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Abstract      

Let G be a connected graph. For any two distinct vertices x and y of G, Define a 1−1 mapping ∅: 𝑉(𝐺) →

𝑁  such that 𝑑(𝑥, 𝑦) + (∅(𝑥) + 2∅(𝑦)) ≥ 1 + 𝑑𝑚(𝐺) , where 𝑑𝑚(𝐺)  is the diameter of G. The 

maximum number assigned to any vertex of G is the radio Pell number of ∅ and it is denoted by 𝑟𝑝𝑛(∅). 

The minimum value of 𝑟𝑝𝑛(∅) taken overall radio Pell labelings of G is the radio Pell number of G and 

it is denoted by 𝑟𝑝𝑛(𝐺). In this paper, we investigate the radio Pell number of graphs such as Comb 

graph  𝑃𝑛⨀𝐾1 , Ladder graph 𝐿𝑛 , Triangular snake graph 𝑇𝑛 , Double Triangular snake graph 𝐷𝑇𝑛, 

Quadrilateral snake graph 𝑄𝑛   and Double Quadrilateral snake graph 𝐷𝑄𝑛. 

Keywords: Pell labeling, Distance, Diameter, Comb graph, Ladder graph, Triangular graph, Double 

triangular graph, Quadrilateral graph, Double quadrilateral graph. 
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Introduction 

In this paper, we consider the graphs are simple, finite and undirected. The vertex set and edge set of 

G are respectively denoted by V(G) and E(G). Most graph labeling methods trace their origin to one 

introduced by Rosa[3] in 1967. The Pell numbers are defined by the recurrence relation 𝑃𝑛 = 2𝑃𝑛−1 +

𝑃𝑛−2, 𝑛 ≥ 2 where 𝑃0 = 0 and 𝑃1 = 1. In [4] J.Shiama introduced the concept of radio Pell labeling 

of graphs. Chartrand et al.[5] introduced the notion of radio labeling of graphs. In this sequel,we 

introduce the radio Pell labeling of graphs. For standard terminology and notations we follow 

Harary[1] and Gallian[2]. 

Definition 1.1. [6] Let G be a graph with p vertices. If there exist a mapping ∅: 𝑉(𝐺) → {0,1,2, … , 𝑃 −

1}  such that the induced function ∅∗: 𝐸(𝐺) → 𝑁  given by ∅∗(𝑥𝑦) = ∅(𝑥) + 2∅(𝑦)  for every 𝑥𝑦 ∈

𝐸(𝐺) are all distinct, where 𝑥, 𝑦 ≥ 0, then the function ∅ is called a Pell labeling. A graph which 

admits Pell labeling is called Pell graph. 

Definition 1.2. [7] The distance d(x,y) from a vertex x to a vertex y in a connected graph G is the 

minimum of the lengths of the 𝑥 − 𝑦 paths in G. 

Definition 1.3. [7] The diameter dm(G) of G is the greatest eccentricity among the vertices of G. 

Definition 1.4. [8] The Comb graph 𝑃𝑛⨀𝐾1 is obtained by joining a single pendant edge to each vertex 

of a Path 𝑃𝑛. 
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Definition 1.5. [9] A ladder graph Ln is defined by 𝐿𝑛 = 𝑃𝑛 × 𝐾2 where 𝑃𝑛  is a path with n vertices 

and 𝐾2 is a complete graph with two-vertices. 

Definition 1.6. [8] A Triangular Snake graph 𝑇𝑛 is obtained from a path 𝑥1, 𝑥2, … 𝑥𝑛 by joining 𝑥𝑖 and 

𝑥𝑖+1 to a new vertex 𝑦𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 1. That is every edge of a path is replaced by a triangle 𝐶3. 

Definition 1.7. [10] A Double triangular snake graph 𝐷𝑇𝑛  is obtained from a path 𝑥1, 𝑥2, … 𝑥𝑛  by 

joining 𝑥𝑖 and 𝑥𝑖+1 to two new vertices 𝑦𝑖 and 𝑧𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1. That is, a double triangular snake 

consists of two triangular snakes that have a common path. 

