Section A-Research paper

= NEUROPROTECTIVE EFFECT OF OF GYMNEMA SYLVESTRE IN ALLOXAN INDUCED DIABETIC NEUROPATHIC IN ALBINO RATS

Sachchidanand Pathak*, Vivek Keshari, Ashutosh Mishra, Kumar Alok, Sneha Yadav, Deepak Kumar, MK Prajapati, Kamlesh Singh, Devendra Dubey

Kashi Institute of Pharmacy, Varanasi

Corresponding Author: Sachchidanand Pathak Email: snpathak@kashiit.ac.in

9 Abstract: The object of the study was to inspect the potential effect of Gymnemasylvestre (Gs) in Albino rat. Diabetes 10 was induced via a single intra peritoneal injection of alloxan (100 mg/kg). Treatment with Gs extract (50 or 100 11 mg/kg/day) began two weeks following the administration of alloxan and was continued for five weeks.

12 Diabetic neuropathy is defined as the damage of nerve due to high blood glucose level. High blood glucose level leads

13 to many disease such as renal failure, cataract etc. Alloxan can selectively damage insulin-producing cell. In conclusion

14 amitriptyline leads to no body weight gain, causes increase in grip strength.

15 **Keywords:** Gymnemasylvestre, Diabetic neuropathy, Albino rats, Alloxan, Amitriptyline.

16 17

INTRODUCTION:

1

2

3

4

5

6

7 8

Peripheral neuropathy is a trouble with an individual suffering from diabetes leads to renal failure cataract. 18 19 Peripheral neuropathy causes nerve damage. It affects several part of our body i.e. leg, hand, Heart, etc. In this study, Albino rats were induced with alloxan with the combination of Metformin, Amitriptyline.[2] These 20 include major depressive disorder and anxiety disorder and less commonly attention deficit hyperactivity disorder 21 22 and bipolar disorder.[2][3] Other uses include prevention of migraines, treatment of neuropathic as fibromylgia and postherpetic neuralgia, an less commonly insomnia.[2][4] It is in the tricyclic antidepressant (TCA) class and its 23 exact mechanism of action is unclear. Amitrityline is orally given..[2] Amitriptyline is used for a number of medical 24 conditions.[11][12][13] Some evidence suggests amitriptyline may be more effective than other 25 antidepressants,[14] including selective serotonin reuptake inhibitors (SSRIs),[15] although it is rarely used as a 26 first-line antidepressant due to its higher toxicity in overdose and generally poorer tolerability.[12]It is TGA-labeled 27 for migraine prevention, also in cases of neuropathic pain disorders, [12] fibromyalgia [4] and nocturnal 28 enuresis.[12][16] Amitriptyline is a popular off-label treatment for irritable bowel syndrome (IBS),[17] although it is 29 most frequently reserved for severe cases of abdominal pain in patients with IBS because it needs to be taken 30 regularly to work and has a generally poor tolerability profile, although a firm evidence base supports its efficacy in 31 this indication.[17] Amitriptyline can also be used as an anticholinergicdrug in the treatment of early-stage 32 Parkinson's disease if depression also needs to be treated [18]. Amitriptyline is the most widely researched agent for 33 prevention of frequent tension headaches.[19]. Amitriptyline acts primarily as a serotonin-norepinephrine reuptake 34 inhibitor, with strong actions on the serotonin transporter and moderate effects on the norepinephrine trans-35 porter.[34][35] It has negligible influence on the dopamine transporter and therefore does not af-36 37 fect dopamine reuptake, being nearly 1,000 times weaker on it than on serotonin.[35] It is metabolised to nortriptyline—a more potent and selective norepinephrine reuptake inhibitor—which may complement its effects 38

39 on norepinephrine reuptake.[30] It promotes the hetero-dimerization of these proteins in the absence of NGF and has

40 potent neurotrophic activity. Neurotrophin with powerful antidepressant effects and as such this property may con-

41 tribute significantly to its therapeutic efficacy against depression.

42 2. EXTRACTION:

43 2.1Successive Solvent Extraction:

Stem and leaves of the herb Gymnema sylvestre were dried in shade. The sun dried plant material was coarsely 44 powdered and subjected to extraction with petroleum ether in Soxhlet apparatus. The extraction was continued till the 45 defatting of the material had taken place. Deffated marc of drug was subjected to extraction with chloroform in a 46 Soxhlet apparatus. The extraction was continued for a period of 48 hours. The extract was then concentrated and finally 47 dried to a constant weight. Marc obtained after chloroform extraction was subjected to extraction with ethyl acetate. 48 The extraction was continued for the period of 48 hours. The extracted was then concentrated and finally dried. Marc 49 obtained after ethyl acetate extraction was subjected to extraction with methanol in Soxhlet apparatus. The extract was 50 then concentrated and finally dried to a constant weight. Lastly the marc obtained was subjected to hot water macera-51 52 tion. The maceration was continued for 24 hours. The aqueous extract was filtered and concentrated.

53 2.2 Direct methanolic extraction:

Two times extraction of the plant is done in the gap of 15 days. It is done by the Soxhlet Apparatus. Methanol is used as a solvent. Plant material was collected in bulk, washed under running tap water to remove adhering dirt followed by rinsing with distilled water. The plant material was then sun dried and pulverized in a hand mill followed by sieving (sieve no. 40) to obtain coarse powder. The powdered leaves were extracted with petroleum ether (40-600C) and methanol for 48 h in soxhlet extractor. Following extraction, the liquid extracts were concentrated under vacuum to yield dry extracts. Standard methods were used for preliminary phytochemical screening of the different extracts to know the nature of phytoconstituents present within them.

