

Meriam B. Gabaisen, EdD

Bohol Island State University - Calape Campus, San Isidro, Calape Bohol E-mail: <u>meriam.gabaisen@bisu.edu.ph</u>

ABSTRACT

The concept of $\delta(\delta g)^*$ - closed set in bitopological spaces (briefly BTS) was introduced in this paper. It specifically looked into and characterized concepts related like $\delta(\delta g)^*$ - interior and $\delta(\delta g)^*$ - closure of a set, and $\tau_i \tau_j$ - closed sets. This paper proves that every $\tau_j - \delta$ -closed set and $\tau_i \tau_j \delta g^*$ -closed sets are $\tau_i \tau_j \delta(\delta g)^*$ -closed. It is also shows that the family of all $\tau_i \tau_j \delta(\delta g)^*$ -closed (resp. $\tau_i \tau_j \delta(\delta g)^*$ -open) sets is not equal to $\tau_j \tau_i \delta(\delta g)^*$ -closed.

Keywords: $\delta(\delta g)^*$ -closed set, $\delta(\delta g)^*$ - interior, $\delta(\delta g)^*$ -closure, $\tau_i \tau_j \delta g^*$ -closed sets, and $\tau_j \tau_i \delta(\delta g)^*$ -closed set

I. Introduction

Various kinds of closed and open sets have been introduced in an arbitrary topological space over time. Sets that are stronger than open sets are known as -open sets, according to Velicko (1968) [28]. Generalized closed sets, often known as g-closed sets, were first introduced and studied by Norman Levine [14] in 1970. Julian Dontchev (1996) [4] proposed a class of generalized closed sets known as "g-closed sets" by fusing the concepts of " δ -closedness" and "g-closedness." In 2010, Thivagar et al [25] established a class termed " $\delta \hat{g}$ -closed sets" that falls in between the categories of " δ -closed" and " δg -closed" sets.

By the end of 2012, Sudha R. likewise Sivakamasundari, K. [19] introduced and studied the δg^* -closed set, another universal closed set. In 2014, K. K and Meena. (g)* - closed set in topological spaces is a new class of generalized closed sets that Sivakamasundari presented. The concept of bitopological spaces, or the triple (X, P₁, P₂) with P₁ and P₂ being two topologies on X, was instead presented by Kelly [12].

These ideas serve as the inspiration for the author's introduction of the idea of $\delta(\delta g)^*$ - closed sets in Bitopological spaces (also known as BTS) and his investigation of them. He then uses them to introduce new classes of mappings and BTS. This paper presents a number of characterizations, properties, and examples linked to the new notions.

II. Bitopological Properties of $\delta(\delta g)^*$ - Closed Sets

The principles and characterization of the $\delta(\delta g)^*$ -closed set in the BTS are introduced in this part, and the connections between the $\delta(\delta g)^*$ -closed set and other closed sets existing in the BTS are also established.

Section: Research Paper

1.1 $\delta(\delta g)^*$ - Closed Sets

Definition 2.1 A subset A of a BTS (X, τ_1 , τ_2) is said to be τ_1 , $\tau_2 \delta(\delta g)^*$ - closed set if $\delta cl_2(A) \subseteq U$ where $A \subseteq U$, and U is δg_1 -open in X. The complement of τ_1 , $\tau_2 - \delta(\delta g)^*$ - closed set is said to be τ_1 , $\tau_2 - \delta(\delta g)^*$ - open set.

Example 2.2 Suppose X = {a, b, c} then let us consider the topologies $\tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2 = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}$.

So, τ_1 -closed sets in X are Ø, X, {b, c}, {a, c} and {c}, τ_2 -closed sets in X are Ø, X, {a}, {a, b} and {a, c}. The τ_1 - *regular open* sets and δ_1 -*open* sets in X are Ø, X, {a}. Hence, τ_2 - *regular open* sets in X are Ø, X, {b}, and {c}, the δ_2 -*open* sets are Ø, X, {b}, {c} and {b, c}. So, the δ_1 -closed sets in X are Ø, X, {b, c}, while the δ_2 -*open* sets in X are Ø, X, {a}, {a, b} and {a, c} and the δ_g_1 -closed sets in X are Ø, X, {c}, {a, c} and {b, c}.

Therefore, \emptyset , X, {a}, {c}, {a, b}, {a, c} and {b, c} are the $\tau_1 \tau_2 \delta (\delta g)^*$ - *closed set*.

1.2 Closure and Interior in BTS

Definition 2.3 Let X be an empty set and τ_1 and τ_2 be two topologies on X. The triple $(X_{,1}, \tau_2)$ is said to be a *bitopological space (briefly, BTS)*. Let $(X_{,1}, \tau_2)$ be a BTS and $A \subseteq X$. Respectively, $\tau_i - cl(A)$ and $\tau_i - int(A)$ denotes the cl(A) and int(A) with respect to τ_i .