Definition 1.8. [8] A Quadrilateral Snake  𝑄𝑛 is obtained from a path 𝑥1, 𝑥2, … 𝑥𝑛 by joining 𝑥𝑖 and 

𝑥𝑖+1 to two new vertices 𝑦𝑖 and 𝑧𝑖 respectively and then join 𝑦𝑖 and 𝑧𝑖 . That is every edge of a path is 

replaced by a cycle 𝐶4. 

Definition 1.9. [10] A Double quadrilateral snake graph 𝐷𝑄𝑛 is obtained from a path 𝑥1, 𝑥2, … 𝑥𝑛 by 

joining 𝑥𝑖  and 𝑥𝑖+1  to new vertices 𝑦𝑖𝑦𝑖
′  and  𝑧𝑖𝑧𝑖

′  respectively and then join 𝑦𝑖𝑧𝑖  and 𝑦𝑖
′𝑧𝑖

′ . That is, a 

double quadrilateral snake 𝐷𝑄𝑛 consists of two quadrilateral snakes that have a common path. 

1 Main Results 

Theorem 2.1. The radio pell number of a comb graph 𝑃𝑛⨀𝐾1 is 𝑟𝑝𝑛(𝑃𝑛⨀𝐾1) = 3𝑛 − 2, 𝑛 ≥ 2. 

 

Proof. Let 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛 be the vertices of a path 𝑃𝑛 of length n. Join the pendant vertices 𝑦𝑖  to each 

𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛. The resultant graph is 𝑃𝑛⨀𝐾1 whose edge set is E( 𝑃𝑛⨀𝐾1) = {𝑥𝑖𝑥𝑖+1/1 ≤ 𝑖 ≤ 𝑛 − 1} ∪

{𝑥𝑖𝑦𝑖/1 ≤ 𝑖 ≤ 𝑛} and 𝑑𝑚(𝑃𝑛⨀𝐾1) = 𝑛 + 1. Define a function ∅: 𝑉(𝑃𝑛⨀𝐾1) → 𝑁 by 

 ∅(𝑥𝑖) = 𝑛 − 2 + 𝑖, 1 ≤ 𝑖 ≤ 𝑛; 

 ∅(𝑦𝑖) = 2𝑛 − 2 + 𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

Now we verify the radio pell labeling condition 𝑑(𝑥, 𝑦) + (∅(𝑥) + 2∅(𝑦)) ≥ 1 + 𝑑𝑚(𝑃𝑛⨀𝐾1) for 

every pair of vertices of 𝑃𝑛⨀𝐾1. 

case(i) verify the pair (𝑥𝑖, 𝑦𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑥𝑖, 𝑦𝑗) + (∅(𝑥𝑖) + 2∅(𝑦𝑗)) ≥ 1 + (5𝑛 + 𝑖 + 2𝑗 − 6) ≥ 𝑛 + 2 = 1 + 𝑑𝑚(𝑃𝑛⨀𝐾1) 

case(ii) verify the pair (𝑥𝑖 , 𝑥𝑗), 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑥𝑖, 𝑥𝑗) + (∅(𝑥𝑖) + 2∅(𝑥𝑗)) ≥ 1 + (3𝑛 + 𝑖 + 2𝑗 − 6) ≥ 𝑛 + 2 

case(iii) verify the pair (𝑦𝑖, 𝑦𝑗), 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑦𝑖, 𝑦𝑗) + (∅(𝑦𝑖) + 2∅(𝑦𝑗)) ≥ 3 + (6𝑛 + 𝑖 + 2𝑗 − 6) ≥ 𝑛 + 2 

Thus the radio pell mean condition is satisfied for all pairs of vertices. Hence, ∅ is a valid 

radio Pell labeling of 𝑃𝑛⨀𝐾1.  Therefore, 𝑟𝑝𝑛(𝑃𝑛⨀𝐾1) ≤ 𝑟𝑝𝑛(∅) = 3𝑛 − 2.  Since ∅  is 
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injective, 𝑟𝑝𝑛(∅) ≥ 3𝑛 − 2, 𝑛 ≥ 2 for all radio pell labeling ∅ and hence 𝑟𝑝𝑛(𝑃𝑛⨀𝐾1) =

3𝑛 − 2, 𝑛 ≥ 2. Hence the radio pell number of a Comb graph 𝑃𝑛⨀𝐾1 is 𝑟𝑝𝑛(𝑃𝑛⨀𝐾1) =

3𝑛 − 2, 𝑛 ≥ 2. 

