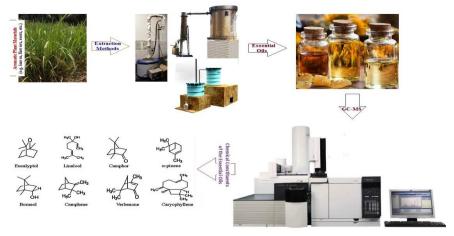


Review on Chemical Composition of Essential Oil Extracted from Aromatic Plants by Hydrodistillation and Steam Distillation

Akanksha Yadav¹, Ashok Kumar Ranjan¹, Sunil Kumar Yadav^{2*}

 ¹ Department of Chemistry, C.M.P. Degree College, University of Allahabad, Prayagraj, Uttar Pradesh, India.
² Department of Chemistry, SRM Institute of Science and Technology Delhi-NCR Campus, Modinagar, Ghaziabad, India.


Correspondence e-mail:

skyhbtu@gmail.com and akranjanhbtu@gmail.com

Abstract:

This study presents systematic data on the major percentage of compounds from aromatic plants, the yield of oil, the method used to extract oil, the scent profile, and their uses. Since then, essential oils have gained popularity due to the high potential of their novel properties, i.e. as fragrant raw materials for many products such as toothpaste, hand soap, shampoos, hair oils, bath soap, cosmetic products, floor cleaner, mosquito repellents, incense sticks, food products, therapeutic products, herbal medicines, etc. Therefore, before using some raw materials that are naturally fragrant in products, it is crucial to understand their features, such as the percentage of molecules from aromatic plants, the percentage of oil yield, the used process for oil extraction, and their fragrance profiles. It will be highly beneficial in the development of new, high-quality products items. Researchers, scientists, business owners, farmers, and industries will all benefit at the same time when new fragrance goods are developed. **Keywords:** Essential oils, Yield, Composition, Distillation, Aroma

Graphical Abstract

Introduction

The secondary metabolites, volatile, fragrant oils known as essential oils (EOs) are derived from the different parts of plants and are utilised by them as defence mechanism against attacks by herbivore (Blowman, K., et.al., 2018). The hydrophobic liquids that make up these complex, concentrated combinations of terpenoid hydrocarbons,

oxygenated terpenes, and sesquiterpenes give them their distinctive scent. Terpenes and phenylpropanoids are the two separate chemical classes into which plant EO components are categorised. The three primary categories of terpene compounds are monoterpenes, sesquiterpenes and diterpenes, oxygenated derivatives, consisting of ketones, esters, alcohols, aldehydes, acids, oxides, phenols, acids and lactones. According to the functional groups listed below, some typical molecules found in essential oils are categorised (Moghaddam, M., et.al., 2017) (Table 1). Due to inherent plant characteristics (climate, plant development, and harvest time) as well as extrinsic factors (extraction method and environment), the composition of essential oils exhibits great diversity (Dhifi, W., et.al., 2016).

Hydrocarbon	Terpenoids	Monoterpene	Camphene, β -myrcene, γ -3-carene,
		-	<i>p</i> -cymene limonene, β -ocimene, α -
			pinene, sabinene, α -phellandrene,
			α -thujene, α -terpinene, terpinolene
		Sesquiterpene	β -himachalene, β -isabolene,
			germacrene-D, α-copaene, α-
			cadinene, β -caryophyllene, α -
			zingiberene, β -cedrene, α -
			farnesene, α -humulene, γ -
			muurolene,
	Phenylpropanoid		Anethole, myristicin, α -asarone,
			methyl eugenol, cinnamaldehyde,
			eugenol, chavicol, cinnamic
			alcohol, elemicin, estragole,
			safrole
Functional	Alcohols and		Nerol, cinnamyl alcohol, geraniol,
groups	phenols		carvacrol, eugenol, thymol
	Carboxylic Acids		Benzoic acid, valerenic acid,
			cinnamic acid
	Aldehydes		Cinnamaldehyde, geranial cumin
			aldehyde, citral.
	Ketones		Camphor, piperitone, menthone.
	Carboxylic esters		Methyl salicylate, benzyl acetate,
			linalyl acetate, eugenyl acetate.
	Ethers and oxides		Ethers: anethole, estragole,
			myristicin. Oxides: β -
			caryophyllene oxide; geranyl
	-		oxide; 1,8-cineole.
	Lactones		Coumarin, nepetalactone,
	A 11		alantolactone.
	Alkenes		α -Cedrene, α -pinene, eugenol, β -
			pinene, safrole, β-myrcene, β-
			ocimene.

Table 1: Chemical components of Essential Oils

	Peroxides	Ascaridole
	Furans	Agarofuran, Menthofuran.
Other	Inorganic	Hydrocyanic acid.
compounds	compounds	
	Nitrogen	Methyl anthranilate, indole,
	compounds	pyrazine, skatole, pyridine.
	Sulphur	Allyl propyl disulfide, dimethyl
	compounds	disulphide, methyl disulphide.

The various plant parts that can be used to make essential oils include the flowers (rose, ylang-ylang, clove), seeds (fennel), leaves (peppermint, lemongrass), fruits (lemon, orange), root and rhizomes (ginger, vetiver), wood (cedarwood), bark (cinnamon), gum (frankincense), bulbs (garlic), etc. (Tisserand, R., et.al., 2013). They have been there for a while, but their motivation and inherent abilities in day-to-day life have boosted their research and experimental activities. Essential oils must first be collected from plants before they may be utilised or studied. There are numerous techniques for extracting essential oils from aromatic plants, including hydro-distillation, steam-distillation, supercritical CO₂ extraction, microwave hydro-diffusion and gravity, solvent extraction, microwave-assisted extraction, high-pressure solvent extraction, enfleurage and solventfree microwave extraction (Farhat, A., et.al., 2010; Okoh, O.O., et.al., 2010). For the industrial extraction of essential oils, steam-distillation is the technique of choice (Masango, P., 2005). Distillation is typically performed using the Clevenger or Dean-Stark, which involves constantly heating and mixing in water or solvent. (Moghaddam, M., et.al., 2017). Depending on the variety of plant material, distillation takes three to four hours (Dhifi, W., et.al., 2016). The main technique used to investigate the characteristics of essential oils and their makeup is gas chromatography/mass spectrometry (GC-MS). Acquiring precise and thorough information on chemical constituents helps researchers to explore the qualities of essential oils more thoroughly since chemical constituents are the key parts determining the varied properties of essential oils. (Chen, K., et.al., 2020).

