Radio Pell Labeling of Graphs

Dr.K.Sunitha ${ }^{1}$, Abisha Virgin. ${ }^{2}{ }^{2}$

${ }^{1}$ Assistant professor, Department of Mathematics, Scott Christian College (Autonomous), Nagercoil.
${ }^{2}$ Research Scholar,Reg No:20113112092019, Department of Mathematics, Scott Christian College (Autonomous),Nagercoil.
1,2 Affiliated to Manonmaniam Sundaranar University, Tirunelveli-629152,Tamil Nadu,India.

Abstract

Let G be a connected graph. For any two distinct vertices x and y of G , Define a $1-1$ mapping $\varnothing: V(G) \rightarrow$ N such that $d(x, y)+(\varnothing(x)+2 \emptyset(y)) \geq 1+d m(G)$, where $d m(G)$ is the diameter of G. The maximum number assigned to any vertex of G is the radio Pell number of \emptyset and it is denoted by $r p n(\varnothing)$. The minimum value of $r p n(\varnothing)$ taken overall radio Pell labelings of G is the radio Pell number of G and it is denoted by $\operatorname{rpn}(G)$. In this paper, we investigate the radio Pell number of graphs such as Comb graph $P_{n} \odot K_{1}$, Ladder graph L_{n}, Triangular snake graph T_{n}, Double Triangular snake graph $D T_{n}$, Quadrilateral snake graph Q_{n} and Double Quadrilateral snake graph $D Q_{n}$.

Keywords: Pell labeling, Distance, Diameter, Comb graph, Ladder graph, Triangular graph, Double triangular graph, Quadrilateral graph, Double quadrilateral graph.

DOI: 10.48047/ecb/2023.12.Si8.525

Introduction

In this paper, we consider the graphs are simple, finite and undirected. The vertex set and edge set of G are respectively denoted by $\mathrm{V}(\mathrm{G})$ and $\mathrm{E}(\mathrm{G})$. Most graph labeling methods trace their origin to one introduced by Rosa[3] in 1967. The Pell numbers are defined by the recurrence relation $P_{n}=2 P_{n-1}+$ $P_{n-2}, n \geq 2$ where $P_{0}=0$ and $P_{1}=1$. In [4] J.Shiama introduced the concept of radio Pell labeling of graphs. Chartrand et al.[5] introduced the notion of radio labeling of graphs. In this sequel,we introduce the radio Pell labeling of graphs. For standard terminology and notations we follow Harary[1] and Gallian[2].

Definition 1.1. [6] Let G be a graph with p vertices. If there exist a mapping $\emptyset: V(G) \rightarrow\{0,1,2, \ldots, P-$ 1) such that the induced function $\emptyset^{*}: E(G) \rightarrow N$ given by $\emptyset^{*}(x y)=\varnothing(x)+2 \emptyset(y)$ for every $x y \in$ $E(G)$ are all distinct, where $x, y \geq 0$, then the function \emptyset is called a Pell labeling. A graph which admits Pell labeling is called Pell graph.

Definition 1.2. [7] The distance $\mathrm{d}(\mathrm{x}, \mathrm{y})$ from a vertex x to a vertex y in a connected graph G is the minimum of the lengths of the $x-y$ paths in G .

Definition 1.3. [7] The diameter $\operatorname{dm}(G)$ of G is the greatest eccentricity among the vertices of G .
Definition 1.4. [8] The Comb graph $P_{n} \odot K_{1}$ is obtained by joining a single pendant edge to each vertex of a Path P_{n}.

Definition 1.5. [9] A ladder graph L_{n} is defined by $L_{n}=P_{n} \times K_{2}$ where P_{n} is a path with n vertices and K_{2} is a complete graph with two-vertices.

Definition 1.6. [8] A Triangular Snake graph T_{n} is obtained from a path $x_{1}, x_{2}, \ldots x_{n}$ by joining x_{i} and x_{i+1} to a new vertex y_{i} for $1 \leq i \leq n-1$. That is every edge of a path is replaced by a triangle C_{3}.

Definition 1.7. [10] A Double triangular snake graph $D T_{n}$ is obtained from a path $x_{1}, x_{2}, \ldots x_{n}$ by joining x_{i} and x_{i+1} to two new vertices y_{i} and $z_{i}, 1 \leq i \leq n-1$. That is, a double triangular snake consists of two triangular snakes that have a common path.