Example 2.1. The radio pell labeling of 𝑃5⨀𝐾1 is in Figure 2.1 

                                     

                                                              Figure 2.1 

Theorem 2.2. The radio Pell number of a Ladder graph 𝐿𝑛 is 𝑟𝑝𝑛(𝐿𝑛) = 3(𝑛 − 1), 𝑛 ≥ 3. 

Proof. Let 𝑥𝑖 and 𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑛 be the vertices of two paths of length n. Join 𝑥𝑖 and 𝑦𝑖, 1 ≤ 𝑖 ≤ 𝑛. The 

resultant graph is 𝐿𝑛 whose edge set is 𝐸(𝐿𝑛) = {𝑥𝑖𝑥𝑖+1, 𝑦𝑖𝑦𝑖+1, 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑥𝑖𝑦𝑖/1 ≤ 𝑖 ≤ 𝑛} 

and 𝑑𝑚(𝐿𝑛) = 𝑛. Define a function ∅: 𝑉(𝐿𝑛) → 𝑁 by 

 ∅(𝑥𝑖) = 𝑛 + 𝑖 − 3, 1 ≤ 𝑖 ≤ 𝑛; 

 ∅(𝑦𝑖) = 2𝑛 − 3 + 𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

Now we verify the radio pell labeling condition 𝑑(𝑥, 𝑦) + (∅(𝑥) + 2∅(𝑦)) ≥ 1 + 𝑑𝑚(𝐿𝑛) for every 

pair of vertices of 𝐿𝑛. 

case(i) verify the pair (𝑥𝑖, 𝑦𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑥𝑖, 𝑦𝑗) + (∅(𝑥𝑖) + 2∅(𝑦𝑗)) ≥ 1 + (5𝑛 + 𝑖 + 2𝑗 − 9) ≥ 𝑛 + 1 = 1 + 𝑑𝑚(𝐿𝑛) 

case(ii) verify the pair (𝑥𝑖 , 𝑥𝑗), 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑥𝑖, 𝑥𝑗) + (∅(𝑥𝑖) + 2∅(𝑥𝑗)) ≥ 1 + (3𝑛 + 𝑖 + 2𝑗 − 9) ≥ 𝑛 + 1 

case(iii) verify the pair (𝑦𝑖, 𝑦𝑗), 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑦𝑖, 𝑦𝑗) + (∅(𝑦𝑖) + 2∅(𝑦𝑗)) ≥ 1 + (6𝑛 + 𝑖 + 2𝑗 − 9) ≥ 𝑛 + 1 

Thus the radio pell mean condition is satisfied for all pairs of vertices. Hence, ∅ is a valid 

radio Pell labeling of 𝐿𝑛. Therefore, 𝑟𝑝𝑛(𝐿𝑛) ≤ 𝑟𝑝𝑛(∅) = 3(𝑛 − 1). Since ∅ is injective, 

𝑟𝑝𝑛(∅) ≥ 3(𝑛 − 1), 𝑛 ≥ 3 for all radio pell labeling ∅ and hence 𝑟𝑝𝑛(𝐿𝑛) = 3(𝑛 − 1), 𝑛 ≥

3. Hence the radio pell number of a Ladder graph 𝐿𝑛 is 𝑟𝑝𝑛(𝐿𝑛) = 3(𝑛 − 1), 𝑛 ≥ 3. 

 

Example 2.2. The radio pell labeling of 𝐿5 is in Figure 2.2 
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Figure 2.2 

 

Theorem 2.3. The radio pell number of a triangular snake graph 𝑇𝑛 is 𝑟𝑝𝑛(𝑇𝑛) = 3𝑛 − 4, 𝑛 ≥ 3. 