At least 2,000 plant species, of which 300 are significant commercially, have yielded about 3000 essential oils (Djilani, A., et.al., 2012). These oils exhibit antioxidant, antiproliferative, and antibacterial activity, and are widely utilised in medicine, cosmetics, and perfumes due to their pleasant aroma (Pasias, I.N., et.al., 2021). By inhibiting the growth of pathogen organisms (Pasias, I.N., et al., 2021), or by exhibiting effectiveness against antibiotic-resistant bacteria and chemotherapy resistant tumours (Viktorová, J., et al., 2020), they have shown beneficial in a range of applications. They may also serve as alternatives to antibiotics (Chaves, A.V., et. al., 2008). They are also used to provide flavour and fragrance in the food and cosmetics industries, where several herbal and spice ingredients are components in the production of shampoos, skin creams, soaps, perfumes, and lip balms (Safrudin, I., et.al., 2015). The purpose of this literature review is to examine the yield, makeup, and applications of the various plants' essential oils (Table 2).

S.	Name of	Part	*Oil	Yield	Major	Aroma	Use	Ref.
No	plant	used for	extr	(%)	chemical	profile		
•		oil	acti		molecules			
		extractio	on					
		n	met					
			hod					
1.	Rosmarinus	Whole	HD	1.02	23.9-33.2%	Woody,	Perfume,	Verma,
	officinalis L.	aerial		%	Camphor;	camphor	cosmetic,	R. S.,
	(Rosemary)	parts.			20.4-23.9%	fragranc	pharmaceu	et.al.,
					1,8-cineole;	e	tical	2020.
					8.5-14.4% α-		foodstuffs,	
					pinene; 6.9-		food	
					10.1%		flavouring,	
					verbenone;		antimutag	
					3.5- 6.9%		enic,	
					camphene; 2.3-		antibacteri	
					2.8%		al,	
					limonene; 2.5-		antioxidan	
					3.2% β -pinene;		t, and	
					1.9-2.8% α-		chemo-	
					terpineol; 1.7-		preventive	
					2.5% borneol			
					and 0.9-2.0%			
					linalool.			
2.	Thymus	Whole	HD	0.22%	58.8%	Spicy	Antiviral,	Verma,
	serpyllum L.	aerial			Thymol; 5.7%	odour	antifungal,	R. S.,
	(Thyme)	parts.			p-cymene; 4%		anti-	et.al.,
					thymol methyl		parasitic,	2011.
					ether; 3.8%		antioxidan	
					borneol; 3.4%		t, and	
					sabinene; 3.4%		antimicrob	
					γ-terpinene and		ial	
					3.2% carvacrol		activities.	
					methyl ether.			
3.	Achillea	Whole	HD	0.70%	17.58%	Sweet,	Medicines,	Nadim
	millefolium	aerial			sabinene;	warm/co	lotions,	M.M.,
	(yarrow or	parts.			13.04% 1,8-	ol,	and	et.al.,
	milfoil)				cineole;	pungent,	ointments.	2011.
					12.41%	earthy		
					borneol; 7.98%			
					bornyl acetate;			
					6.28% α-			

4.	Cymbopogo n citratus (Lemongras s)	Whole aerial parts.	SD	0.35 to 0.6%	pinene; 6.26% β -pinene; 6.17% terpinine-4-ol and 5.28% chamazulene. 25-53% geranial; $20-$ 45% neral; 1.3-7.2% caryophyllene oxide and $0.3-$ 2.2% <i>t</i> - caryophyllene.	Lemony scent strong, sharp, pungent & fresh – grassy herbaceo us or tea like odour.	Pharmace utical, perfumery, cosmetics, pesticides, antifungal, and antibacteri al.	Zheljazk ov, V. D., et.al., 2011
5.	Citrus limon L. (Lemon)	Fruit peel	HD	0.41 %	55.4% limonene; 10.39 % neral; 6.43% <i>trans</i> - verbenol; 3.25 % decanal; 2.21% ethyl cinnamate; 2.21% ethyl p- methoxycinna mate; 1.6% <i>cis</i> - bergamotene; 1.48% geraniol; 1.33 % <i>trans</i> - carveol; 1.19% nonanal; 1.16 % linalool; 1.07 % α- terpineol.	Fresh and elegant lemon	Food, pharmacol ogical, in cure of piles, ulcers, scurvy, and urinary infections.	Paw, M., et.al., 2011.
6.	Ocimum basilicum L. (Basil)	Stems, leaves, and flowers.	SD	0.40% - 0.75%	30-38% linalool; 8– 30% eugenol; 0.5-3% δ- cadinene; 0.8- 1.3% iso- bornyl acetate;	Herb sweet, fruit, lemon	Food, pharmaceu tical, cosmetic, and aromather apy	Zheljazk ov, V. D., et.al., 2008.

7.	Coriandrum sativum L. var.	Seeds	HD	0.31-0.43%	camphor; trans- caryophyllene and methyl eugenol. 63.5-71.0% linalool; 6% hexa decanoic	Warm, mild sweet,	industries. Flavouring sweets, tobacco	Telci, et.al., 2006;
	<i>microcarpu</i> <i>m</i> (Coriander)				acid; 7.7 -3.4% tetra decanoic acid; 3.2% geranyl acetate.	and aromatic flavour.	products, beverages baked goods, and ingredient for curry powder.	Priyadars hi, et.al. 2014.
8.	Foeniculum vulgare Mill. (Fennel)	Leaves	HD	0.65% - 2.03%	41.19-56.61% trans-anethole; 0.21-4.18% <i>cis</i> -anethole; 1.7-10.23% fenchone; 11.5-31.7% limonene; 0- 13.4% α- phellandrene; 0.61-16.89% α- pinene and 1.24-5.9% β- ocymene.	Aromati c, spicy odour	Flavouring of food stuffs such as liqueurs, bread, etc., in cosmetic and pharmaceu tical products.	Rahimm alek, et.al., 2014.
9.	Amomum subulatum Roxb. (Large cardamom)	Seeds	HD	0.98- 1.95%	50.55-60.46% 1,8-cineole; 14.88-16.48% α -terpineol; 5.49–11.76% limonene; nerolidol; 2.6– 5.39% 4- terpineol; 2.86–3.35% δ - terpineol; 1.22- 2.18% δ -3- carene; 1.16– 2.36% β - myrcene; 0.52–	-	Flavouring of food, beverages, confection ery, and cosmetics, medicine for gastric ulcers and gastrointes tinal disorders, as a liver tonic, hypnotic,	Joshi, et.al., 2013