61 2.3. Procedure: (Continuous Hot Percolation Process or Soxhlet Extraction)

- The dried plant was powdered (without fruits and seeds) with the help of hand mill in the lab.
- This powdered plant material was passed through a specific grade sieve (for coarse powder sieve No. 10 and sieve
 No. 44 were used) to get the required size particles.
- Dried powdered material was weighed by using analytical balance.
- Weighed quantity of drug was filled in a wider part of the extractor.
- Coarsely powdered plant material was subjected to extraction with petroleum ether in soxhlet apparatus.
- The extraction was continued till the defatting of the material had taken place.
- 69 Marc obtained after petroleum ether, was subjected to methanol.
- Methanol was placed with boiling chips into the flask.
- Temperature was mentained at 650C.
- Extraction was done for 48 hrs.

73 2.4. Phytochemical screening of extract

- 74 1. Test for Alkaloids
- 75 2. Test for Glycosides
- 76 3. Test for Sterols
- 77 4. Test for Triterpinoids

Section A-Research paper

- 78 5. Test for Protein and amino acid
- 79 6. Test for Tannins
- 80 7. Test for Soponin
- 81 8. Test for carbohydrates
- 82 9. Test for Flavanoids

83

84 Table No.01: Table of Phytochemical Screening [37]

	TEST	OBSERVATION	INTERPRITATION
ALKALOIDS	Powered drug + Mayer's reagent (Potassium mercuri-iodide solution)	Yellow precipitate	Present
	Powered drug + Hager's reagent (Saturated solution of Picric Acid)	Yellow precipitate	Present
	Powered drug + Wagners reagent (Iodine in Potassium iodide)	Brown precipitate	Present
	Powered drug + Dragendroff's reagent (Po- tassium bismuth Iodide)	Orange precipitate	Present
GLYCOSIDES	Powered drug + Dilute KOH (Borntrager's Test)	Red color	Present
	Powered drug + Pyredine + 2% Sodium ni- troprusside + 20% NaOH (Legal's Test)	Absence of red color	Cardiac glycoside Absent
STEROLS	Powered drug + Acetic anhydride (containing Sulphuric acid) (Lieberman's Test)	Blue-green color	Present
TRITERPINOIDS	Powered drug + CHCl3 + H2SO4 (Salkow- ski's Test)	Yellow color which changes to red	Present
	Powered drug + CHCl3 + acetic anhydride + conc. H2SO4	Reddish-violet color	Present
	TEST	OBSERVATION	INTERPRITATION
PROTEIN	Powdered drug+ 4% NaOH + 1% CuSO4 (Bi- uret Test)	Pink color	present
TENNIN	Powdered drug + 1% gelatin solution con- taining 10% sodium chloride (Gelatin Test)	White precipitate	Present

Section A-Research paper

SAPONIN	Drug solution + water and shake (Froth Test)	stable froth be noted	Present
CARBOHYDRATE	Drug solution + Molisch's reagent (Molisch's	purple to violet colour	Present
	test)	ring appeared at the	
		junction	
FLAVANOIDSDrug solution + Mg-ribbon + Conc.		Blue color	Present
	HCl(Shinoda Test /Magnesium Hydrochlo-		
	ride reduction test)		

85 Storage: Powdered drug Stored at room temperature.

86 **Table No.02: Physical examination of extract**

Name of extract	Consistency	colour	odour	taste	Yield %
Petrolium ether extract	Semi-solid	Dark green	Characteristic	Bitter	6.3 %
Chloroform extract	Semi-solid	Dark green	Characteristic	Bitter	1.2 %
Ethyl acetate extract	Semi-solid	Dark green	Characteristic	Bitter	2.6 %
Methanolic extract	Semi-solid	Dark brown	Pungent	Bitter	5.4 %
Methanolic extract (Direct)	Semi-solid	Dark brown	Pungent	Bitter	6.2 %
Aqueous extract	solid	Brown	Characteristic	Bitter	3.8 %

87

88 Table No.3: Phytochemical screening of different extracts of Gymnema sylvestre

Chemical test		Pet. ether	Chloro-	Ethyl ace-	Metha-	Aque-
			form	tate	nol	ous
ALKALOID	Mayer's test	-ve	-ve	+ve	+ve	-ve
	Dragendorff's test	-ve	-ve	-ve	+ve	-ve
	Hager's test	-ve	-ve	-ve	+ve	-ve
	Wagner's test	-ve	-ve	-ve	-ve	-ve
GLYCOSIDES	Brontrager's	-ve	-ve	-ve	+ve	+ve
	Legal's Test	-ve	-ve	-ve	-ve	+ve
STEROLS	Lieberman's Test	-ve	+ve	+ve	-ve	-ve
TRITERPINOIDS	Salkowski's test	+ve	+ve	+ve	+ve	-ve
	Molescott's Test	+ve	+ve	+ve	+ve	-ve
PROTEIN	Biuret test	+ve	+ve	+ve	+ve	+ve
TANNINS	Gelatin Test	+ve	+ve	+ve	+ve	+ve
SAPONINS	Froth test	+ve	+ve	+ve	+ve	+ve
CARBOHY-	Molisch's Test	+ve	+ve	+ve	+ve	+ve
DRATES						
FLAVANOIDS	Magnesium ribbon	-ve	-ve	-ve	+ve	+ve
	Test					