Proof. Let 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛 be the vertices of a path 𝑃𝑛. Join 𝑥𝑖 and 𝑥𝑖+1 to a new vertex 𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑛 −

1.  The resultant graph is 𝑇𝑛  whose edge set is 𝐸(𝑇𝑛) = {𝑥𝑖𝑦𝑖 , 𝑦𝑖𝑥𝑖+1, 𝑥𝑖𝑥𝑖+1/1 ≤ 𝑖 ≤ 𝑛 − 1}  and 

𝑑𝑚(𝑇𝑛) = 𝑛 − 1. Define a function ∅: 𝑉(𝑇𝑛) → 𝑁 by 

 ∅(𝑥𝑖) = 𝑛 + 𝑖 − 3, 1 ≤ 𝑖 ≤ 𝑛; 

 ∅(𝑦𝑖) = 2𝑛 − 3 + 𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1. 

Now we verify the radio pell labeling condition 𝑑(𝑥, 𝑦) + (∅(𝑥) + 2∅(𝑦)) ≥ 1 + 𝑑𝑚(𝑇𝑛) for every 

pair of vertices of 𝑇𝑛. 

case(i) verify the pair (𝑥𝑖, 𝑦𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑥𝑖, 𝑦𝑗) + (∅(𝑥𝑖) + 2∅(𝑦𝑗)) ≥ 1 + (5𝑛 + 𝑖 + 2𝑗 − 9) ≥ 𝑛 = 1 + 𝑑𝑚(𝑇𝑛) 

case(ii) verify the pair (𝑥𝑖 , 𝑥𝑗), 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑥𝑖, 𝑥𝑗) + (∅(𝑥𝑖) + 2∅(𝑥𝑗)) ≥ 1 + (3𝑛 + 𝑖 + 2𝑗 − 9) ≥ 𝑛 

case(iii) verify the pair (𝑦𝑖, 𝑦𝑗), 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑦𝑖, 𝑦𝑗) + (∅(𝑦𝑖) + 2∅(𝑦𝑗)) ≥ 2 + (6𝑛 + 𝑖 + 2𝑗 − 9) ≥ 𝑛 

Thus the radio pell mean condition is satisfied for all pairs of vertices. Hence, ∅ is a valid 

radio Pell labeling of 𝑇𝑛.  Therefore, 𝑟𝑝𝑛(𝑇𝑛) ≤ 𝑟𝑝𝑛(∅) = 3𝑛 − 4.  Since ∅  is injective, 

𝑟𝑝𝑛(∅) ≥ 3𝑛 − 4, 𝑛 ≥ 3 for all radio pell labeling ∅ and hence 𝑟𝑝𝑛(𝑇𝑛) = 3𝑛 − 4, 𝑛 ≥ 3. 

Hence the radio pell number of a Triangular snake graph 𝑇𝑛 is 𝑟𝑝𝑛(𝑇𝑛) = 3𝑛 − 4, 𝑛 ≥ 3. 

 

Example 2.3. The radio pell labeling of T6 is in Figure 2.3 
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                                                                                   Figure 2.3 

Theorem 2.4. The radio Pell number of a Double Triangular snake graph 𝐷𝑇𝑛 is 𝑟𝑝𝑛(𝐷𝑇𝑛) = 4𝑛 −

5, 𝑛 ≥ 3. 

Proof. Let 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛  be the vertices of a path 𝑃𝑛.  Join 𝑥𝑖  and 𝑥𝑖+1  to the new vertices 

𝑦𝑖 𝑎𝑛𝑑 𝑧𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1.  The resultant graph is 𝐷𝑇𝑛  whose edge set is 𝐸(𝐷𝑇𝑛) =

{𝑥𝑖𝑦𝑖 , 𝑥𝑖𝑧𝑖 , 𝑥𝑖𝑥𝑖+1, 𝑦𝑖𝑥𝑖+1, 𝑧𝑖𝑥𝑖+1/1 ≤ 𝑖 ≤ 𝑛 − 1}  and 𝑑𝑚(𝐷𝑇𝑛) = 𝑛 − 1.  Define a function 

∅: 𝑉(𝐷𝑇𝑛) → 𝑁 by  

 ∅(𝑥𝑖) = 3𝑛 + 𝑖 − 5, 1 ≤ 𝑖 ≤ 𝑛; 

 ∅(𝑦𝑖) = 𝑛 − 3 + 𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1; 

 ∅(𝑧𝑖) = 2𝑛 − 4 + 𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1. 