Theorem 2.4 Suppose A and B are nonempty subsets of X. If A $\neq \emptyset$, so $a \in \delta(\delta g)^*$ -

cl(A) if and only if for every $\delta(\delta g)^*$ -open set U with $a \in U, U \cap A \neq \emptyset$.

Theorem 2.5 Let (X, τ) be a topological space and A, B, and F be subsets of X.

- (i) If A is $\tau \delta(\delta g)^*$ -closed, then $A = \delta(\delta g)^*$ -cl $(A) = \delta(\delta g)^*$ cl $(\delta(\delta g)^*$ -cl(A)).
- (ii) If $A \subseteq B$, then $(\delta(\delta g)^* cl(A) \subseteq \delta(\delta g)^* cl(B))$.
- (iii) $\delta(\delta g)^* cl(A) \subseteq \delta(\delta g)^* cl(\delta(\delta g)^* cl(A))$
- (iv) $\delta(\delta g)^* cl(A) \cup \delta(\delta g)^* cl(B) \subseteq \delta(\delta g)^* cl(A \cup B)$.

Theorem 2.6 Let (X, τ) be a topological space and A, B, and F be subsets of X.

- (i) If A is $\delta(\delta g)^*$ -open, then $A = \delta(\delta g)^*$ - $cl(A) = \delta(\delta g)^* cl(\delta(\delta g)^*$ -cl(A)).
- (*ii*) $x \in \delta(\delta g)^*$ *int* (*A*) *if and only if there exists a* $\delta(\delta g)^*$ -*open set* U *with* $x \in U \subseteq A$.
- (iii) If $A \subseteq B$, then $(\delta(\delta g)^* int(A) \delta(\delta g)^* cl(B))$.

Theorem 2.7 Let $A \subseteq X$. Then $\delta(\delta g)^*$ -*int* $(A) = x \setminus [\delta(\delta g)^*$ -*cl* $(x \setminus A)]$. **Corollary 2.8** Let $A \subseteq X$. Then $\delta(\delta g)^*$ -*cl* $(A) = X \setminus [\delta(\delta g)^*$ -*int* $(X \setminus A)]$.

III. $\tau_{i_i} \tau_{j_i} \delta(\delta g)^*$ - Open Set

Theorem 3.1 Suppose (X, τ_i, τ_j) is a BTS and $A \subseteq X$. It follows that A is $\tau_i, \tau_j, \delta(\delta g)^*$ -*open set iff* $U \subseteq \tau_j - \delta int(A)$ *when* $U \subseteq A$ and U is $\tau_i, \delta g$ *closed set in* X.

Results

Theorem 3.2 There is $\tau_i \tau_j \, \delta(\delta g)^*$ - closed in every $\tau_j \, \delta$ -closed set. **Theorem 3.3** There is $\tau_i \tau_j \, \delta(\delta g)^*$ - closed in every $\tau_i \tau_j \, \delta g^*$ closed set. **Theorem 3.5** There is $\tau_i \tau_j \, g\delta$ - closed in every $\tau_i \tau_j \, \delta(\delta g)^*$ - closed set. **Theorem 3.6** There is $\tau_i \tau_j \, g\sigma$ - closed in every $\tau_i \tau_j \, \delta(\delta g)^*$ - closed set. **Theorem 3.7** There is $\tau_i \tau_j \, g\sigma$ - closed in every $\tau_i \tau_j \, \delta(\delta g)^*$ - closed set. **Theorem 3.8** There is $\tau_i \tau_j - \delta g^{\#}$ -closed in every $\tau_i \tau_j - \delta(\delta g)^*$ - closed set. **Theorem 3.9** There is $\tau_i \tau_j - \delta g^{\#}$ -closed in every $\tau_i \tau_j - \delta(\delta g)^*$ - closed set. **Theorem 3.10** There is $\tau_i \tau_j - gspr$ - closed in every $\tau_i \tau_j - \delta(\delta g)^*$ - closed set. **Theorem 3.11** There is $\tau_i \tau_j - \pi g$ - closed in every $\tau_i \tau_j - \delta(\delta g)^*$ - closed set. **Theorem 3.12** There is $\tau_i \tau_j - \pi g$ - closed in every $\tau_i \tau_j - \delta(\delta g)^*$ - closed set. **Theorem 3.13** There is $\tau_i \tau_j - \pi g$ - closed in every $\tau_i \tau_j - \delta(\delta g)^*$ - closed set. **Theorem 3.13** There is $\tau_i \tau_j - \pi g$ - closed in every $\tau_i \tau_j - \delta(\delta g)^*$ - closed set. **Theorem 3.13** There is $\tau_i \tau_j - \pi g$ - closed in every $\tau_i \tau_j - \delta(\delta g)^*$ - closed set.

Recommendations

Further investigate $\delta(\delta g)^*$ - closed set in bigeneralized topological spaces.