Section A-Research	paper
--------------------	-------

89	
90	2.5. Oral Acute Toxicity Study
91	2.5.1. Purpose: To provide information on health hazards likely to arise from a short-term exposure to Gymnema syl-
92	vestre extract by the oral route.
93	2.5.2. Summary: An Acute oral toxicity test was conducted with rats to determine the potential for Gymnema sylvestre
94	extract to produce toxicity from a single dose via the oral route. Based on the results of this study, the single oral dose
95	of the test substance is greater than 2000mg/kg of body weight.
96	2.5.6. Animals:Number of Animals: 06
97	
98	• Sex : 3 male and 3 female
99	Species/strain: Rat/ Wistar, albino
100	Age: Young adult
101	Body weight: 150-186 g at experimental start.
102	2.5.7. Method:
103	A) Husbandry:
104	1. Housing: Each group was housed in plastic caging.
105	2. Animal Room: Temperature range: 20-250C
106	3. Photo-period: 12 hrs. Dark/light cycle.
107	4. Acclimation Period: 15 days
108	5. Water: Filtered tap water was supplied ad libitum by an automatic water dispensing bottle.
109	6. Food:
110	B) Identification:
111	1. Cage: Each cage was identified with a cage-card indicating the study number and identification and
112	sex of animals.
113	2. Animal: A mark of different colours (For male: Black, Green, Blue; For female: Pink, orange, Red) were
114	given to each rat. These colours constituted unique identification.
	8
115	2.5.8 Procedures:
116	The acute oral toxicity study was carried out according to OECD 423 guidelines. Referring to old research papers and
117	to avoid unnecessary harm and loss of animals on repetitive work, this was opted that only one group of animals
118 119	should be subjected to the drug dose. Six albino rats were grouped and an oral dose of 2000mg/kg of body weight of plant extract was administered.
119	A. Selection of animals: Prior to dosing, a group of animals was fasted for approximately 17 hrs. by removing feed
	from their cages. During the fasting period, the rats were examined for health and weight (initial). Six (3 male and 3
121	
122	female) healthy rats were selected for test.
123	 B. Dose calculation: Doses were calculated based on the initial body weight. C. Dosing: Each animal received 2,000 mg/kg of the test substance, by stomach intubation. After administration
124	C. Dosing: Each animal received 2,000 mg/kg of the test-substance, by stomach intubation. After administration,
125	each animal was returned it its designated cage. Feed was replaced approximately 3.0 hrs. After dosing. The day of

administration was considered day-zero of the study.

- 127 D. **Body weight:** Individual body weight of the animals were recorded prior to test substance administration and 128 again on day 7 and 14.
- 129 E. Cage Side Observations: The animals were observed for mortality, signs of gross toxicity and behavioral changes
- 130 at 1 and 3 hrs. Post-dosing and at least once daily there after 14 days. Observations included gross evaluation of
- skin and fur, eyes, respiration, somatomotor activity and behavior pattern. Particular attention was directed to
- 132 observation of tremors, convultions, salivation, diarrhea and comma.
- 133 Dose was selected on the basis of maximum tolerable dose, as there was no lethality observed up to 2000 mg/kg.
- 134 Thus dose was selected as 1/10 and 1/5 of 2000mg/kg (i.e.200 mg/kg and 400 mg/kg) for further investigation.
- 135

136 **2.5.9.** Grouping of animals for main experiment

137 ANIMALS

Albino rats of either sex, weighing between 150-200g, procured from the Animal House and acclimatized under standard laboratory conditions at 25±2°C, 50±15% RH and normal photoperiod 12:12 hour light: dark cycle for 7 days, were used. The room temperature was maintained 25±2°C with food and water ad libitum. The animals transferred to the laboratory at least one hour before the start of the experiment. The experiments were performed during day.

142

143 ANIMAL DETAILS:

- 144 STRAIN: Albino Wistar Rats
- 145 AGE: 4-5 weeks
- 146 GENDER: Male/ Female
- 147 BODY WEIGHT: 180-210 gm

148 5 groups with six animals each of 180-210 gm. Albino Rats

Group-I	Control (Normal Group)
Group-II	Alloxan induced DM (100 mg/kg)
Group-III	Diabetic Rats received Methanolic Extract of Gymnemasylvestre (200mg/kg)
Group-IV	Diabetic Rats received Methanolic Extract of Gymnemaslyvestre (400mg/kg)
Group-V	Standard Drug (Amitriptyline) (05 mg/kg)

149

150 3. INDUCTION OF DIABETES [49]

- a. Preparation of citrate buffer[50]
- 152 b. Preparation of STZ solution
- 153 c. Administration of STZ

a. Preparation of citrate buffer: 10 g of Sodium citrate and 5.90 g of Sodium chloride were dissolved in 900 ml. of
 distilled water. pH of the solution was adjusted by addition of Hydrochloric acid and at last sufficient water
 was added to produce 1000ml.

b. Preparation of drug solution: 157 Calculation and weighing for the amount of alloxan for all animals to be injected were done. Calculation was 158 done for the buffer I need to get the concentration of 10 mg/ml. Weighed quantity of STZ was dissolved in 159 0.1M cold citrate buffer (pH 4.5 and) immediately before use. 160 Administration of STZ: All the rats were fasted overnight before the administration of Alloxan. A freshly c. 161 prepared solution of alloxan (100 mg/kg body weight) in 0.1M citrate buffer, pH 4.5 was injected (1.0-mL sy-162 ringe) subcutaneously in a volume of 100 ml/kg body weight to overnight fasted rats. After the injection they 163 had free access to food and water. The animals were allowed to drink 5% glucose solution overnight to over-164 come hypoglycaemic shock. The development of diabetes was confirmed after 48hrs of Alloxan injection. The 165 animals having fasting blood glucose level more than 225mg/dl were considered as diabetic rats and used for 166 the experimentation. Diabetic animals were grouped five days after induction of diabetes Effect of Methanolic 167

168 Extract of Gymnemasylvestre in alloxan induced diabetes in rats.

169 4. PREPRATION OF INTERVENTIONS:

Dried extract was suspended in distilled water using 0.3% CMC as suspending agent. The standard drug Amitriptyline (05mg/kg body weight) was also prepared in a similar manner. The test and standard drugs were administered by oral route.