Definition 1.8. [8] A Quadrilateral Snake Q_{n} is obtained from a path $x_{1}, x_{2}, \ldots x_{n}$ by joining x_{i} and x_{i+1} to two new vertices y_{i} and z_{i} respectively and then join y_{i} and z_{i}. That is every edge of a path is replaced by a cycle C_{4}.

Definition 1.9. [10] A Double quadrilateral snake graph $D Q_{n}$ is obtained from a path $x_{1}, x_{2}, \ldots x_{n}$ by joining x_{i} and x_{i+1} to new vertices $y_{i} y_{i}^{\prime}$ and $z_{i} z_{i}^{\prime}$ respectively and then join $y_{i} z_{i}$ and $y_{i}^{\prime} z_{i}^{\prime}$. That is, a double quadrilateral snake $D Q_{n}$ consists of two quadrilateral snakes that have a common path.

1 Main Results

Theorem 2.1. The radio pell number of a comb graph $P_{n} \odot K_{1}$ is $\operatorname{rpn}\left(P_{n} \odot K_{1}\right)=3 n-2, n \geq 2$.

Proof. Let $x_{i}, 1 \leq i \leq n$ be the vertices of a path P_{n} of length n. Join the pendant vertices y_{i} to each $x_{i}, 1 \leq i \leq n$. The resultant graph is $P_{n} \odot K_{1}$ whose edge set is $E\left(P_{n} \odot K_{1}\right)=\left\{x_{i} x_{i+1} / 1 \leq i \leq n-1\right\} \cup$ $\left\{x_{i} y_{i} / 1 \leq i \leq n\right\}$ and $d m\left(P_{n} \odot K_{1}\right)=n+1$. Define a function $\emptyset: V\left(P_{n} \odot K_{1}\right) \rightarrow N$ by $\emptyset\left(x_{i}\right)=n-2+i, 1 \leq i \leq n ;$
$\varnothing\left(y_{i}\right)=2 n-2+i, 1 \leq i \leq n$.
Now we verify the radio pell labeling condition $d(x, y)+(\varnothing(x)+2 \emptyset(y)) \geq 1+d m\left(P_{n} \odot K_{1}\right)$ for every pair of vertices of $P_{n} \odot K_{1}$.
case(i) verify the pair $\left(x_{i}, y_{j}\right), 1 \leq i, j \leq n$.
$d\left(\left(x_{i}, y_{j}\right)+\left(\varnothing\left(x_{i}\right)+2 \emptyset\left(y_{j}\right)\right) \geq 1+(5 n+i+2 j-6) \geq n+2=1+d m\left(P_{n} \odot K_{1}\right)\right.$
case(ii) verify the pair $\left(x_{i}, x_{j}\right), i \neq j, 1 \leq i, j \leq n$.
$d\left(\left(x_{i}, x_{j}\right)+\left(\emptyset\left(x_{i}\right)+2 \emptyset\left(x_{j}\right)\right) \geq 1+(3 n+i+2 j-6) \geq n+2\right.$
case(iii) verify the pair $\left(y_{i}, y_{j}\right), i \neq j, 1 \leq i, j \leq n$.
$d\left(\left(y_{i}, y_{j}\right)+\left(\varnothing\left(y_{i}\right)+2 \varnothing\left(y_{j}\right)\right) \geq 3+(6 n+i+2 j-6) \geq n+2\right.$
Thus the radio pell mean condition is satisfied for all pairs of vertices. Hence, \emptyset is a valid radio Pell labeling of $P_{n} \odot K_{1}$. Therefore, $r p n\left(P_{n} \odot K_{1}\right) \leq r p n(\varnothing)=3 n-2$. Since \varnothing is
injective, $r p n(\varnothing) \geq 3 n-2, n \geq 2$ for all radio pell labeling \emptyset and hence $\operatorname{rpn}\left(P_{n} \odot K_{1}\right)=$ $3 n-2, n \geq 2$. Hence the radio pell number of a Comb graph $P_{n} \odot K_{1}$ is $r p n\left(P_{n} \odot K_{1}\right)=$ $3 n-2, n \geq 2$.

