaussian white noise process at time t .  The deterministic and stochastic models, on the 

other hand, have the identical equilibrium states, which will now vary around their mean 

states. 

In this analysis, we emphasis on the dynamics of the model (2.1)-(2.4) about the interior 

equilibrium point  * *, , ,E S V I R  only according to the method introduced by Nisbet and 

Gurney [47] , Carletti [48] and motivated by [49-53]. 

Let *

1( ) ( ) ;S t u t S   *

2( ) ( ) ;V t u t V   *

3( ) ( ) ;I t u t I   *

4( ) ( ) ;R t u t R                        (4.1) 
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and by focusing solely on the effects of linear stochastic perturbations As a result, the model 

(2.1)-(2.4) is reduced to the linear system shown below.                  

*

1 3 1 1( ) ( )u t S u t                                                                                               (4.2) 

2 2 2( ) ( )u t t                                                                                                          (4.3) 

* *

3 1 2 3 3( ) ( )u t I u I u t                                                                                       (4.4)  

    
4 4 4 ( )u t                                                                                                               (4.5)                                                                                                                               

 Taking the Fourier transform of (4.2) - (4.5) we get, 

 *

1 1 1 3( ) ( ) ( ) ( )i u S u                                                                                  (4.6) 

2 2 2( ) ( ) ( )i u                                                                                                      (4.7) 

   * *

3 3 1 2 3( ) ( ) ( ) ( ) ( )I u I u i u           
                                             

        (4.8) 

4 4 4( ) ( ) ( )i u                                                                                                                          (4.9) 

Equations (4.6) and (4.9) have a matrix form as  

                     M u                                                                                       (4.10) 

 where,  

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

A B C D

A B C D
M

A B C D

A B C D



 
 
 
 
 
 

;   

    1 2 3 4( ), ( ), ( ), ( )
T

u u u u u      ; 

              1 1 2 2 3 3 4 4( ), ( ), ( ), ( )
T

                 ; 

 
*

1 1 1 1; 0 ; ; 0 ;A i B C S D      2 2 2 20 ; ; 0 ; 0 ;A B i C D     

               
* *

3 3 3 3; ; ; 0 ;A I B I C i D        4 4 4 40 ; 0 ; 0 ; ;A B C D i      

Alternatively, equation (4.10) can be written as 

      
1

u M   


                                                                                            (4.11)                                                
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 Let    
1

( )M K 


                                                                                                      (4.12) 

where 
 

 
( )

adj M
K

M






                                                                                                                      (4.13) 

If the function's ( )Y t  mean value is zero, the fluctuation intensity (variance) of its 

components in frequency intervals  , d     is ( )YS d  , where ( )YS  is the spectral 

density Y and is defined as 

               
 

2

( ) limy
T

Y
S

T





                                                                                          (4.14) 

The auto covariance function is the inverse transform of ( )YS   if Y has a zero mean value. 

                
1

2

i

Y YC S e d  






                                                                                   (4.15) 

and the variance of the corresponding fluctuations in ( )Y t  is given by 

                2 1
0

2
Y Y YC S d  







                                                                               (4.16)  

The normalised auto covariance function is the auto correlation function. 

              
 

 0

Y

Y

Y

C
P

C


                                                                                                        (4.17) 

For a Gaussian white noise process, it is  

             ,

( ), ( )
lim

i j

i j

T

E
S

T
 

   




  
  

 
 

                                                                         (4.18) 

                          

/ 2 / 2

( )

/ 2 / 2

1
lim ( ), ( )

T T

i t t

i j
T

T T

E t t e dt dt
T

 
 


 

      = ij                                       (4.19) 

The components of (4.11)'s solutions are as follows: 

      
4

1

; 1,2,3,4i ij j

j

u K i   


                                                                       (4.20) 

The range of , 1,2,3,4iu i    is provided by 
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     
4

2

1

; 1,2,3,4
iu j ij

j

S K i  


                                                                                                  (4.21)                                 

Hence the intensities of fluctuations in the variable , 1,2,3,4iu i   are given by    

As a result, the intensities of the variable's , 1,2,3,4iu i   fluctuations are given by 

4
2

2

1

1
( ) ; 1,2,3,4

2iu j ij

j

K d i   




 

                                                                                  (4.22) 