173 5. EVALUATION OF DIFFERENT PLANT EXTRACT

174 **5.1Biochemical examination:**

At the end of the treatment period, all rats were fasted for 8 hours. The blood was collected into tubes and serum was separated by centrifugation and used for biochemical analysis. The biochemical investigations were performed by using a Biochemical semi auto analyzer (ERBA-Chem-5 Plus. V2., West-Germany). The biochemical parameters considered were: Serum AST (SGOT) i.e. Asparate transaminase, ALT (SGPT) i.e. Alanine aminotransferase and total protein.

- 180
- 181 182

Fig.No.2: Blood Sampling

- Biochemical studies: In non heparinised tubes the blood was collected and centrifuged for 10 min at 3000 rpm. To
 analyze the enzymes, the serum was separated.
- 185 Biochemical data of Albino Rats as per CPCSEA guidelines:
- 186 1. Glucose: 50-135 mg/dL
- 187 2. Total protein: 5.6-7.6 g/dL

Section A-Research paper

188	3. Cholesterol: 40-130 mg/dL			
189	4. Triglycerides: 25-165 mg/dL			
190	5. SGPT: 0-40 IU/L			
191	6. SGOT:5-34 IU/L			
192				
193	Study design for blood glucose:			
194	Apparatus: ACCU-CHECK			
195	Principle: Amperometry: The glucose dehydrogenase enzyme, in the presence of coenzyme (PQQ), on the test strip			
196	converts the glucose in the blood sample to gluconolactone. This reaction creates a harmless electrical current that			
197	glucometer interprets for blood glucose.			
198	Reaction:			
199	Glucose dehydrogenase			
200	Glucose gluconolactone+ e-			
201				
202	Procedure:			
203	1. Insert the test strip into the meter. The meter turns on.			
204	2. Make sure the code number on the display matches the code number on the test strip container.			
205	3. Obtain a drop of blood using the lancing device.			
206	4. Touch and hold the drop of blood to the edge of the test strip. Do not put blood on the top of the test strip.			
207	TRIGLYCERIDES TEST			
208	Principle			
209	Triglyceridesare hydrolysed by lipoprotein lipase (LPL) to produce glycerol and free fatty acid (FFA). In presence of			
210	glycerol Kinase (GK), Adenosine Triphosphate (ATP) phosphorylates Glycerol to produce Glycerol 3- phosphate and			
211	Adenosine Diphosphate (ADP). Glycerol 3-phosphate is further oxidized by glycerol 3-phosphate oxidase(GPO) to			
212	produce Dihydroxy acetone phosphate(DAP) and H2O2. In presence of peroxidase (POD), Hydrogen peroxide couples			
213	with 4-aminoantipyrine (4-AAP) and 4-Chlorophenol to produce red Quinonemine dye. Absorbance of coloured dye is			
214	measured at 505 nm and is proportional to Triglycerides concentration in the sample.			
215				
216	REACTION:			
217				
218	(i) Triglycerides>Glycerol + FFA			
219	(ii) Glycerol + ATP> Glycerol 3-Phosphate + ADP			
220	(iii) Glycerol 3-Phosphate + O2> DAP + H2O2			
221	(iv) 2H2O2 + 4-AAP + 4-Chlorophenol>Quinonemine dye + 4H2O			
222	PROCEDURE:			
222	Pipette inte tube marked Blank Standard Test			

Pipette into tube marked	Blank	Standard	Test
Serum/Plasma	-	-	10 µL
Reagent 2	-	10 µL	-
Reagent 1	1000 μL	1000 μL	1000 µL

224		Mix well. Incubate at 37°C for 10 minutes.				
225		Programme the analyser as per above assay parameters.				
226	1. Blank the analyser with Reagent Blank.					
227		2. Measure absorbance of standard followed by the Test.				
228		3. Calculate results as per given cal	culation formula.			
229	CALC	ULATION:				
230		Triglycerides $(mg/dL) = \frac{Absorbanceo}{AbsorbanceofSt}$	$\frac{\text{fTest}}{\text{candard}} \times 200$			
231		For Glycerol free Triglyceride				
232		Glycerol free Triglyceride = Calcula	ted Triglyceride – 10 i	mg/dL		
233	TOTA	L PROTEIN TEST				
234		PRINCIPLE:				
235		The Peptide bonds of Proteins react	-			
236		ce of which is measured at 578nm.	Ũ			-
237		ining solubility of this complex at alk	aline pH. The absorba	ance of final colour is	proportional to the c	oncentra-
238	tion of	Total protein in the sample.				
239		REACTION:				
240		Protein + Cu++> Cu-F	Protein Complex			
241		PROCEDURE:	[[
		Pipette into tube marked	Blank	Standard	Test	
		Serum/Plasma	-	-	10 µL	
		Reagent 2	-	10 µL	-	
		Reagent 1	1000 μL	1000 μL	1000 µL	
242						
243		Mix well. Incubate at 37°C for 10 mir	nutes.			
244		Programme the analyser as per abov	e assay parameters.			
245		1. Blank the analyser with Reagent B	lank.			
246		2. Measure absorbance of standard for	ollowed by the Test.			
247		3. Calculate results as per given calcu	ulation formula.			
248		CALCULATION:				
249	Total Protein Concentration $(g/dL) = \frac{AbsorbanceofTest}{AbsorbanceofStandard} \times 6.5$					
250	Globulins = Total Protein – Albumin					
251		Conversion factor				
252		Total Protein Concentration (g/L)= T	otal Protein Concentra	ation in g/dL × 10		
253		S.G.P.T.				
254		Principle:				
255		L-Alanine + 2-Oxoglutarate	> Pyruvate + L-Glut	tamate		
256		Pyruvate + NADH> L-Lact	ate + NAD			
257		Procedure:				
250		Allows the event line Devenue () and the	270C hafar	er er ble er berek		

258

Allow the working Reagent to attain 37°C before performing the test.