					2.28% germacrene D;		appetizer, etc.	
					0.7–1.14% α-		cic.	
					terpinene and			
					0.32–1.5%			
					longifolenalde			
					hyde.			
10.	Cotula	Aerial	HD	0.282	24.01% (E)-	_	Medicine	Djellouli,
101	cinerea	parts		%	citral; 18.26%		for	et.al.,
	(Guertofa)	(leaves		70	limonene		diseases	2015.
	(00010010)	and			epoxide;		like	20101
		stems)			15.04% thymol		cough,	
		sterns)			methyl ether;		colic,	
					15.03%		diarrhoea,	
					carvacrol,		digestive	
					13.79% trans-		disorders	
					carveol; 3.06%		and	
					carvone and		headache.	
					2.54% trans-			
					piperitol.			
11.	Anethum	Flower,	HD	Flowe	<i>Herb oil</i> : 21.83	Odor of	Flavouring	Dimov,
	graveolens	herbs,		r	%α-	the fruit	in foods,	et.al.,
	L. (Dill)	and		(0.36	phellandrene;	and a	antimicrob	2019.
		fruits.		%),	20.85 %	hot,	ial and	
				herb	carvacrol;	acrid	antioxidan	
				(0.90	18.96 %	taste	t activities	
				%)	limonene;		and	
				and	12.31 % 3,9-		pharmacol	
				fruit	oxy-p-menth-		ogical	
				(3.61	1-ene; 8.40 %		properties.	
				%).	carvone; 7.11			
					% myristicin			
					and 3.34 % p-			
					cymene.			
					Flower oil:			
					23.24 %			
					myristicin;			
					22.04 %			
					carvacrol;			
					18.93 %			
					carvone;			
					11.2%			
					limonene; 7.59			
					% 3,9-oxy- <i>p</i> -			

12.	Petroselinu m crispum Mill. (Parsley)	Leaves	HD	0.28%	menth-1-ene; $6.5\% \alpha$ - phellandrene and 4.63 % dihydro- carvone. <i>Fruit oil</i> : 33.57 % carvone; 24.21 % myristicin; 15.02% limonene; 13.13 % dihydro- carvone and 4.92 % carvacrol. 26.41% myristicin; 11.61% β- phellanderene; 10.54% α- phellandrene; 9.41% 1,3,8-p- menthatriene; 8.63% p- cymene; 6.12% myrcene; 1.79% α- pinene and 1.09% p- cymene. 48–50 %	Sweet, warm spicy scent	Fragrance for perfumes, creams and soaps.	Farouk, et.al., 2017.
13.	Mentha piperita L. (Peppermint)	Aerial part (mixture of leaves and infloresc ences)	HD	3.24– 4.01%	48–50 % menthol; 8- 10% menthone, 18.51–19% iso menthone; 8– 18% menthyl acetate; 0.24% 1.8-cineole and 0.16-0.14% pulegone.	Cooling, minty, sweet fresh	Astringent , antiseptic, antipyretic , antispasm odic, and antimicrob ial properties.	Shelepov a, et.al., 2017.
14.	Lavandula	Leaves	HD	4.58%	36.62% 1,8-	-	Antibacter	Fernánde

	latifalia	and			ainaala		ial,	z, et.al.,
	latifolia Madila				cineole; 26.74%			
	Medik.	flowers.					antifungal,	2020
	(Spike				linalool;		sedative	
	lavender)				17.23%		and	
					camphor;		antidepres	
					2.36% borneol;		sant	
					0.88% α-		properties,	
					terpineol.		in	
							aromather	
							apy,	
							phyto-	
							therapy,	
							and	
							perfume	
							industry.	
15.	Syzygium	Bud	HD	14.45	72.4%	Spicy,	Disinfect	Safrudin,
	aromaticum			%	eugenol;	warm	the body,	et.al.,
	(Clove)				12.61% β-	scent.	toothpaste,	2015.
	× ,				caryophyllene		soaps,	
					and 9.59 %		perfumes,	
					eugenyl		cigarettes,	
					acetate.		and relieve	
							toothache.	
16.	Zingiber	Rhizome	HD	1.2%	46.71%	Fresh,	Flavouring	Sharma,
10.	officinale	Tunzonio	112	1.270	zingiberene;	warm,	agent and	et.al.,
	Roscoe				7.61%	woody,	herbal	2016.
	(ginger)				valencene;	sweet	remedy to	2010.
	(ginger)				3.09% β-	bright	cure	
					funebrene;	top note	diseases	
					1.03% selina-	spicy	such as	
						lemon-		
					4(14),7(11)-		nausea,	
					diene; 19.34%	lime	vomiting,	
					citronellyl <i>n</i> -	woody-	asthma,	
					butyrate; 3.7%	balsamic	palpitation	
					β-	- sweet	, etc.	
					phellandrene;	base		
					2.59%	note.		
					camphene and			
					1.09% α-			
					pinene.			
17.	Salvia	Aerial	HD	1.11-	21.43-40.1%	Warm	Possess	Raina,
	officinalis L.	part		2.76%	α-thujone;	camphor	carminativ	et.al.,
	(Sage)				2.06- 7.41% β-	aceous,	e,	2013.
					thujone; 11.31-	thujone-	antispasm	