In other words, the variances of  , 1,2,3,4iu i   are calculated as 

                                                          

1

2 2 2 2

2 1311 12 14
1 2 3 4

( )( ) ( ) ( )1

2 ( ) ( ) ( ) ( )
u

AA A A
d d d d

M M M M

  
        

    

   

   

 
 

    
  
   

       

1

2 2 2 2

2 1311 12 14
1 2 3 4

( )( ) ( ) ( )1

2 ( ) ( ) ( ) ( )
u

BB B B
d d d d

M M M M

  
        

    

   

   

 
 

    
  
     

1

2 2 2 2

2 1311 12 14
1 2 3 4

( )( ) ( ) ( )1

2 ( ) ( ) ( ) ( )
u

CC C C
d d d d

M M M M

  
        

    

   

   

 
 

    
  
              

1

2 2 2 2

2 1311 12 14
1 2 3 4

( )( ) ( ) ( )1

2 ( ) ( ) ( ) ( )
u

DD D D
d d d d

M M M M

  
        

    

   

   

 
 

    
  
   

  

       (4.23)    

Here ( ) ( ) ( )M R iI    , where ( )R   is the real part of ( )M     and  ( )I   is the an 

imaginary part of ( )M  , 

 

   
2 22

( ) ( ) ( )M R I   

      

 

3

11 ;A i  * *

12 ;A S I  2 *

13 ;A S  14 0;A  11 0;B  3 2 * *

12 ;B i i S I   
2 * 2 * 3

13 14 14 12 13 140; 0; ; ; ; 0;B B C I C I C i C             11 0;D  12 0;D  13 0;D 
3 2 * *

14 ;D i i S I       

We can derive the following from these numbers and equation (4.23): 

   

 
1

2 3 2 * * 2 2 * 2

1 2 34 2 2 * *

1 1
( ) ( ) ( )

2 ( )
u S I S d

I S
        

   





      
   

         (4.24)

                                                                                                                                                     
 

   

 
2

2 3 2 * * 2

24 2 2 * *

1 1
( )

2 ( )
u S I d

I S
     

   





    
   

                                               (4.25)
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1

2 2 * 2 2 * 2 3 2

1 2 34 2 2 * *

1 1
( ) ( ) ( )

2 ( )
u I I i d

I S
         

   





                          (4.26) 

1

2 3 2 * * 2

44 2 2 * *

1 1
( )

2 ( )
u S I d

I S
    

   





    
    

                                     (4.27)

  

 

If we're interested in the system dynamics of (4.1)-(4.4) with either 

 
1 0 

   

(or)

  
2 0   (or)   

3 0      (or)    4 0 
 
, then the population variances are  

If 1 2 3 0     then,  

 
1 2 3

2 2 2 0;u u u      

              
4

3 2 * * 2
2 1

4 2 2 * *

( )
;

2
u

S I
d

S I

  
 

   





 


  

If 1 3 4 0     then,  

1

* * 2
2 2

4 2 2 * *

( )
;

2
u

S I
d

S I

 
 

   








       

 
2

3 2 * * 2
2 2

4 2 2 * *

( )
;

2
u

S I
d

S I

  
 

   





 



 

3

2 * 2
2 2

4 2 2 * *

( )
;

2
u

I
d

S I

  
 

   








         

4

2 0;u   

If 1 2 4 0     then,  

1

2 * 2
2 3

4 2 2 * *

( )
;

2
u

S
d

S I

  
 

   






       

2

2 0;u 
 

3

3 2
2 3

4 2 2 * *

( )
;

2
u

i
d

S I

 
 

   








        
4
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Thus, for modest levels of mean square fluctuations, population variances imply population 

stability, whereas larger values of population variances suggest population instability. 

5. Numerical simulations 

Example1:For the parameters 12;A  0.15;  0.05;  0.01;  2;a  10;b  0.2; 

0.2; 
1 0.01;   2 0.02;  3 0.01;   4 0.02  with initial values [12, 10, 8, 5] 

 

Figure 1 

Figure 1 represents time series evaluation of population for the values of the attributes of example 1 

with noise intensities 1 0.01;  2 0.02;  3 0.01;   4 0.02                                                    

and with initial values [12, 10, 8, 5] 
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Figure 1(a) shows time series evaluation of population for the values of the attributes of example 1 

with noise intensities 1 0.01;  2 0.02;  3 0.01;   4 0.02                                                        

and with initial values [100, 60, 70, 40]. 