Section A-Research paper

	Pipette Volume			
	Working Reagent 1000 µl			
	Test 100 µl			
259	Mix well and aspirate.			
260	CALCULATION:			
261	The general formula for converting absorbance change into International Units(IU) of activity is:			
262	$IU/L = \frac{\left(\frac{\Delta A}{\min}\right) \times T.V. \times 103}{S.V. \times Absorptivity \times P}$			
263	Where:			
264	T.V. = Total reaction Volume (μ l)			
265	S.V. = Sample Volume (μ l)			
266	Absorptivity = millimolar absorptivity of NADH at340nm = 6.22			
267	P = cuvette lightpath (cm)			
268	= 1 cm			
269	Activity of ALT = Δ Abs/min × 1768			
270	S.G.O.T.			
271	Principle:			
272	L-Aspartate + 2-Oxoglutarate> Oxaloacetate + L-Glutamate			
273	Oxaloacetate + NADH> Malate + NAD			
274	Sample Pyruvate + NADH> L-Lactate + NAD			
275				
276	Procedure:			
277	Allow the working Reagent to attain 37°C before performing the test.			
	Pipette Volume			
	Working Reagent 1000 µl			
	Test 100 μl			
278	Mix well and aspirate.			
279	CALCULATION			
280	The general formula for converting absorbance change intointernationalUnits(IU) of activity is:			
281	$IU/L = \frac{\left(\frac{\Delta A}{\min}\right) \times T.V. \times 103}{S.V. \times Absorptivity \times P}$			
282	Where:			
283	T.V. = Total reaction Volume (μ l)			
284	S.V. = Sample Volume (μ l)			
285	Absorptivity = millimolar absorptivity of NADH at340nm = 6.22			
286	P = cuvette lightpath (cm)			
287	= 1 cm			
288	Activity of AST = Δ Abs/min × 1768			
289				
290	6. PREPARATION OF DOSE (FOR EXTRACTED DRUG)			
291	Solvent used: Distilled water			
292	Suspending Agent: CMC (1%)			

293	Calculation for	doses: As per weight of the animal
294	*	200mg/kg body weight
295		Solution for the dose of 200mg/kg body weight: Stock solution was prepared by dissolving the 5g of
293		
296		extracted powdered drug in 100 ml.
297	*	400/kg body Weight
298		Solution for the dose of 400mg/kg body weight:Stock solution was prepared by dissolving the 10g of
299		extracted powdered drug in 100 ml.

300 Table No. 4: Calculations for dose required (of extract) as per body weight

Groups	Group-III		Group-IV		
	Weight of Rats	dose as per 200mg/kg	Weight of Rats	Dose as per 400mg/kg	
R1	197	$\frac{200}{1000}$ X197 = 39.4mg	201	$\frac{400}{1000}$ X201 = 80.4mg	
R2	199	$\frac{200}{1000}$ X199 = 39.8mg	184	$\frac{400}{1000}$ X184 = 73.6mg	
R3	206	$\frac{200}{1000}$ X206 = 41.2mg	201	$\frac{400}{1000}$ X201 = 80.4mg	
R4	205	$\frac{200}{1000}$ X205 = 41mg	206	$\frac{400}{1000}$ X206 = 82.4mg	
R5	193	$\frac{200}{1000}$ X193 = 38.6mg	187	$\frac{400}{1000}$ X187 = 74.8mg	
R6	187	$\frac{200}{1000}$ X187 = 37.4mg	200	$\frac{400}{1000}$ X200 = 80mg	

301

302 Table 5: Quantity of plant- extract- solution required for the administration in the rats

	Group-III	Group-IV
	(200mg/kg body weight)	(400mg/kg body weight)
R1	$\frac{100}{5000} X 39.4 = 0.78 \text{ml}$	$\frac{100}{10000} X 80.4 = 0.80 \text{ml}$
R2	$\frac{100}{5000} X 39.8 = 0.79 \text{ml}$	$\frac{100}{10000} X 73.6 = 0.73 \text{ml}$

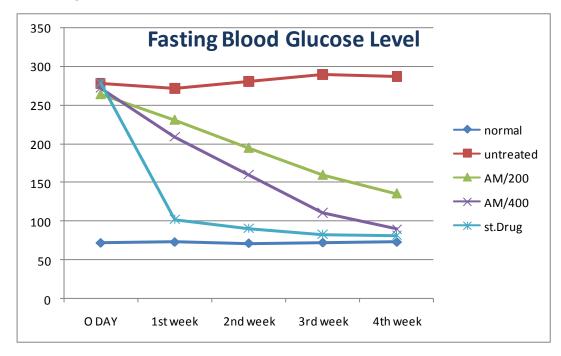
Section A-Research paper

R3	$\frac{100}{5000} X 41.2 = 0.82 \text{ml}$	$\frac{100}{10000} X 80.4 = 0.80 \text{ml}$
R4	$\frac{100}{5000} X 41 = 0.82 \text{ml}$	$\frac{100}{10000} X 82.4 = 0.82 \text{ml}$
R5	$\frac{100}{5000} X 38.6 = 0.77 \text{ml}$	$\frac{100}{10000}$ X 74.8 = .74ml
R6	$\frac{100}{5000} X 37.4 = 0.74 \text{ml}$	$\frac{100}{10000} X 80 = 0.80 \text{ml}$