References

[1] Abd El-Monsef, M.E., Rose Mary S. and Thivagar, M.L., *On* $\alpha \hat{g}$ -closed sets in bitopological spaces., Journal of Mathematics and Computer Science, (36)(2007), 43-45

[2]Baculta J.J., Regular Generalized Star β-sets in Generalized, Bigeneralized and Generalized Fuzzy Topological Spaces Ph.d Thesis. MSU-Iligan Institute of Technology, Iligan City. (2015)

[3]Dontchev, J.I. Arokiarani, I. and Balachandran, K., On generalized δ closed sets and almost weakly Hausdorff spaces., Topology Atlas, (1997).

[4]Dontchev J. and Gauster, M., On δ generalized closed set and T ³/₄ spaces, Mem.Fac.Sci.Kochi, Univ. Math. 17

[5] Dontchev, J. and Noiri, T., Quasi-normal spaces

[6] Elvina, ML., (gs)^{*} - closed sets in topological spaces Journal of Mathematics Trends and Technology,

[7] Gnanambal, Y., On generalized pre regular sets in topological spaces.,

Ind.J.Pure.Appl.Math. 28(3)(1997): 351-360.

[8] Ittanagi, B.M., Soft Bitopological Spaces., International Journal of Comp.App. Vol.107(7)(2014), 1-4.

[9] Jafari, S., Noiri, T., Rajesh, N. and Thivagar, M.L., Another generalisation of closed sets., Kochi.J.Math.(3)(2008), 25-38.

[10] Janaki, C., Studies on g -closed sets in topology., Ph.d Thesis. Bharathiar University Coimbatore, India(1999).

[11] Jayakumar, P., Mariappa, K., Sekar, S., On generalised gp*-closed

set,Int.Journal of Math. Analysis.,(7)(2013), 1635-1645.

[12] Kelly,J.C., Bitopological spaces., Proc. Lond. Math. Soc. (3) 13 (1963), 7189. [14] Levine, N., Semi-open sets and semi-continuity in topological spaces.,

Amer. Math. Monthly., 70(1963), 36 - 41.

[13] Levine, N., Generalized closed sets in topology., Rend.Circ.Math.Palermo, 19(1970), 89 - 96.

[14] Maki, H., Devi, R. and Balachandran, K., Associated topologies of generalized-closed Sets and -closed sets and -generalized closed sets., Mem. Fac. Sci. Kochi Univ. (Math) 15(1994), 51-63. [15] Maki, H., Umehara, J. and Noiri, T., Every topological space is pre-T1=2., Mem Fac Sci Kochi Univ Ser.Alath 17(1996), 33-42. [16] Meena, K. and Sivakamasundari, K., (g)- closed set in topological spaces. Vol.3(7)(2014), 14749-14753. [17] Palaniappan, N. and Rao, K.C., Regular generalized closed sets., Kyungpook Math. J 33(1993), 211-219. [18] Pushpalatha, A. and Anitha, K., Denition Bank in general properties g*s-closed topological topology and the sets in spaces, Int.J.Contemp.Math.sciences, (6) (2011), 917-929. [19] Sarsak, M.S. and Rajesh, N., Generalized semi-pre-closed sets. International Mathematical Forum., 5(12)(2010): 573-578. [20] Shylac I.M.T., and Thangavelu, P., On regular pre-semi closed sets in topological spaces., KBM jounal of Mathematical Sciences and Computer Applications,(2010)1(1), 9-17. [21] Sudha, R. and Sivakamasundari, K., g-closed sets in topological spaces., International Journal of Mathematical Archieve, (2012)3(3), 1222-1230. [22] Swart, J., Total Disconnectednesss in Bitopological Spaces and Product Bitopological Spaces., Indag. Math 33(1971), 135-145. [23] Thivagar, M.L., Meeradevi, B. and Hatir, E., ^g-closed sets in topological spaces.,Gen.Math.Notes,(2)(2010), 17-25. [24] Thivagar, M.L., Meeradevi, B. and Hatir, E., -closed sets and g -closed sets called ^g-closed sets., Gen. Math. Notes, Vol. 1, No. 2, (2010), 17-25. [25] Vadivel, A. and Vairamanickam, K., rg-closed sets and rg-open sets in topological Spaces., Int J Math Analysis (2010)3 (37): 1803-1819. [26] Veerakumar, M.K.R.S., ^g-closed sets in topological spaces., Bull.Allah.Math.soc.,(18)(2003), 99-112. [27] Velicko, N.V., H-closed topological spaces, Amer., Math. Soc. Transl., 78(1968), 103-118.

ABOUT THE AUTHOR

MERIAM B. GABAISEN, EdD, is an Assistant Professor of Bohol Island State University-Calape Campus, Calape, Bohol, Philippines. She published journal at Green Publication International for Research in Mathematics and Statistics which entitled $\delta(\delta g)^*$ - Closed Sets and Functions in Topological Spaces, a member of various professional organizations in the field of education and research. She is a product of BISU-Main Campus, Tagbilaran City, Bohol Philippines having finished her

Bachelor of Secondary major in Mathematics, Master of Science major in Mathematics, and Doctor of Education major in Educational Management.