Now we verify the radio pell labeling condition 𝑑(𝑥, 𝑦) + (∅(𝑥) + 2∅(𝑦)) ≥ 1 + 𝑑𝑚(𝐷𝑇𝑛) for every 

pair of vertices of 𝐷𝑇𝑛. 

case(i) verify the pair (𝑥𝑖, 𝑦𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑥𝑖, 𝑦𝑗) + (∅(𝑥𝑖) + 2∅(𝑦𝑗)) ≥ 1 + (5𝑛 + 𝑖 + 2𝑗 − 11) ≥ 𝑛 = 1 + 𝑑𝑚(𝐷𝑇𝑛) 

case(ii) verify the pair (𝑦𝑖, 𝑧𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑦𝑖, 𝑧𝑗) + (∅(𝑦𝑖) + 2∅(𝑧𝑗)) ≥ 2 + (5𝑛 + 𝑖 + 2𝑗 − 11) ≥ 𝑛 

case(iii) verify the pair (𝑥𝑖, 𝑧𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑥𝑖, 𝑧𝑗) + (∅(𝑥𝑖) + 2∅(𝑧𝑗)) ≥ 1 + (7𝑛 + 𝑖 + 2𝑗 − 13) ≥ 𝑛 

case(iv) verify the pair (𝑥𝑖 , 𝑥𝑗), 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑥𝑖, 𝑥𝑗) + (∅(𝑥𝑖) + 2∅(𝑥𝑗)) ≥ 1 + (9𝑛 + 𝑖 + 2𝑗 − 15) ≥ 𝑛 

case(v) verify the pair (𝑦𝑖, 𝑦𝑗), 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑦𝑖, 𝑦𝑗) + (∅(𝑦𝑖) + 2∅(𝑦𝑗)) ≥ 2 + (3𝑛 + 𝑖 + 2𝑗 − 9) ≥ 𝑛 

case(vi) verify the pair (𝑧𝑖, 𝑧𝑗), 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑧𝑖, 𝑧𝑗) + (∅(𝑧𝑖) + 2∅(𝑧𝑗)) ≥ 2 + (6𝑛 + 𝑖 + 2𝑗 − 12) ≥ 𝑛 

Thus the radio pell mean condition is satisfied for all pairs of vertices. Hence, ∅ is a valid 

radio Pell labeling of 𝐷𝑇𝑛. Therefore, 𝑟𝑝𝑛(𝐷𝑇𝑛) ≤ 𝑟𝑝𝑛(∅) = 4𝑛 − 5. Since ∅ is injective, 

𝑟𝑝𝑛(∅) ≥ 4𝑛 − 5, 𝑛 ≥ 3 for all radio pell labeling ∅ and hence 𝑟𝑝𝑛(𝐷𝑇𝑛) = 4𝑛 − 5, 𝑛 ≥

3. Hence the radio pell number of a Double Triangular snake graph D 𝑇𝑛 is 𝑟𝑝𝑛(𝐷𝑇𝑛) =

4𝑛 − 5, 𝑛 ≥ 3. 

 

Example 2.4. The radio pell labeling of DT5 is in Figure 2.4 
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Figure 2.4 

Theorem 2.5. The radio pell number of a Quadrilateral snake graph 𝑄𝑛 is 𝑟𝑝𝑛(𝑄𝑛) =

4𝑛 − 3, 𝑛 ≥ 3. 

 

Proof. Let 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛  be the vertices of a path. Let 𝑦𝑖  and 𝑧𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1  be the two new 

vertices. Join 𝑦𝑖𝑧𝑖 , 𝑥𝑖𝑦𝑖  and 𝑧𝑖𝑥𝑖+1, 1 ≤ 𝑖 ≤ 𝑛 − 1.  The resultant graph is 𝑄𝑛  whose edge set is 

𝐸(𝑄𝑛) = {𝑥𝑖𝑦𝑖, 𝑦𝑖𝑧𝑖, 𝑧𝑖𝑥𝑖+1, 𝑥𝑖𝑥𝑖+1/1 ≤ 𝑖 ≤ 𝑛 − 1}  and 𝑑𝑚(𝑄𝑛) = 𝑛 + 1. Define a function 

∅: 𝑉(𝑄𝑛) → 𝑁 by  

 ∅(𝑥𝑖) = 3𝑛 + 𝑖 − 3, 1 ≤ 𝑖 ≤ 𝑛; 

 ∅(𝑦𝑖) = 𝑛 − 1 + 𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1; 

 ∅(𝑧𝑖) = 2𝑛 − 2 + 𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1. 