Example 2.1. The radio pell labeling of $P_{5} \odot K_{1}$ is in Figure 2.1

Figure 2.1

Theorem 2.2. The radio Pell number of a Ladder graph L_{n} is $r p n\left(L_{n}\right)=3(n-1), n \geq 3$.
Proof. Let x_{i} and $y_{i}, 1 \leq i \leq n$ be the vertices of two paths of length n. Join x_{i} and $y_{i}, 1 \leq i \leq n$. The resultant graph is L_{n} whose edge set is $E\left(L_{n}\right)=\left\{x_{i} x_{i+1}, y_{i} y_{i+1}, 1 \leq i \leq n-1\right\} \cup\left\{x_{i} y_{i} / 1 \leq i \leq n\right\}$ and $d m\left(L_{n}\right)=n$. Define a function $\emptyset: V\left(L_{n}\right) \rightarrow N$ by
$\emptyset\left(x_{i}\right)=n+i-3,1 \leq i \leq n ;$
$\varnothing\left(y_{i}\right)=2 n-3+i, 1 \leq i \leq n$.
Now we verify the radio pell labeling condition $d(x, y)+(\varnothing(x)+2 \emptyset(y)) \geq 1+d m\left(L_{n}\right)$ for every pair of vertices of L_{n}.
case(i) verify the pair $\left(x_{i}, y_{j}\right), 1 \leq i, j \leq n$.
$d\left(\left(x_{i}, y_{j}\right)+\left(\varnothing\left(x_{i}\right)+2 \emptyset\left(y_{j}\right)\right) \geq 1+(5 n+i+2 j-9) \geq n+1=1+d m\left(L_{n}\right)\right.$ case(ii) verify the pair $\left(x_{i}, x_{j}\right), i \neq j, 1 \leq i, j \leq n$.
$d\left(\left(x_{i}, x_{j}\right)+\left(\varnothing\left(x_{i}\right)+2 \emptyset\left(x_{j}\right)\right) \geq 1+(3 n+i+2 j-9) \geq n+1\right.$
case(iii) verify the pair $\left(y_{i}, y_{j}\right), i \neq j, 1 \leq i, j \leq n$.
$d\left(\left(y_{i}, y_{j}\right)+\left(\varnothing\left(y_{i}\right)+2 \emptyset\left(y_{j}\right)\right) \geq 1+(6 n+i+2 j-9) \geq n+1\right.$
Thus the radio pell mean condition is satisfied for all pairs of vertices. Hence, \emptyset is a valid radio Pell labeling of L_{n}. Therefore, $\operatorname{rpn}\left(L_{n}\right) \leq r p n(\varnothing)=3(n-1)$. Since \emptyset is injective, $\operatorname{rpn}(\emptyset) \geq 3(n-1), n \geq 3$ for all radio pell labeling \emptyset and hence $\operatorname{rpn}\left(L_{n}\right)=3(n-1), n \geq$ 3. Hence the radio pell number of a Ladder graph L_{n} is rpn $\left(L_{n}\right)=3(n-1), n \geq 3$.

Example 2.2. The radio pell labeling of L_{5} is in Figure 2.2

Figure 2.2

Theorem 2.3. The radio pell number of a triangular snake graph T_{n} is $r p n\left(T_{n}\right)=3 n-4, n \geq 3$.