Example 2 : 12;A  0.15;  0.05;  0.01;  2;a  10;b  0.2;  0.2; 
1 0.07;   

2 0.08;  3 0.07;  4 0.08   with initial values [12, 10, 8, 5] 

 

Figure 2 

Figure 2 represents time series evaluation of population for the values of the attributes of example 2 

with noise intensities 1 2 3 40.07; 0.08; 0.07; 0.08;                                                         

and with initial values [12, 10, 8, 5] 
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Figure 2(a) 

Figure 2(a)  represents time series evaluation of population for the values of the attributes of example 

2 with noise intensities 1 0.07;  2 0.08;  3 0.07;   4 0.08   and with initial values                

[100, 60,70, 40] 

Example 3:   12;A   0.15;   0.05;   0.01;   2;a   10;b   0.2;  0.2; 
1 1.5;   

2 1;   3 1.5;   4 1;  with initial values [100, 60, 70, 40] 

 

Figure 3 

              Figure 3  represents time series evaluation of population for the values of the attributes of 

example 3 with noise intensities 1 1.5;   2 1;   3 1.5;   4 1   and with initial values           

[100, 60,70, 40] 
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Example 4 : 12;A   0.15;  0.05;  0.01;  2;a  10;b  0.2;  0.2; 
1 6;   

2 5;  3 6;  4 5   with initial values [100, 60, 70, 40] 

 
Figure 4 

Figure 4 represents time series evaluation of population for the values of the attributes of example 4 

with noise intensities 1 6;   2 5;  3 6;  4 5    and with initial values [100, 60, 70, 40] 

Example 5: 12;A  0.15;  0.05;  0.01;  2;a  10;b  0.2;  0.2; 
1 10;   

2 8;  3 10;  4 8   with initial values [100, 60, 70, 40] 

 

Figure 5 

Figure 5 represents time series evaluation of population for the values of the attributes of example 5 

with noise intensities 1 2 3 410; 8; 10; 8        and with initial values [100, 60, 70, 40] 
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Example 6 : 12;A  0.15;  0.05;  0.01;  2;a  10;b  0.2;  0.2; 
1 50;   

2 40;  3 50  ; 4 40   with Initial Values [100;60;70;40] 

 

Figure 6 

Figure 6 represents time series evaluation of population for the values of the attributes of example 6 

with noise intensities 1 2 3 450; 40; 50; 40        and with initial values [100, 60, 70, 40] 

Example 7 : 12;A  0.15;  0.05;  0.01;  2;a  10;b  0.2;  0.2; 
1 200;   

2 150;   3 200;   4 150   with initial values [100; 60; 70; 40] 

 

Figure 7 
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Figure 7 shows time series evaluation of population for the values of the attributes of example 7 with 

noise intensities 1 200;   2 150;   3 200;   4 150  and with initial values [100, 60, 70, 40] 

 

6. Observations and remarks: 

A model of an SVIR with noise was examined in this paper. Later, we looked at the impact of 

additive white noise on environmental variations near the positive equilibrium. MATLab is 

used to compute the population variances and examine them for stability. The numerical 

simulation and analytical results of the SVIR with noise system model reveal those 

population variances play a significant role in analysing the system's stability. 

In a noisy environment, noise on the equation creates large oscillation variations around the 

equilibrium point, implying that our system is periodic. As observed in the pictures/graphs 

(1-7), numerical replications reveal that the system's trajectories oscillate arbitrarily with a 

wide range of amplitudes, with the strength of noises initially increasing but eventually 

oscillating. 

As a result of the changes in responsive parameters, we conclude that stochastic perturbation 

causes a significant shift in the intensity of the dynamical scheme under discussion, resulting 

in massive environmental fluctuations. 

7. Future scope: 

In the SVIR mathematical model (2.1), we can add a diffusion term using the same notation 

(2.4). Analysing the dynamical properties of the model with diffusion and gaining insight into 

the regulation of stability in the presence of diffusion are critical. Increased diffusion 

coefficients can increase the potential for oscillatory behaviour and hence the corresponding 

results, according to the diffusion analysis. 
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