Now we verify the radio pell labeling condition d(x,y)+(ϕ(x)+2ϕ(y)) ≥ 1+dm(𝑄𝑛) for every pair of 

vertices of 𝑄𝑛. 

case(i) verify the pair (𝑥𝑖, 𝑦𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑥𝑖, 𝑦𝑗) + (∅(𝑥𝑖) + 2∅(𝑦𝑗)) ≥ 1 + (5𝑛 + 𝑖 + 2𝑗 − 5) ≥ 𝑛 + 2 = 1 + 𝑑𝑚(𝑄𝑛) 

case(ii) verify the pair (𝑦𝑖, 𝑧𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑦𝑖, 𝑧𝑗) + (∅(𝑦𝑖) + 2∅(𝑧𝑗)) ≥ 1 + (5𝑛 + 𝑖 + 2𝑗 − 5) ≥ 𝑛 + 2 

case(iii) verify the pair (𝑥𝑖, 𝑧𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑥𝑖, 𝑧𝑗) + (∅(𝑥𝑖) + 2∅(𝑧𝑗)) ≥ 2 + (7𝑛 + 𝑖 + 2𝑗 − 7) ≥ 𝑛 + 2 

case(iv) verify the pair (𝑥𝑖 , 𝑥𝑗), 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑥𝑖, 𝑥𝑗) + (∅(𝑥𝑖) + 2∅(𝑥𝑗)) ≥ 1 + (9𝑛 + 𝑖 + 2𝑗 − 9) ≥ 𝑛 + 2 

case(v) verify the pair (𝑦𝑖, 𝑦𝑗), 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑦𝑖, 𝑦𝑗) + (∅(𝑦𝑖) + 2∅(𝑦𝑗)) ≥ 3 + (3𝑛 + 𝑖 + 2𝑗 − 3) ≥ 𝑛 + 2 

case(vi) verify the pair (𝑧𝑖, 𝑧𝑗), 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑧𝑖, 𝑧𝑗) + (∅(𝑧𝑖) + 2∅(𝑧𝑗)) ≥ 3 + (6𝑛 + 𝑖 + 2𝑗 − 6) ≥ 𝑛 + 2 
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Thus the radio pell mean condition is satisfied for all pairs of vertices. Hence, ∅ is a valid 

radio Pell labeling of 𝑄𝑛.  Therefore, 𝑟𝑝𝑛(𝑄𝑛) ≤ 𝑟𝑝𝑛(∅) = 4𝑛 − 3.  Since ∅  is injective, 

𝑟𝑝𝑛(∅) ≥ 4𝑛 − 3, 𝑛 ≥ 3 for all radio pell labeling ∅ and hence 𝑟𝑝𝑛(𝑄𝑛) = 4𝑛 − 3, 𝑛 ≥ 3. 

Hence the radio pell number of a Quadrilateral snake graph  𝑄𝑛  is 𝑟𝑝𝑛(𝑄𝑛) = 4𝑛 −

3, 𝑛 ≥ 3. 

Example 2.5. The radio pell labeling of 𝑄5 is in Figure 2.5 

                        

                                                                    Figure 2.5 

Theorem 2.6. The radio pell number of a double quadrilateral snake graph 𝐷𝑄𝑛  is 

𝑟𝑝𝑛(𝐷𝑄𝑛) = 6𝑛 − 7, 𝑛 ≥ 3. 