Proof. Let $x_{i}, 1 \leq i \leq n$ be the vertices of a path P_{n}. Join x_{i} and x_{i+1} to a new vertex $y_{i}, 1 \leq i \leq n-$ 1. The resultant graph is T_{n} whose edge set is $E\left(T_{n}\right)=\left\{x_{i} y_{i}, y_{i} x_{i+1}, x_{i} x_{i+1} / 1 \leq i \leq n-1\right\}$ and $d m\left(T_{n}\right)=n-1$. Define a function $\emptyset: V\left(T_{n}\right) \rightarrow N$ by
$\emptyset\left(x_{i}\right)=n+i-3,1 \leq i \leq n ;$
$\emptyset\left(y_{i}\right)=2 n-3+i, 1 \leq i \leq n-1$.
Now we verify the radio pell labeling condition $d(x, y)+(\varnothing(x)+2 \emptyset(y)) \geq 1+d m\left(T_{n}\right)$ for every pair of vertices of T_{n}.
case(i) verify the pair $\left(x_{i}, y_{j}\right), 1 \leq i, j \leq n$.
$d\left(\left(x_{i}, y_{j}\right)+\left(\varnothing\left(x_{i}\right)+2 \emptyset\left(y_{j}\right)\right) \geq 1+(5 n+i+2 j-9) \geq n=1+d m\left(T_{n}\right)\right.$
case(ii) verify the pair $\left(x_{i}, x_{j}\right), i \neq j, 1 \leq i, j \leq n$.
$d\left(\left(x_{i}, x_{j}\right)+\left(\varnothing\left(x_{i}\right)+2 \emptyset\left(x_{j}\right)\right) \geq 1+(3 n+i+2 j-9) \geq n\right.$
case(iii) verify the pair $\left(y_{i}, y_{j}\right), i \neq j, 1 \leq i, j \leq n$.
$d\left(\left(y_{i}, y_{j}\right)+\left(\varnothing\left(y_{i}\right)+2 \emptyset\left(y_{j}\right)\right) \geq 2+(6 n+i+2 j-9) \geq n\right.$
Thus the radio pell mean condition is satisfied for all pairs of vertices. Hence, \emptyset is a valid radio Pell labeling of T_{n}. Therefore, $r p n\left(T_{n}\right) \leq r p n(\varnothing)=3 n-4$. Since \varnothing is injective, $\operatorname{rpn}(\varnothing) \geq 3 n-4, n \geq 3$ for all radio pell labeling \varnothing and hence $\operatorname{rpn}\left(T_{n}\right)=3 n-4, n \geq 3$. Hence the radio pell number of a Triangular snake graph T_{n} is $\operatorname{rpn}\left(T_{n}\right)=3 n-4, n \geq 3$.

Example 2.3. The radio pell labeling of T_{6} is in Figure 2.3

Figure 2.3

Theorem 2.4. The radio Pell number of a Double Triangular snake graph $D T_{n}$ is $\operatorname{rpn}\left(D T_{n}\right)=4 n-$ $5, n \geq 3$.

Proof. Let $x_{i}, 1 \leq i \leq n$ be the vertices of a path P_{n}. Join x_{i} and x_{i+1} to the new vertices y_{i} and $z_{i}, 1 \leq i \leq n-1$. The resultant graph is $D T_{n}$ whose edge set is $E\left(D T_{n}\right)=$ $\left\{x_{i} y_{i}, x_{i} z_{i}, x_{i} x_{i+1}, y_{i} x_{i+1}, z_{i} x_{i+1} / 1 \leq i \leq n-1\right\}$ and $d m\left(D T_{n}\right)=n-1$. Define a function $\emptyset: V\left(D T_{n}\right) \rightarrow N$ by
$\emptyset\left(x_{i}\right)=3 n+i-5,1 \leq i \leq n ;$
$\emptyset\left(y_{i}\right)=n-3+i, 1 \leq i \leq n-1$;
$\emptyset\left(z_{i}\right)=2 n-4+i, 1 \leq i \leq n-1$.
Now we verify the radio pell labeling condition $d(x, y)+(\varnothing(x)+2 \emptyset(y)) \geq 1+d m\left(D T_{n}\right)$ for every pair of vertices of $D T_{n}$.
case(i) verify the pair $\left(x_{i}, y_{j}\right), 1 \leq i, j \leq n$.
$d\left(\left(x_{i}, y_{j}\right)+\left(\varnothing\left(x_{i}\right)+2 \varnothing\left(y_{j}\right)\right) \geq 1+(5 n+i+2 j-11) \geq n=1+d m\left(D T_{n}\right)\right.$
case(ii) verify the pair $\left(y_{i}, z_{j}\right), 1 \leq i, j \leq n$.
$d\left(\left(y_{i}, z_{j}\right)+\left(\emptyset\left(y_{i}\right)+2 \emptyset\left(z_{j}\right)\right) \geq 2+(5 n+i+2 j-11) \geq n\right.$
case(iii) verify the pair $\left(x_{i}, z_{j}\right), 1 \leq i, j \leq n$.
$d\left(\left(x_{i}, z_{j}\right)+\left(\varnothing\left(x_{i}\right)+2 \varnothing\left(z_{j}\right)\right) \geq 1+(7 n+i+2 j-13) \geq n\right.$
case(iv) verify the pair $\left(x_{i}, x_{j}\right), i \neq j, 1 \leq i, j \leq n$.
$d\left(\left(x_{i}, x_{j}\right)+\left(\emptyset\left(x_{i}\right)+2 \emptyset\left(x_{j}\right)\right) \geq 1+(9 n+i+2 j-15) \geq n\right.$
case(v) verify the pair $\left(y_{i}, y_{j}\right), i \neq j, 1 \leq i, j \leq n$.
$d\left(\left(y_{i}, y_{j}\right)+\left(\varnothing\left(y_{i}\right)+2 \emptyset\left(y_{j}\right)\right) \geq 2+(3 n+i+2 j-9) \geq n\right.$
case(vi) verify the pair $\left(z_{i}, z_{j}\right), i \neq j, 1 \leq i, j \leq n$.
$d\left(\left(z_{i}, z_{j}\right)+\left(\varnothing\left(z_{i}\right)+2 \emptyset\left(z_{j}\right)\right) \geq 2+(6 n+i+2 j-12) \geq n\right.$
Thus the radio pell mean condition is satisfied for all pairs of vertices. Hence, \varnothing is a valid radio Pell labeling of $D T_{n}$. Therefore, $r p n\left(D T_{n}\right) \leq r p n(\varnothing)=4 n-5$. Since \varnothing is injective, $\operatorname{rpn}(\varnothing) \geq 4 n-5, n \geq 3$ for all radio pell labeling \emptyset and hence $\operatorname{rpn}\left(D T_{n}\right)=4 n-5, n \geq$ 3. Hence the radio pell number of a Double Triangular snake graph $D T_{n}$ is $\operatorname{rpn}\left(D T_{n}\right)=$ $4 n-5, n \geq 3$.