,,			r	1	1	1		· · · · · · · · · · · · · · · · · · ·
					37.67%	like	odic,	
					camphor; 4.47	odour.	antiseptic,	
					-9.17% 1,8-		and	
					cineole; 4.58-		astringent	
					9.51% α-		properties.	
					humulene; 1.89			
					-7.04%			
					camphene;			
					2.14-5.56%			
					viridiflorol;			
					1.55 -6.17% α-			
					pinene; 1.68 -			
					3.49% β-			
					pinene and			
					1.06-5.59% β-			
					caryophyllene.			
18.	Eucalyptus	Leaves	SD	2.97%	40.5%	Strong,	Heal	Gilles,
	dives				piperitone;	herbacea	wounds	et.al.,
					17.4% α-	ous,	and fungal	2010.
					phellandrene;	woody &	infections,	
					8.5% p-	minty	food	
					cymene and		additives,	
					4.7% terpin-4-		cosmetics.	
					ol.			
19.	Melissa	Aerial	HD	0.18	6.84–7.78 %	Lemony,	Medicine	Ilić,
	officinalis L.	part		%	geranial; 3.02–	fresh,	for gastric	et.al.,
	(Lemon				3.52 % neral;	herbaceo	conditions,	2021.
	balm)				1.67–5.36 %	us scent.	insomnia,	
					piperitenone		migraines,	
					oxide and		hypertensi	
					1.54-2.15 %		on and	
					caryophyllene		anxiety.	
					oxide.			
20.	Dracocepha	Aerial	HD	0.43-	20.89-42.13%	-	Food	Vafadar,
	lummoldavi	part		0.57%	geraniol;		flavouring,	et.al.,
	ca L.				12.57-26.6%		pharmaceu	2019.
	(Moldavian				geranyl		tical and	
	balm)				acetate; 16.74-		cosmetic	
					24.67%			
					geranial;			
					15.33-21.04%			
					neral and 1.1-			
					3.1% neryl			
					acetate.			

21.	Ruta	Aerial	HD	Sub-	Sub-humid	_	As a cure	Amar,
	Montana	parts		humid	region: 60.1 %		for	et.al.,
	(Clus.) L	I		Regio	2-undecanone;		emmenago	2012.
				n: 1.0	8.6% 2-		gue, and	
				%	nonanone; 6.4		echarrotic	
				semi-	%		powder,	
				arid	monoethylhexy		antifungal,	
				region	l phthalate;		antioxidan	
				:	6.2%		t,	
				(4.5	decanone.		depressant	
				%).	Semi-arid		, and anti-	
					region: 90.4 %		inflammat	
					2-undecanone;		ory.	
					4% 2-			
					nonanone;			
					1.4%			
					decanone.			
22.	Cinnamomu	Bark	HD	1.3%	62.09%	-	Perfumes,	Kamaliro
	т.				cinnamic		soaps,	osta,
	zeylanicum				aldehyde;		toothpaste,	et.al.,
	(Cinnamon)				11.56% para		flavouring	2012.
					methoxy		agent for	
					cinnamic		liquors	
					aldehyde;		and	
					6.98% alpha-		medicine.	
					copaene and			
					4.32% α-			
			175	0.70	murolene.	D 1		
23.	Origanum	Flowers	HD	2.7%	p-cymene, γ-	Pale-	Antimicro	Mecherg
	vulgare	and		(Krib	terpinene,	dark	bial,	ui, et.al.,
	(Oregano)	leaves		popul	thymol, and	yellow	antifungal,	2016.
				ation).	carvacrol		insecticida	
				4.3-			l, and	
				4.8%			antioxidan	
				(Nefz			t activities.	
				a nonul				
				popul				
24.	Satureja	Aerial	HD	ation), 1.4%	14.03% p-	-	Antibacter	Memarza
24.	Satureja bachtiarica		עח	1.4%		-	ial,	deh,
	Bunge	parts			cymene; 12.65% γ-		antifungal,	et.al.,
	(Bakhtiari				terpinene;		antioxidan	et.al., 2015.
	(Dakillian savory)				2.71% linalool;		t, and	2013.
	savory)				2.71% infatool, 28.61 thymol;		immune-	
					20.01 mymor,		mmune-	

25.	Aquilaria malaccensis Benth. (Agarwood oil)	Wood	HD	0.2%	24.98% carvacrol and 2.713% β- caryophyllene. 32.1% 4- phenyl-2- butanone; 6.5% jinkoh- eremol and 5.8% α- guaiene.	Oriental- woody and very soft fruity- floral notes.	modulator y effects. Potential income- generating crop, improves digestion, stress relief.	Tajuddin , et.al., 2010.
26.	Carum copticum (Ajwain)	Aerial parts	HD	2.8%	49% thymol; 30.8% γ- terpinene; 15.7% p- cymene and 2.1% β-pinene.	-	Therapeuti c effects include analgesic, diuretic, anti- dyspnea effects and antiasthma	Khajeh, et.al., 2004.
27.	<i>Cladanthus</i> <i>mixtus</i> Chevall (Moroccan chamomile)	Whole aerial parts	HD	0.1-0.8%	14–27% camphor; 3– 17% β- myrcene and 3–15% santolina triene.	Aromati c herbal fragranc e with green and spicy nuances	Medicine, perfume and pharmaceu tical industries.	Elouadda ri, et.al., 2013.
28.	Piper longum Linn. (pippali)	Stem, root, fruit.	HD	fruit (0.1 %), root (0.054 %), stem (0.026 %).	<i>Fruit:</i> 43.1% β-pinene; 0.7% camphene; 15.3% α- pinene; 9.6% limonene. <i>Root:</i> 26.4% β- pinene; 13.9% camphene; 11.8% α- pinene; 6.3% limonene. <i>Stem:</i> 34.8% β- pinene; 6.6%	-	Used as a carminativ e, treatment of inflammati on and respiratory tract diseases.	Varughe se, et.al., 2016.