 

Proof. Let 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛 be the vertices of a path. For 1 ≤ 𝑖 ≤ 𝑛 − 1, add vertices 𝑦𝑖 and 𝑦𝑖
′ and 

join them with 𝑥𝑖 . Also for 1 ≤ 𝑖 ≤ 𝑛 − 1, add vertices 𝑧𝑖 and 𝑧𝑖
′ and join them with 𝑥𝑖+1. Now join 

𝑦𝑖𝑧𝑖 and 𝑦𝑖
′𝑧𝑖

′. The resultant graph is 𝐷𝑄𝑛whose edge set is 𝐸(𝐷𝑄𝑛) =

{𝑥𝑖𝑦𝑖
, 𝑦

𝑖
𝑧𝑖, 𝑧𝑖𝑥𝑖+1, 𝑧𝑖

′𝑥𝑖+1, 𝑦
𝑖
′𝑧𝑖

′ , 𝑥𝑖𝑦𝑖
′ , 𝑥𝑖𝑥𝑖+1/1 ≤ 𝑖 ≤ 𝑛 − 1} and 𝑑𝑚(𝐷𝑄𝑛) = 𝑛 + 1.Define a function 

∅: 𝑉(𝐷𝑄𝑛) → 𝑁 by  

 ∅(𝑦𝑖) = 𝑛 + 𝑖 − 3, 1 ≤ 𝑖 ≤ 𝑛 − 1; 

 ∅(𝑧𝑖) = 2𝑛 − 4 + 𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1; 

 ∅(𝑦𝑖
′) = 3𝑛 − 5 + 𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1; 

 ∅(𝑧𝑖
′) = 4𝑛 − 6 + 𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1 ;                                                                                                                          

∅(𝑥𝑖) = 5𝑛 − 7 + 𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

Now we verify the radio pell labeling condition d(x,y) + (ϕ(x) + 2ϕ(y)) ≥ 1 + dm(𝐷𝑄𝑛) for every pair 

of vertices of 𝐷𝑄𝑛. 

case(i) verify the pair (𝑦𝑖, 𝑧𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑦𝑖, 𝑧𝑗) + (∅(𝑦𝑖) + 2∅(𝑧𝑗)) ≥ 1 + (5𝑛 + 𝑖 + 2𝑗 − 11) ≥ 𝑛 + 2 = 1 + 𝑑𝑚(𝐷𝑄𝑛)  

case(ii) verify the pair (𝑦𝑖, 𝑦𝑗
′), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 
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𝑑((𝑦𝑖, 𝑦𝑗
′) + (∅(𝑦𝑖) + 2∅(𝑦𝑗

′)) ≥ 2 + (7𝑛 + 𝑖 + 2𝑗 − 13) ≥ 𝑛 + 2 

case(iii) verify the pair (𝑧𝑖, 𝑧𝑗), 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑧𝑖, 𝑧𝑗) + (∅(𝑧𝑖) + 2∅(𝑧𝑗)) ≥ 3 + (6𝑛 + 𝑖 + 2𝑗 − 12) ≥ 𝑛 + 2 

case(iv) verify the pair (𝑦𝑖, 𝑦𝑗), 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑦𝑖, 𝑦𝑗) + (∅(𝑦𝑖) + 2∅(𝑦𝑗)) ≥ 3 + (3𝑛 + 𝑖 + 2𝑗 − 9) ≥ 𝑛 + 2 

Case(v) verify the pair (𝑦𝑖, 𝑧𝑗
′), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑦𝑖, 𝑧𝑗
′) + (∅(𝑦𝑖) + 2∅(𝑧𝑗

′)) ≥ 3 + (9𝑛 + 𝑖 + 2𝑗 − 15) ≥ 𝑛 + 2 

case(vi) verify the pair (𝑧𝑖, 𝑥𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑧𝑖, 𝑥𝑗) + (∅(𝑧𝑖) + 2∅(𝑥𝑗)) ≥ 2 + (12𝑛 + 𝑖 + 2𝑗 − 18) ≥ 𝑛 + 2 

case(vii) verify the pair (𝑦𝑖 , 𝑥𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑦𝑖, 𝑥𝑗) + (∅(𝑦𝑖) + 2∅(𝑥𝑗)) ≥ 1 + (11𝑛 + 𝑖 + 2𝑗 − 17) ≥ 𝑛 + 2 