Example 2.4. The radio pell labeling of $D T_{5}$ is in Figure 2.4

Figure 2.4

Theorem 2.5. The radio pell number of a Quadrilateral snake graph Q_{n} is $r p n\left(Q_{n}\right)=$ $4 n-3, n \geq 3$.

Proof. Let $x_{i}, 1 \leq i \leq n$ be the vertices of a path. Let y_{i} and $z_{i}, 1 \leq i \leq n-1$ be the two new vertices. Join $y_{i} z_{i}, x_{i} y_{i}$ and $z_{i} x_{i+1}, 1 \leq i \leq n-1$. The resultant graph is Q_{n} whose edge set is $E\left(Q_{n}\right)=\left\{x_{i} y_{i}, y_{i} z_{i}, z_{i} x_{i+1}, x_{i} x_{i+1} / 1 \leq i \leq n-1\right\}$ and $d m\left(Q_{n}\right)=n+1$. Define a function $\emptyset: V\left(Q_{n}\right) \rightarrow N$ by
$\emptyset\left(x_{i}\right)=3 n+i-3,1 \leq i \leq n ;$
$\emptyset\left(y_{i}\right)=n-1+i, 1 \leq i \leq n-1$;
$\emptyset\left(z_{i}\right)=2 n-2+i, 1 \leq i \leq n-1$.
Now we verify the radio pell labeling condition $d(x, y)+(\phi(x)+2 \phi(y)) \geq 1+d m\left(Q_{n}\right)$ for every pair of vertices of Q_{n}.
case(i) verify the pair $\left(x_{i}, y_{j}\right), 1 \leq i, j \leq n$.
$d\left(\left(x_{i}, y_{j}\right)+\left(\varnothing\left(x_{i}\right)+2 \emptyset\left(y_{j}\right)\right) \geq 1+(5 n+i+2 j-5) \geq n+2=1+d m\left(Q_{n}\right)\right.$
case(ii) verify the pair $\left(y_{i}, z_{j}\right), 1 \leq i, j \leq n$.
$d\left(\left(y_{i}, z_{j}\right)+\left(\emptyset\left(y_{i}\right)+2 \emptyset\left(z_{j}\right)\right) \geq 1+(5 n+i+2 j-5) \geq n+2\right.$
case(iii) verify the pair $\left(x_{i}, z_{j}\right), 1 \leq i, j \leq n$.
$d\left(\left(x_{i}, z_{j}\right)+\left(\varnothing\left(x_{i}\right)+2 \emptyset\left(z_{j}\right)\right) \geq 2+(7 n+i+2 j-7) \geq n+2\right.$
case(iv) verify the pair $\left(x_{i}, x_{j}\right), i \neq j, 1 \leq i, j \leq n$.
$d\left(\left(x_{i}, x_{j}\right)+\left(\varnothing\left(x_{i}\right)+2 \emptyset\left(x_{j}\right)\right) \geq 1+(9 n+i+2 j-9) \geq n+2\right.$
case(v) verify the pair $\left(y_{i}, y_{j}\right), i \neq j, 1 \leq i, j \leq n$.
$d\left(\left(y_{i}, y_{j}\right)+\left(\varnothing\left(y_{i}\right)+2 \emptyset\left(y_{j}\right)\right) \geq 3+(3 n+i+2 j-3) \geq n+2\right.$
case(vi) verify the pair $\left(z_{i}, z_{j}\right), i \neq j, 1 \leq i, j \leq n$.
$d\left(\left(z_{i}, z_{j}\right)+\left(\emptyset\left(z_{i}\right)+2 \emptyset\left(z_{j}\right)\right) \geq 3+(6 n+i+2 j-6) \geq n+2\right.$