					camphene;			
					14% α-pinene			
					and 10.3%			
20	D: 11	E-mail:		1	limonene.		Deufermen	0
29.	Pimpinella	Fruit	HD	1-	Trans-anethole	-	Perfumes,	Orav,
	anisum			5.36	(76.9–93.7%),		toothpaste,	et.al.,
	(Anise)			%	methyl		food .	2008.
					chavicol (0.5–		processing	
					2.3%), anis		, and	
					aldehyde (0–		medicine.	
					5.4%), γ-			
					himachalene			
					(0.4–8.2%),			
					and			
					pseudoisoeuge			
					nyl 2-			
					methylbutyrate			
					(0.4–6.4%).			
30.	Melaleuca	Leaves	HD	1.05	21.64 % α-	Fresh	Antibacter	Sevik,
	alternifolia			%	pinene; 21.09	camphor	ial,	et.al.,
	(tea tree)				% γ-terpinene;	aceous	antifungal,	2001.
					17.31 %		antiviral,	
					terpinen-4-ol;		and	
					9.37 %		antiprotoz	
					limonene and		oal	
					6.54 % o-		activities.	
					cymene.			
31.	Mentha	Aerial	HD	0.566	76.65%	Minty	Food,	Chauhan,
	spicata L.	plant		%	carvone;		cosmetics,	et.al.,
	(spearmint)				9.57%		confection	2009.
					limonene;		ery,	
					1.93% 1,8-		toothpaste,	
					cineole.		and	
							pharmaceu	
							tical	
							industries.	
32.	Citrus	Fruit	HD	9.7%	59.21%	-	Cosmetic,	Bouzouit
	bergamia	peel			limonene;		pharmaceu	a, et.al.,
	Risso				9.51% linalool		tical and	2010.
	(Bergamot)				and 16.83%		food	
					linalyl acetate.		industries.	
33.	Citrus	Leaves	HD	0.04%	1.3-60.2%	Orange-	Aromather	Paoli,
	paradisi			-	sabinene; 2.4–	tinted,	apy,	et.al.,
	Macf.			0.30%	56.1% γ-	citrus-	medicinal	2016.

	(Case of it)				tamin 2	aaa	han fit	
	(Grapefruit)				terpinene; 3-	scented	benefits.	
					30.9% β-			
					pinene; 0.3–			
					17.3%			
					terpinen-4-ol;			
					3.7–15% (E)-			
					β-ocimene;			
					12.5% p-			
					cymene; 0.9–			
					12.0% linalool;			
					0.2–5.6%			
					citronellal;			
					2.3-3.8%			
					limonene; 1.1–			
					3.8% α-pinene			
					and 0.8–3.6%			
					myrcene.			
34.	Cymbopogo	Leaves	SD		29.15%	Citric,	Cosmetics,	Singh,
	n			0.79%	citronellal;	fresh,	flavouring,	et.al.,
	winterianus			•	22.52%	lemongr	and	2017.
	(Java				geraniol;	ass	perfumery	
	Citronella)				7.43%		industry,	
					citronellol;		therapeuti	
					2.63% geranyl		с	
					acetate; 6.52%		properties,	
					neral; 5.2%		anti-fungal	
					geranial;		property.	
					1.92% elemol			
					and 1.27%			
					limonene.			
35.	Cyperus	Rhizome	HD	0.5-	0.7-12.9% α-	-	Treat	Zoghbi,
	articulates			1%	pinene; 7.3-		many	et.al.,
	(priprioca				14.5%		diseases,	2006.
	or				mustakone and		effective	
	piriprioca)				4.6 -28.5%		against	
					caryophyllene		Pseudomo	
					oxide.		nas	
							aeruginos	
							a and	
							Staphyloc	
							occus	
		1	Î	1		1		
							aureus,	
							<i>aureus,</i> treat	
		1	1	1				

							and	
							headaches.	
36.	Artemisia	Shoot	HD	0.35%	HD oil: 36.6%	-	Perfumery	Rajeswar
	annua		&	(HD)	camphor;		,	a, et.al.,
	(sweet		FDU	and	11.1% 1,8-		cosmetics,	2014.
	sagewort,			0.26%	cineole; 5.7%		aromather	
	sweet			(FDU	β-		apy,	
	Annie,).	caryophyllene		pharmacol	
	annual				and 5.9%		ogical,	
	wormwood,				germacrene D.		antioxidan	
	sweet				FDU oil:		t,	
	wormwood)				23.6%		antibacteri	
					camphor;		al, and	
					16.6% β-		antifungal.	
					caryophyllene;			
					5.4% α-			
					humulene and			
					17%			
					germacrene D.			

* HD=Hydro distillation, SD= Steam distillation, FDU= Field distillation unit

Conclusion

This review describes the essential oil yields, major component percentages, extraction techniques used, aroma profile, and various applications, such as cosmetics and food preservatives, from aromatic plants like peppermint, rosemary, thyme, coriander, lemon, basil, fennel, grapefruit, tea tree, etc. The ability to produce essential oils that are intense in compounds known for their biological activities under ideal conditions requires an understanding of these factors, and the findings of this research are of great interest to the industries, scientists, and new entrepreneurs who produce essential oils and make other products.

References

- Amar Z., Abdelwahab B., Abdelhakim B., Noureddine G., 2012. Environmental Impact on the Chemical Composition and Yield of Essential Oils of Algerian *Ruta Montana* (Clus.) L and Their Antioxidant and Antibacterial Activities. *Advances in Environmental Biology*, 6 (10), 2684–2688. http://www.aensiweb.com/old/aeb_September_2012.html
- Blowman, K., Magalhães, M., Lemos, M. F. L., Cabral, C., Pires, I. M., 2018. Anticancer Properties of Essential Oils and Other Natural Products. *Evid. Based. Complement. Alternat. Med.*, vol. 2018, Article ID 3149362, 1–12. https://doi.org/10.1155/2018/3149362.
- Bouzouita, N., El Omri, A., Kachouri, F., Casabianca, H., Chaabouni, M. M., 2010. Chemical Composition of Bergamot (*Citrus Bergamia* Risso) Essential Oil Obtained by Hydrodistillation. *Journal of Chemistry and Chemical Engineering*, 4 (4), 60–62. (hal-00639760).