303

304 Solution of standard drug (Amitriptyline):

- 305 Marketed brand of Amitriptyline was purchased. The tablets were crushed, suspended in distilled water and given to
- 306 diabetic rats at the dose level 05 mg/kg body weight, daily by gastric intubation.
- 307 Each Uncoated tablet contains:
- 308 Amitriptyline I.P.....5mg
- 309 Company Name: Sanofi India Limited
- 310 Storage: Below +250C
- 311 Dose of Amitriptyline: 05mg/kg body weight
- 312 Solvent Used: Distilled Water


313 **7. RESULTS:**

314 Effect on fasting blood glucose level:

- 315
- Effect of multi dose extract of Gymnemasylvestre.on blood glucose level in different groups of Rats

DAY	0th day	7th day	14th day	21st day	28th day
GROUPS					
NORMAL	72.166	73.333	71.666	72.5	73.333
DIABETIC(UNTREATED)	278.5	272.0	281.166	290.0	287.333
DIABETIC(Am-200mg/kg)	264	231	194.666	159.833	135.833
DIABETIC(Am-400mg/kg)	272	209.166	160.5	111.333	90.333
DIABETIC (St.DRUG)	278.5	103.333	100.166	93.833	81.666

The results of the study are depicted in above table. During the experiment the diabetic rats had an improvement in the normalization of blood glucose levels.

319

Fig.3. Effect of different plants extracts and Amitriptyline on glucose level at the 1st, 2nd,3rd, and 4th week of the treatment.

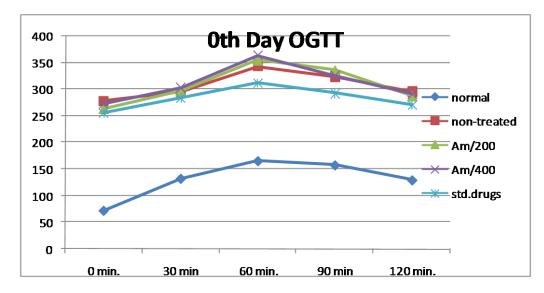
322 Effect on oral glucose tolerance test (OGTT)

The oral glucose tolerance test (OGTT) of normal non-diabetic and diabetic rats were shown in Fig.2, the blood glucose 323 level of normal non-diabetic rats had fasting blood glucose level 72.5±1mg/dl that was much lower than that of the 324 diabetic rats; reached its peak value at 60 minutes following glucose intake (3 gm/kg B.W.) and began to decrease 325 during the next 60 minutes to reach 97.33 after two hours of glucose administration In the diabetic non-treated albino 326 rats, blood glucose level also attained its maximal level after 60 minutes of glucose administration recording 343.6, 327 357,354, 366and 372 after the first, second, third and fourth weeks. Subsequently, these values begin to decline during 328 the next 60 minutes but in slower rate but still elevated than that of the normal rats. When the diabetes was treated with 329 Gymnemasylvestre extract and amitryptiline there was a noticeable hypoglycemic effect in diabetic treated animals' 330 compared with the diabetic non-treated groups. 331

Continuous treatment with the tested material for two weeks had beneficial effects on OGTT values alleviating hyperglycemia. Gymnema sylvestre with 200mg/kg body weight exhibited, a mild hypoglycemic effect, while amitryptiline treatment showed remarkable effect as compared with the other diabetic groups. Prolonged treatment of the Diabetic rats with each of the tested extracts as well as with amitryptiline for four weeks showed a more beneficial effect on OGTT. All changes were statistically highly significant. Fasting glucose was lower than that of the first and second weeks treated groups.

338 During latency period observations of OGTT at different weeks and their graphs are as follows:

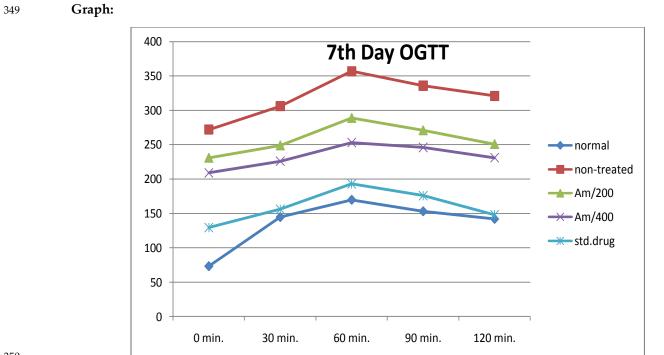
- 339
- 340
- 341
- 342
- 343
- Eur. Chem. Bull. 2023, 12 (Special Issue 7), 2042-2060


Section A-Research paper

344 **0- Day Observations**

345 **Table:6**

	Normal	Diabetic	Diabetic	Diabetic	Diabetic (Ami-
Groups		(untreated)	(A.m.200)	(A.m.400)	triptyline)
Time				· · · ·	
(min)					
0	72.166	278.5	264	272.5	256.5
30	132.46	295	297	303	284
60	197.72	343.6	355	364	312
90	157.77	324	336	326	293
120	97.33	296	288	291	271