Thus the radio pell mean condition is satisfied for all pairs of vertices. Hence, \varnothing is a valid radio Pell labeling of Q_{n}. Therefore, $r p n\left(Q_{n}\right) \leq r p n(\varnothing)=4 n-3$. Since \varnothing is injective, $\operatorname{rpn}(\varnothing) \geq 4 n-3, n \geq 3$ for all radio pell labeling \varnothing and hence $\operatorname{rpn}\left(Q_{n}\right)=4 n-3, n \geq 3$. Hence the radio pell number of a Quadrilateral snake graph Q_{n} is $r p n\left(Q_{n}\right)=4 n-$ $3, n \geq 3$.
Example 2.5. The radio pell labeling of Q_{5} is in Figure 2.5

Figure 2.5

Theorem 2.6. The radio pell number of a double quadrilateral snake graph $D Q_{n}$ is $\operatorname{rpn}\left(D Q_{n}\right)=6 n-7, n \geq 3$.

Proof. Let $x_{i}, 1 \leq i \leq n$ be the vertices of a path. For $1 \leq i \leq n-1$, add vertices y_{i} and y_{i}^{\prime} and join them with x_{i}. Also for $1 \leq i \leq n-1$, add vertices z_{i} and z_{i}^{\prime} and join them with x_{i+1}. Now join $y_{i} z_{i}$ and $y_{i}^{\prime} z_{i}^{\prime}$. The resultant graph is $D Q_{n}$ whose edge set is $E\left(D Q_{n}\right)=$ $\left\{x_{i} y_{i}, y_{i} z_{i}, z_{i} x_{i+1}, z_{i}^{\prime} x_{i+1}, y_{i}^{\prime} z_{i}^{\prime}, x_{i} y_{i}^{\prime}, x_{i} x_{i+1} / 1 \leq i \leq n-1\right\}$ and $d m\left(D Q_{n}\right)=n+1$. Define a function $\varnothing: V\left(D Q_{n}\right) \rightarrow N$ by
$\emptyset\left(y_{i}\right)=n+i-3,1 \leq i \leq n-1 ;$
$\emptyset\left(z_{i}\right)=2 n-4+i, 1 \leq i \leq n-1$;
$\emptyset\left(y_{i}^{\prime}\right)=3 n-5+i, 1 \leq i \leq n-1$;
$\varnothing\left(z_{i}^{\prime}\right)=4 n-6+i, 1 \leq i \leq n-1$
$\phi\left(x_{i}\right)=5 n-7+i, 1 \leq i \leq n$.
Now we verify the radio pell labeling condition $d(x, y)+(\phi(x)+2 \phi(y)) \geq 1+d m\left(D Q_{n}\right)$ for every pair of vertices of $D Q_{n}$.
case(i) verify the pair $\left(y_{i}, z_{j}\right), 1 \leq i, j \leq n$.