- 4) Chauhan, R. S., Kaul, M. K., Shahi, A. K., Kumar, A., Ram, G., Tawa, A. 2009. Chemical Composition of Essential Oils in Mentha Spicata L. Accession [IIIM(J)26] from North-West Himalayan Region, India. *Ind. Crops Prod.*, 29 (2–3), 654–656. https://doi.org/10.1016/j.indcrop.2008.12.003.
- Chaves, A.V.; He, M.L.; Yang, W.Z.; Hristov, A.N.; McAllister, T.A.; Benchaar, C., 2008. Effects of essential oils on proteolytic, deaminative and methanogenic activities of mixed ruminal bacteria. Can. J. Anim. Sci., 88(1), 117–122. https://cdnsciencepub.com/doi/10.4141/CJAS07061.
- 6) Chen, K., Zhang, M., Bhandari, B., Mujumdar, A.S., 2020. Edible flower essential oils: A review of chemical compositions, bioactivities, safety and applications in food preservation, *Food Research International 139*, Article Id 109809. https://doi.org/10.1016/j.foodres.2020.109809.
- 7) Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., Mnif, W., 2016. Essential Oils' Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. *Medicines* (*Basel, Switzerland*), 3(4), Article no. 25. https://doi.org/10.3390/medicines3040025
- Djellouli, M., Benmehdi, H., Mammeri, S., Moussaoui, A., Ziane, L., Hamidi, N., 2015. Chemical Constituents in the Essential Oil of the Endemic Plant Cotula Cinerea (Del.) from the Southwest of Algeria. *Asian Pac. J. Trop. Biomed.*, 5 (10), 870–873. https://doi.org/10.1016/j.apjtb.2015.06.007.
- 9) Djilani, A., Dicko, A., 2012. The therapeutic benefits of essential oils. *Nutr. Well-Being Health* 7, 155–179. https://doi.org/10.5772/25344.
- 10) Dimov M. D., Dobreva K. Z., Stoyanova A. S., 2019. Chemical Composition of the Dill Essential Oils (Anethum Graveolens L.) from Bulgaria. *Bulgarian Chemical Communications*, 51 (Special Issue D), 214–216. http://www.bcc.bas.bg/.
- Elouaddari, A., El Amrani, A., Eddine, J. J., Correia, A. I. D., Barroso, J. G., Pedro, L. G., Figueiredo, A. C., 2013. Yield and Chemical Composition of the Essential Oil of Moroccan Chamomile [Cladanthus Mixtus (L.) Chevall.] Growing Wild at Different Sites in Morocco: Moroccan Chamomile [CladanthusMixtus (L.) Chevall.] Essential Oils. *Flavour Fragr. J.*, 28 (6), 360–366. https://doi.org/10.1002/ffj.3146.
- 12) Farhat, A., Fabiano-Tixier, A.S., Visinoni, F., Romdhane, M., Chemat, F., 2010. A Surprising Method for Green Extraction of Essential Oil from Dry Spices: Microwave Dry-Diffusion and Gravity. J. Chromatogr. A, 1217 (47), 7345–7350. https://doi.org/10.1016/j.chroma.2010.09.062.
- 13) Farouk, A., Ali, H., Al-Khalifa, A. R., Mohsen, M., Fikry, R., 2017. Aroma Volatile Compounds of Parsley Cultivated in the Kingdom of Saudi Arabia and Egypt Extracted by Hydrodistillation and Headspace Solid-Phase Microextraction. *Int. J. Food Prop.*, 20 (sup3), S2868–S2877. https://doi.org/10.1080/10942912.2017.1381707.
- 14) Fernández-Sestelo, M., Carrillo, J., 2020. Environmental Effects on Yield and Composition of Essential Oil in Wild Populations of Spike Lavender (Lavandula latifolia Medik.). *Agriculture, 10*(12), Article no. 626, 1-18. https://doi.org/10.3390/agriculture10120626.

- 15) Gilles, M., Zhao, J., An, M., Agboola, S., 2010. Chemical Composition and Antimicrobial Properties of Essential Oils of Three Australian Eucalyptus Species. *Food Chem.*, *119* (2), 731–737. https://doi.org/10.1016/j.foodchem.2009.07.021.
- 16) Ilic Z.S., Milenkovic, L., Tmusic, N., Stanojević, L., Stanojević, J., Cvetković, D., 2021. Essential oils content, composition, and antioxidant activity of lemon balm, mint, and sweet basil from Serbia. *LWT - Food Science and Technology*, 153 (Article No.112210), 1-44. https://doi.org/10.1016/j.lwt.2021.112210.
- 17) Joshi, R., Sharma, P., Sharma, V., Prasad, R., Sud, R. K., Gulati, A., 2013. Analysis of the Essential Oil of Large Cardamom (Amomum subulatum Roxb.) Growing in Different Agro-Climatic Zones of Himachal Pradesh, India: Analysis of the Essential Oil of Large Cardamom. *J. Sci. Food Agric.*, 93 (6), 1303–1309. https://doi.org/10.1002/jsfa.5886.
- 18) Pal N, Mandal S, Shiva K, Kumar B. Pharmacognostical, Phytochemical and Pharmacological Evaluation of Mallotus philippensis. Journal of Drug Delivery and Therapeutics. 2022 Sep 20;12(5):175-81.
- 19) Singh A, Mandal S. Ajwain (Trachyspermum ammi Linn): A review on Tremendous Herbal Plant with Various Pharmacological Activity. International Journal of Recent Advances in Multidisciplinary Topics. 2021 Jun 9;2(6):36-8.
- 20) Mandal S, Jaiswal V, Sagar MK, Kumar S. Formulation and evaluation of carica papaya nanoemulsion for treatment of dengue and thrombocytopenia. Plant Arch. 2021;21:1345-54.
- 21) Mandal S, Shiva K, Kumar KP, Goel S, Patel RK, Sharma S, Chaudhary R, Bhati A, Pal N, Dixit AK. Ocular drug delivery system (ODDS): Exploration the challenges and approaches to improve ODDS. Journal of Pharmaceutical and Biological Sciences. 2021 Jul 1;9(2):88-94.
- 22) Shiva K, Mandal S, Kumar S. Formulation and evaluation of topical antifungal gel of fluconazole using aloe vera gel. Int J Sci Res Develop. 2021;1:187-93.
- 23) Ali S, Farooqui NA, Ahmad S, Salman M, Mandal S. Catharanthus roseus (sadabahar): a brief study on medicinal plant having different pharmacological activities. Plant Archives. 2021;21(2):556-9.
- 24) Mandal S, Jaiswal DV, Shiva K. A review on marketed Carica papaya leaf extract (CPLE) supplements for the treatment of dengue fever with thrombocytopenia and its drawback. International Journal of Pharmaceutical Research. 2020 Jul;12(3).
- 25) Mandal S, Vishvakarma P, Verma M, Alam MS, Agrawal A, Mishra A. Solanum Nigrum Linn: An Analysis Of The Medicinal Properties Of The Plant. Journal of Pharmaceutical Negative Results. 2023 Jan 1:1595-600.
- 26) Kamaliroosta L., Gharachorloo M., Kamaliroosta Z., Ali Mohammad Z. K. H., 2012. Extraction of Cinnamon Essential Oil and Identification of Its Chemical Compounds. J. Med. Plant Res., 6 (4), 609-614. https://doi.org/10.5897/jmpr11.1215.
- 27) Khajeh, M., Yamini, Y., Sefidkon, F., Bahramifar, N., 2004. Comparison of Essential Oil Composition of Carum copticum Obtained by Supercritical Carbon Dioxide Extraction and Hydrodistillation Methods. *Food Chem.*, 86 (4), 587–591. https://doi.org/10.1016/j.foodchem.2003.09.041.
- 28) Masango, P., 2005. Cleaner Production of Essential Oils by Steam Distillation. *J. Clean. Prod.*, *13* (8), 833–839. https://doi.org/10.1016/j.jclepro.2004.02.039.