Case(viii) verify the pair (𝑧𝑖, 𝑦𝑗
′), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑧𝑖, 𝑦𝑗
′) + (∅(𝑧𝑖) + 2∅(𝑦𝑗

′)) ≥ 3 + (8𝑛 + 𝑖 + 2𝑗 − 14) ≥ 𝑛 + 2 

case(ix) verify the pair ( 𝑧𝑖
′, 𝑥𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑(𝑧𝑖
′, 𝑥𝑗) + (∅(𝑧𝑖

′) + 2∅(𝑥𝑗)) ≥ 2 + (14𝑛 + 𝑖 + 2𝑗 − 20) ≥ 𝑛 + 2 

Case(x) verify the pair (𝑧𝑖, 𝑧𝑗
′), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑧𝑖, 𝑧𝑗
′) + (∅(𝑧𝑖) + 2∅(𝑧𝑗

′)) ≥ 2 + (10𝑛 + 𝑖 + 2𝑗 − 16) ≥ 𝑛 + 2 

case(xi) verify the pair ( 𝑦𝑖
′, 𝑥𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑(𝑦𝑖
′, 𝑥𝑗) + (∅(𝑦𝑖

′) + 2∅(𝑥𝑗)) ≥ 1 + (13𝑛 + 𝑖 + 2𝑗 − 19) ≥ 𝑛 + 2 

case(xii) verify the pair (𝑥𝑖 , 𝑥𝑗), 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑((𝑥𝑖, 𝑥𝑗) + (∅(𝑥𝑖) + 2∅(𝑥𝑗)) ≥ 1 + (15𝑛 + 𝑖 + 2𝑗 − 21) ≥ 𝑛 + 2 

case(xiii) verify the pair ( 𝑦𝑖
′, 𝑦𝑗

′), 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑(𝑦𝑖
′, 𝑦𝑗

′) + (∅(𝑦𝑖
′) + 2∅(𝑦𝑗

′)) ≥ 3 + (9𝑛 + 𝑖 + 2𝑗 − 15) ≥ 𝑛 + 2 

case(xix) verify the pair ( 𝑧𝑖
′, 𝑧𝑗

′), 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑(𝑧𝑖
′, 𝑧𝑗

′) + (∅(𝑧𝑖
′) + 2∅(𝑧𝑗

′)) ≥ 3 + (12𝑛 + 𝑖 + 2𝑗 − 18) ≥ 𝑛 + 2 

case(xx) verify the pair ( 𝑦𝑖
′, 𝑧𝑗

′),1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

𝑑(𝑦𝑖
′, 𝑧𝑗

′) + (∅(𝑦𝑖
′) + 2∅(𝑧𝑗

′)) ≥ 1 + (11𝑛 + 𝑖 + 2𝑗 − 17) ≥ 𝑛 + 2 

Thus the radio pell mean condition is satisfied for all pairs of vertices. Hence, ∅ is a valid 

radio Pell labeling of 𝐷𝑄𝑛.  Therefore, 𝑟𝑝𝑛(𝐷𝑄𝑛) ≤ 𝑟𝑝𝑛(∅) = 6𝑛 − 7.  Since ∅  is 

injective, 𝑟𝑝𝑛(∅) ≥ 6𝑛 − 7, 𝑛 ≥ 3  for all radio pell labeling ∅  and hence 𝑟𝑝𝑛(𝐷𝑄𝑛) =
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6𝑛 − 7, 𝑛 ≥ 3. Hence the radio pell number of a Double Quadrilateral snake graph  𝐷𝑄𝑛 

is 𝑟𝑝𝑛(𝐷𝑄𝑛) = 6𝑛 − 7, 𝑛 ≥ 3. 

Example 2.6. The radio pell labeling of DQ5 is in Figure 2.6 

                     

                                                                              Figure 2.6 

2 conclusion 

In this paper, we investigate radio pell number of graphs such as Comb graph 𝑃𝑛⨀𝐾1, 

Ladder graph 𝐿𝑛, Triangular snake graph 𝑇𝑛, Double Triangular snake graph 𝐷𝑇𝑛, Quadrilateral 

snake graph 𝑄𝑛   and Double Quadrilateral snake graph 𝐷𝑄𝑛. 
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