$$
d\left(\left(y_{i}, z_{j}\right)+\left(\emptyset\left(y_{i}\right)+2 \emptyset\left(z_{j}\right)\right) \geq 1+(5 n+i+2 j-11) \geq n+2=1+d m\left(D Q_{n}\right)\right.
$$

case(ii) verify the pair $\left(y_{i}, y_{j}^{\prime}\right), 1 \leq i, j \leq n$.
$d\left(\left(y_{i}, y_{j}^{\prime}\right)+\left(\varnothing\left(y_{i}\right)+2 \emptyset\left(y_{j}^{\prime}\right)\right) \geq 2+(7 n+i+2 j-13) \geq n+2\right.$ case(iii) verify the pair $\left(z_{i}, z_{j}\right), i \neq j, 1 \leq i, j \leq n$.
$d\left(\left(z_{i}, z_{j}\right)+\left(\emptyset\left(z_{i}\right)+2 \emptyset\left(z_{j}\right)\right) \geq 3+(6 n+i+2 j-12) \geq n+2\right.$ case(iv) verify the pair $\left(y_{i}, y_{j}\right), i \neq j, 1 \leq i, j \leq n$.
$d\left(\left(y_{i}, y_{j}\right)+\left(\emptyset\left(y_{i}\right)+2 \emptyset\left(y_{j}\right)\right) \geq 3+(3 n+i+2 j-9) \geq n+2\right.$
Case(v) verify the pair $\left(y_{i}, z_{j}^{\prime}\right), 1 \leq i, j \leq n$.
$d\left(\left(y_{i}, z_{j}^{\prime}\right)+\left(\varnothing\left(y_{i}\right)+2 \emptyset\left(z_{j}^{\prime}\right)\right) \geq 3+(9 n+i+2 j-15) \geq n+2\right.$
case(vi) verify the pair $\left(z_{i}, x_{j}\right), 1 \leq i, j \leq n$.
$d\left(\left(z_{i}, x_{j}\right)+\left(\emptyset\left(z_{i}\right)+2 \emptyset\left(x_{j}\right)\right) \geq 2+(12 n+i+2 j-18) \geq n+2\right.$
case(vii) verify the pair $\left(y_{i}, x_{j}\right), 1 \leq i, j \leq n$.
$d\left(\left(y_{i}, x_{j}\right)+\left(\varnothing\left(y_{i}\right)+2 \emptyset\left(x_{j}\right)\right) \geq 1+(11 n+i+2 j-17) \geq n+2\right.$
Case(viii) verify the pair $\left(z_{i}, y_{j}^{\prime}\right), 1 \leq i, j \leq n$.
$d\left(\left(z_{i}, y_{j}^{\prime}\right)+\left(\varnothing\left(z_{i}\right)+2 \emptyset\left(y_{j}^{\prime}\right)\right) \geq 3+(8 n+i+2 j-14) \geq n+2\right.$
case(ix) verify the pair $\left(z_{i}^{\prime}, x_{j}\right), 1 \leq i, j \leq n$.
$d\left(z_{i}^{\prime}, x_{j}\right)+\left(\varnothing\left(z_{i}^{\prime}\right)+2 \emptyset\left(x_{j}\right)\right) \geq 2+(14 n+i+2 j-20) \geq n+2$
Case(x) verify the pair $\left(z_{i}, z_{j}^{\prime}\right), 1 \leq i, j \leq n$.
$d\left(\left(z_{i}, z_{j}^{\prime}\right)+\left(\varnothing\left(z_{i}\right)+2 \emptyset\left(z_{j}^{\prime}\right)\right) \geq 2+(10 n+i+2 j-16) \geq n+2\right.$ case(xi) verify the pair $\left(y_{i}^{\prime}, x_{j}\right), 1 \leq i, j \leq n$.
$d\left(y_{i}^{\prime}, x_{j}\right)+\left(\varnothing\left(y_{i}^{\prime}\right)+2 \emptyset\left(x_{j}\right)\right) \geq 1+(13 n+i+2 j-19) \geq n+2$ case(xii) verify the pair $\left(x_{i}, x_{j}\right), i \neq j, 1 \leq i, j \leq n$.
$d\left(\left(x_{i}, x_{j}\right)+\left(\emptyset\left(x_{i}\right)+2 \emptyset\left(x_{j}\right)\right) \geq 1+(15 n+i+2 j-21) \geq n+2\right.$
case(xiii) verify the pair ($\left.y_{i}^{\prime}, y_{j}^{\prime}\right), i \neq j, 1 \leq i, j \leq n$.
$d\left(y_{i}^{\prime}, y_{j}^{\prime}\right)+\left(\varnothing\left(y_{i}^{\prime}\right)+2 \emptyset\left(y_{j}^{\prime}\right)\right) \geq 3+(9 n+i+2 j-15) \geq n+2$
case(xix) verify the pair $\left(z_{i}^{\prime}, z_{j}^{\prime}\right), i \neq j, 1 \leq i, j \leq n$.
$d\left(z_{i}^{\prime}, z_{j}^{\prime}\right)+\left(\varnothing\left(z_{i}^{\prime}\right)+2 \emptyset\left(z_{j}^{\prime}\right)\right) \geq 3+(12 n+i+2 j-18) \geq n+2$
case $(x x)$ verify the pair $\left(y_{i}^{\prime}, z_{j}^{\prime}\right), 1 \leq i, j \leq n$.
$d\left(y_{i}^{\prime}, z_{j}^{\prime}\right)+\left(\emptyset\left(y_{i}^{\prime}\right)+2 \emptyset\left(z_{j}^{\prime}\right)\right) \geq 1+(11 n+i+2 j-17) \geq n+2$
Thus the radio pell mean condition is satisfied for all pairs of vertices. Hence, \varnothing is a valid radio Pell labeling of $D Q_{n}$. Therefore, $\operatorname{rpn}\left(D Q_{n}\right) \leq r p n(\varnothing)=6 n-7$. Since \varnothing is injective, $\operatorname{rpn}(\varnothing) \geq 6 n-7, n \geq 3$ for all radio pell labeling \varnothing and hence $\operatorname{rpn}\left(D Q_{n}\right)=$
$6 n-7, n \geq 3$. Hence the radio pell number of a Double Quadrilateral snake graph $D Q_{n}$ is $\operatorname{rpn}\left(D Q_{n}\right)=6 n-7, n \geq 3$.
Example 2.6. The radio pell labeling of $D Q_{5}$ is in Figure 2.6