346 7th Day Observations

347

Table:	Table:7							
	Groups	Normal	Diabetic	Diabetic	Diabetic	Diabetic		
	Time (min)		(untreated)	(A.m.200)	(A.m.400)	(Amitrityline)		
	0	73.333	272.0	231	209.166	129.333		
	30	144.66	306	249	226	156		
	60	169.71	357	289	253	193		
	90	153	336	271	246	176		
	120	142	321	248	231	148		

Section A-Research paper

351352 14th Day Observation

Table:8

	•							
Groups	Normal	Diabetic	Diabetic	Diabetic	Diabetic			
Time (min)		(untreated)	(A.m.200)	(A.m.400)	(Amitrityline)			
0	71.666	281.166	194.666	160.5	100.166			
30	146.75	309.2	208	195	133			
60	171.68	354	268	256	183			
90	135	321	241	231	169			
120	124	292	203	197	128			

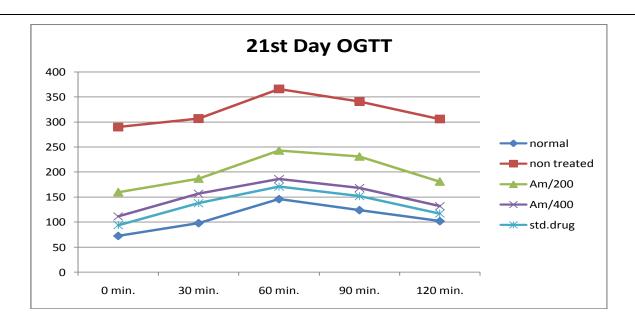
363 Graph: 364 14th Day OGTT 400 350 300 - normal 250 non-treated 200 📥 Am/200 150 → Am/400 100 <mark>──</mark>std.drug 50 0 30 min. 60 min. 90 min. 120 min. o min.

365

366

367

368

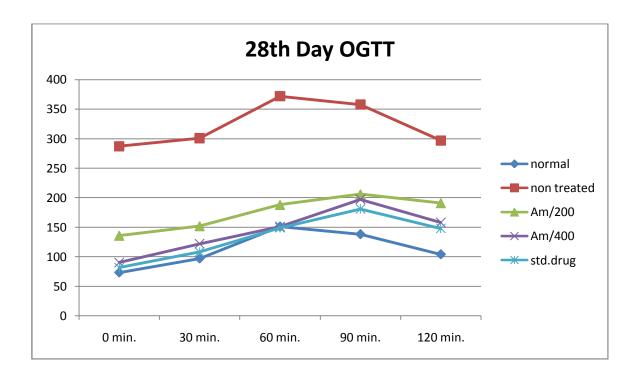

Groups	Normal	Diabetic	Diabetic	Diabetic	Diabetic (Ami-		
Time (min)		(untreated)	(A.m.200)	(A.m.400)	triptyline)		
0	72.5	290	159.833	111.333	93.833		
30	98	307	187	157	138		
60	146	366	243	186	171		
90	124	341	231	168	152		
120	102	306	181	132	117		

369 370

371

21st Day Observation: Table:9

Section A-Research paper


372 373

374 28th Day Observation

375 Table:10

Groups	Normal	Diabetic	Diabetic	Diabetic	Diabetic (Ami-
Time (min)		(untreated)	(A.m.200)	(A.m.400)	triptyline)
0	73.333	287.333	135.833	90.333	81.666
30	97	301	152	122	108
60	151	372	188	151	149
90	138	358	206	197	181
120	104	297	191	158	148

376

Section A-Research paper

378 Discussion:

- 1. It was found that Gymnemasylvestre was claimed to show Diabetic Neuropathy activity.
- 2. Extract of leaf of Gymnemasylvestre.was collected, dried and powdered.
- 381 3. Selection of solvent, extraction of plant Gymnemasylvestre.
- 382 4. Extraction of plant Gymnemasylvestre
- 5. Phytochemical screening of the extract.
- 6. Acute toxicity studies will be done based on OECD guidelines.

385 386

387

388 389

- Literature review show that Gymnemasylvestre. showed various activities.
- Shade dried areal parts (leaves and stem) of Gymnemasylvestre subjected to extraction yielded crude extract.
- The ethanolic extract showed presence of phytochemical constituents which may be responsible for its diabetic neuropathy activity.
- So we can say that the extract posses diabetic neuropathy activity showing by decreasing blood glucose levels to normal. Hence this plant looks promising in the treatment of diabetes. It is very difficult to mention which of the ingredients were responsible for this favorable response.

393 8. REFERENCES:

- Viswanathan M., Shah S., BanshiSaboo; Current Glycemic Status And Diabetes Related Complications Among
 Type 2 Dabetes Patients In India: Data from the A1 chieve Study; JAPI,2013; 61; 12.
- Leelavathi D Acharya, N R Rau and N Udupa; Impact of Hypertension and Dyslipidemia in Diabetic Patients;
 2013; 50; 65
- Tortora and Grabowski'sprinciples of anatomy and physiology, Eighth edition, Published by- HarperCollins College Publisher, 533, 537, 775.
- 400 4. Lippincott's illustrated Reviews:Pharmacology,First Indian reprint,2007, Published by- Wolters Kluwer
 401 Health(India) Pvt. Ltd., 281,282
- 402 5. Goodman& Gilman's The Pharmacological basis of Therapeutics; Tenth edition ; Published by-Mc GrawHill, 1686
- 6. Koda-Kimble's Applied Therapeutics the clinical use of drugs , Eighth edition Published by-Williams & Wil kins,50-3.
- Tortora and Grabowski's principles of anatomy and physiology, Eighth edition, published by- HarperCollins
 College Publisher, 533, 537, 775.
- **8.** Rand and Dale's Pharmacology; 6th edition, Published by- Churchill Livingstone Elsevier, 402
- 408 9. Lippincott's illustrated Reviews:Pharmacology,First Indian reprint,2007, Published by- Wolters Kluwer
 409 Health(India) Pvt. Ltd., 282,283.
- **10.** Tripathi K.D.; Essentials of Medical Pharmacology; Sixth Edition; JaypeePrakashan; 266.
- **11.** Pattan S.R., Kekare P.G., Musmade D.S., Pattan J.S. and Kothiwale V.A.; Treatment of Diabetes Mellitus through
 Herbal Remedy; 2010; 47(5); 5-8.
- **12.** Samal P.K.; 2013; Journal of global trends in pharmaceutical sciences; 4(2);1073-1076
- 414 13. Acharya L.D.; Rau N.R.; Udupa N; 2013; Indian Journal of Hospital Pharmacy 50; 65-68