- 29) Mechergui, K., Jaouadi, W., Coelho, J. P., Khouja, M. L., 2016. Effect of Harvest Year on Production, Chemical Composition, and Antioxidant Activities of Essential Oil of Oregano (Origanum Vulgare subsp glandulosum (Desf.) Ietswaart) Growing in North Africa. *Ind. Crops Prod.*, 90, 32–37. https://doi.org/10.1016/j.indcrop.2016.06.011.
- 30) Memarzadeh, S.M., Pirbalouti, A.G., AdibNejad, M., 2015. Chemical Composition, and Yield of Essential Oils from Bakhtiari Savory (Satureja Bachtiarica Bunge.) under Different Extraction Methods. *Ind. Crops Prod.*, 76, 809–816. https://doi.org/10.1016/j.indcrop.2015.07.068.
- 31) Moghaddam, M., Mehdizadeh, L., 2017. Chapter13-Chemistry of Essential Oils and Factors Influencing Their Constituents. In Soft Chemistry and Food Fermentation; Elsevier, 379–419. https://doi.org/10.1016/B978-0-12-811412-4.00013-8.
- 32) Nadim M.M.; Malik A.A.; Ahmad J., Bakshi S.K., 2011. The Essential Oil Composition of Achillea Millefolium L. Cultivated under Tropical Condition in India. *World Journal of Agricultural Sciences*, 7 (5), 561–565. https://idosi.org/wjas/wjas7(5).htm
- 33) Okoh, O. O., Sadimenko, A. P., Afolayan, A. J., 2010. Comparative Evaluation of the Antibacterial Activities of the Essential Oils of Rosmarinus Officinalis L. Obtained by Hydrodistillation and Solvent-Free Microwave Extraction Methods. *Food Chem.*, 120 (1),308–312. https://doi.org/10.1016/j.foodchem.2009.09.084.
- 34) Orav, A., Raal, A., Arak, E., 2008. Essential Oil Composition of Pimpinella Anisum L. Fruits from Various European Countries. *Nat. Prod. Res.*, 22 (3), 227–232. https://doi.org/10.1080/14786410701424667.
- 35) Paoli, M., de Rocca Serra, D. Tomi, F., Luro, F., Bighelli, A., 2016. Chemical Composition of the Leaf Essential Oil of Grapefruits (*Citrus Paradisi*Macf.) in Relation with the Genetic Origin. *J. Essent. Oil Res.* 28 (4), 265–271. https://doi.org/10.1080/10412905.2016.1140090.
- 36) Pasias, I.N., Ntakoulas, D.D., Raptopoulou, K., Gardeli, C., Proestos, C., 2021. Chemical Composition of Essential Oils of Aromatic and Medicinal Herbs Cultivated in Greece—Benefits and Drawbacks. Foods, 10(10), Article No. 2354, 1-8. https://doi.org/10.3390/foods10102354.
- 37) Paw, M., Begum, T., Gogoi, R., Pandey, S. K., Lal, M., 2020. Chemical Composition of Citrus Limon L. Burmf Peel Essential Oil from North East India. J. Essent. Oil-Bear. Plants, 23 (2), 337–344. https://doi.org/10.1080/0972060x.2020.1757514.
- 38) Priyadarshi S., Borse. B. B., 2014. Effect of the Environment on Content and Composition of Essential Oil in Coriander. Journal of Agricultural Science and Technology. *International Journal of Scientific & Engineering Research*, 5 (2), 57–65. https://www.ijser.org/onlineResearchPaperViewer.aspx?Effect-of-the-Environment-on-Content-and-Composition-of-Essential-oil-in-Coriander.pdf.
- 39) Rahimmalek M., Maghsoudi H., Sabzalian M. R., Pirbalouti A. G., 2014. Variability of Essential Oil Content and Composition of Different Iranian Fennel (Foeniculum Vulgare Mill.) Accessions in Relation to Some Morphological and Climatic Factors. *Journal of Agricultural Science and Technology*, 16 (6), 1365–1374. http://jast.modares.ac.ir/article-23-11772-en.html