Figure 2.6

2 conclusion

In this paper, we investigate radio pell number of graphs such as Comb graph $P_{n} \odot K_{1}$, Ladder graph L_{n}, Triangular snake graph T_{n}, Double Triangular snake graph $D T_{n}$, Quadrilateral snake graph Q_{n} and Double Quadrilateral snake graph $D Q_{n}$.

References

[1] F.Harary, Graph theory, Addison-Wesley, Boston, 1969.
[2] J.A Gallian, A dynamic survey of graph labeling, The electronic journal of combinatories, 18(2016), \#DS6.
[3] A. Rosa, On certain Valuations of the vertices of a graph, Theory of graphs (Internat. Symposium, Rome, July 1966), Gordon and Breech.N.Y. and Dunodparis (1967), 349355.
[4] Shiama J, Pell Labeling for Some Graphs, Asian Journal of Current Engineering and Maths, Volume 2(2013), 267-272.
[5] G. Chartrand, D. Erwin, P. Zhang, and F. Harary, "Radio labelings of graphs," Bulletin of the Institute of Combinatorics and its Applications, vol. 33, pp. 77-85, 2001.
[6] P.Indira, B.Selvam and K.Thirusangu, Pell labeling and mean square sum labeling for the extended duplicate graph of quadrilateral snake.Advances and Applications in Mathematical Sciences Volume 20, Issue 9, July 2021, Pages 1709-1718.
[7] K.Sunitha, Dr.C.David Raj and Dr.A.Subramanian,Radio labeling of hurdle graph and biregular rooted trees, IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 13, Issue 5 Ver. III (Sep. - Oct. 2017), PP 37-44.
[8] S.S. Sandhya,E. Ebin Raja Merly and S.D. Deepa, Heronian Mean Labeling of Graphs,International Mathematical Forum, Vol. 12, 2017, no. 15, 705-713.
[9] P.Sumathi and A.Rathi, Quotient Labeling of Some Ladder Graphs, American Journal of Engineering Research (AJER) E-ISSN: 2320-0847 P-ISSN: 2320-0936 Volume-7, Issue-12, pp-38-42.
[10] Dr.C.David Raj, Dr.A.Subramanian and K.Sunitha, Radio Mean Labeling of Double Triangular Snake Graph and Double Quadrilateral Snake Graph, International Journal of Mathematical Archive-8(8), 2017, 80-84, ISSN 2229 - 5046.