Section A-Research paper

- 415 14. Mohan V., Shah S., Saboo B., 2013; Supplement to JPI; January2013; 61; 12-14
- 416 15. Reddy K. S., Reddy y.p., Devanna N., 2012; Adv. Pharmacol. 13(3) 2012, 27-30
- 417 16. Sourabie T.S., Nikiema J.B., Guissou I.P. And Nacoulma O.G.; 2012; IOSR Journal of Pharmacy; Vol. 2, Issue 6,
 418 Nov-Dec. 2012 PP. 08-13
- 419 17. Ahmad W., Suresh D.K., Khan M., Khalid S.; 2012; Adv. Pharmacol. 13(2) 2012;19-25
- 420 18. Mishra m.k., Barik B.B.; 2009; Indian Drugs 46 (10) October 2009; 808; 66-69
- 421 19. Jadhav G.B., Upasani C.D.; 2010; Indian Drugs 47 (2) February2010; 44-48
- Sharma, S., Sharma, M. C., Kohli D.V.; Digest Journal of Nanomaterials and Biostructures Vol. 5, No 1, March 2010,
 229 232
- 424 21. Kempraj V. and Bhat S., 2010; Indian Journal of Natural Products and Resources; Vol 1(3);2010; 338
- 425 **22.** Pattan S.R., Kekare P.G., Musmade D.S., Pattan J.S., Kothiwale V.A.; 2010; Indian Drugs 47(5) May 2010
- 426 **23.** Gireesh G.M., Latha P.G., Suja S.R., Shine V.J., Shyamal;2010;Indian Drugs47 (1) Janurary 2010;14-18
- 427 24. Jena P.K., Nayak B.S., Ellaiah P., Samal M.; 2010; Indian Drugs47 (1) Janurary 2010; 44-47
- 428 25. Kumarij., Mehta C.S., Shukla V.D., Dave A.R., Shinghla T.; 2010; AYU; Jul-sept 2010; 31(3); 300-304
- 429 26. Ghosh G., Sahu P.K., Si S.C., Baric B.B., Mishra S.K.; 2009; Indian drugs 46 (12) December 2009/965; 43-46
- 430 27. Patil S.M., Sapkale G.N., Patil M.B., Sompure C.K.; 2009; Indian drugs 47 (4) April 2010
- 28. Bertrand G., Merlin L. Willcoxa, Chiaka D., Jacques F., Florent D., Oumar S., Sergio G., Drissa D.;2009; Transactions
 of the Royal Society of Tropical Medicine and Hygiene;
- 433 29. Dey N.R., Das K.C., Rai Y.; 2008; Indian Journal of Research in Homoeopathy; Vol. 2, 1
- 434 **30.** Rajvaidhya S., Nagori B.P., singh G.K., Dubey B.K., Desai P. and Jain S.;2012; , IJPSR, 2012; Vol. 3(8): 2494-2501
- 435 31. Dash G. K. and Murthy P. N.; 2011; Scholars Research Library J. Nat. Prod. Plant Resour., 2011, 1 (1): 46-56
- 436 32. Cecilia Guízar-González, Karen Trujillo-Villanueva, Miriam Monforte-González, and Felipe Vázquez-Flota; 2012; J.
 437 Mex. Chem. Soc. 2012, 56(1), 19-22
- 438 **33.** Yuh-ChwenChanga, Fang-RongChanga, Ashraf T. Khalila, Pei-Wen Hsieha and Yang-Chang Wu; 2003; Cytotoxic
- Benzophenanthridine and Benzylisoquinoline Alkaloids from Argemonemexicana; Verlag der Zeitschriftfür Naturforschung, Tübingen; 0939Đ5075/2003/0700Đ0521
- 441 34. Kritikar and Basu's INDIAN MEDICINAL PLANTS, Volume-I Published by-In34. Sammbamurty's Dictionary of
 442 medicinal plants, published by-CBS ,30
- 443 **35.** Mohan V., Shah S., Saboo B.; 2013; J Assoc Physicians India; 61(1); 12-5.
- 444 36. F.S.K. Brar's Essentials of PharmacotherapeuticsIV[th] edition, Published by S. Chand, 298 International book
 445 Distribution, 125.
- 446 **37.** Ahamad W., 2012; RJPS; 13(2); 10-25.
- 447 **38.** Kumar T.R.; 2011; International Journal of Pharma and Bio Sciences; 2(1); 126-130.
- 448 **39.** Gireesh G.M., Latha P.G., Suja S.R., Shine V.J., Shyamal;2010;Indian Drugs47 (1) Janurary 2010;14-18