- 40) Raina A.P., Negi K.S., Dutta M., 2013. Variability in Essential Oil Composition of Sage (Salvia Officinalis 1.) Grown under North Western Himalayan Region of India. *Journal of Medicinal Plants Research*, 7 (11), 683–688. https://doi.org/10.5897/JMPR12.1003.
- 41) Rajeswara Rao, B. R., Syamasundar, K. V., Patel, R. P., 2014. Effect of Method of Distillation on the Yield and Chemical Composition of Artemisia Annua Essential Oil. *J. Essent. Oil Res.*, 26 (6), 486–491. https://doi.org/10.1080/10412905.2014.949881
- 42) Safrudin, I., Maimulyanti, A., Prihadi, A. R. 2015. Effect of Crushing of Clove Bud (Syzygium Aromaticum) and Distillation Rate on Main Constituents of the Essential Oil. *American Journal of Essential Oils and Natural Products*, 2 (3), 12–15. https://www.essencejournal.com/archives/2015/2/3/A/2-3-2.
- 43) Sevik, R., Akarca, G., Kilinc, M., Ascioglu, C., 2021. Chemical Composition of Tea Tree (Melaleuca Alternifolia) (Maiden & Betche) Cheel Essential Oil and Its Antifungal Effect on Foodborne Molds Isolated from Meat Products. J. Essent. Oil-Bear. Plants, 24 (3), 561–570.

https://doi.org/10.1080/0972060x.2021.1942232.

- 44) Sharma, PK., Singh, V., Ali, M., 2016. Chemical Composition and Antimicrobial Activity of Fresh Rhizome Essential Oil of Zingiber Officinale Roscoe. *Pharmacogn. j.*, 8 (3),185–190. https://doi.org/10.5530/pj.2016.3.3.
- 45) Shelepova, O. V., Olekhnovich, L. S., Konovalova, L. N., Khusnetdinova, T. I., Gulevich, A. A., Baranova, E. N., 2021. Assessment of Essential Oil Yield in Three Mint Species in the Climatic Conditions of Central Russia. *Agronomy Research 19* (4) 1970–1980. https://doi.org/10.15159/ar.21.113.
- 46) Singh, A., Kumar, A., 2017. Cultivation of Citronella (Cymbopogon Winterianus) and Evaluation of Its Essential Oil, Yield, and Chemical Composition in Kannauj Region. *International Journal of Biotechnology and Biochemistry*, *13* (2),139–146. https://www.ripublication.com/Volume/ijbbv13n2.htm
- 47) Tajuddin, S. N., Yusoff, M. M., 2010. Chemical Composition of Volatile Oils of Aquilaria Malaccensis (Thymelaeaceae) from Malaysia. *Nat. Prod. Commun.*, 5 (12), 1965–1968. https://doi.org/10.1177/1934578x1000501229.
- 48) Telci, I., Toncer, O. G., Sahbaz, N., 2006. Yield, Essential Oil Content, and Composition of Coriandrum Sativum Varieties (Var. Vulgare Alef and Var. Microcarpum DC.) Grown in Two Different Locations. J. Essent. Oil Res., 18 (2), 189– 193. https://doi.org/10.1080/10412905.2006.9699063.
- 49) Tisserand, R., Young, R., 2013. Essential Oil Safety: A Guide for Health Care Professionals (2nd edition). *Elsevier Health Sciences*, United Kingdom. 5-22. https://doi.org/10.1016/B978-0-443-06241-4.00002-3.
- 50) Vafadar-Yengeje, L., Amini, R., Nasab, A.D.M., 2019. Chemical Compositions and Yield of Essential Oil of Moldavian Balm (Dracocephalum Moldavica L.) in Intercropping with Faba Bean (Vicia Faba L.) under Different Fertilizers Application. *J. Clean. Prod.*, 239 (Article No.118033), 1-10. https://doi.org/10.1016/j.jclepro.2019.118033.
- 51) Varughese, T., Unnikrishnan, P. K., Deepak, M., Balachandran, I., Rema Shree, A. B., 2016. Chemical Composition of the Essential Oils from Stem, Root, Fruit, and Leaf of

Piper longum Linn. J. Essent. Oil-Bear. Plants, 19 (1), 52–58. https://doi.org/10.1080/0972060x.2015.1119065.

- 52) Verma, R. S., Padalia, R. C., Chauhan, A., Upadhyay, R. K., Singh, V. R., 2020. Productivity and essential oil composition of rosemary (Rosmarinus officinalis L.) harvested at different growth stages under the subtropical region of north India. *J. Essent. Oil Res 32* (2), 144–149. https://doi.org/10.1080/10412905.2019.1684391.
- 53) Verma, R. S., Verma, R. K., Chauhan, A., Yadav, A. K., 2011. Seasonal Variation in Essential Oil Content and Composition of Thyme, Thymus Serpyllum L. Cultivated in Uttarakhand Hills. *Indian J. Pharm. Sci.* 73 (2), 233–235. https://doi.org/10.4103/0250-474x.91570.
- 54) Viktorová, J.; Stupák, M.; Rehorová, K.; Dobiasová, S.; Hoang, L.; Hajšlová, J.; Van Thanh, T.; Van Tri, L.; Van Tuan, N.; Ruml, T., 2020. Lemon Grass Essential Oil does not Modulate Cancer Cells Multidrug Resistance by Citral—Its Dominant and Strongly Antimicrobial Compound. Foods, 9(5), Article no. 585. https://doi.org/10.3390/foods9050585
- 55) Zheljazkov, V. D., Cantrell, C. L., Astatkie, T., Cannon, J. B., 2011. Lemongrass Productivity, Oil Content, and Composition as a Function of Nitrogen, Sulfur, and Harvest Time. *Agron. J.*, *103* (3), 805–812. https://doi.org/10.2134/agronj2010.0446.
- 56) Zheljazkov, V. D., Cantrell, C. L., Tekwani, B., Khan, S. I., 2008. Content, Composition, and Bioactivity of the Essential Oils of Three Basil Genotypes as a Function of Harvesting. *J. Agric. Food Chem.*, 56 (2), 380–385. https://doi.org/10.1021/jf0725629.
- 57) Zoghbi, M. das G. B., Andrade, E. H. A., Oliveira, J., Carreira, L. M. M., Guilhon, G. M. S. P., 2006. Yield and Chemical Composition of the Essential Oil of the Stems and Rhizomes of Cyperus articulatus L. Cultivated in the State of Pará, Brazil. *J. Essent. Oil Res.*, 18 (1), 10–12. https://doi.org/10.1080/10412905.2006.9699371.