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 Abstract 

Let 𝐺 be a simple graph of order 𝑛. The domsaturation polynomial of a graph 𝐺 of order 𝑛 is the 

polynomial 𝐷𝑠(𝐺, 𝑥) = ∑  𝑑(𝐺, 𝑖)𝑛
𝑖=𝑑𝑠 𝑥𝑖 , where 𝑑(𝐺, 𝑖) is the number of dominating sets of 𝐺 of 

size 𝑖. The domsaturation number of 𝐺 is the least positive integer 𝑘 such that every vertex of 𝐺 

lies in a dominating set of cardinality 𝑘. In this paper, we obtain the domination polynomial and 

minimal domination polynomial of a graph. For any positive integer 𝑚 ≥ 1 and 𝑝 ≥ 2, there exists 

a domsaturation polynomial such that 𝑃(𝑥) = ∑ {∑ 𝑚𝐶𝑗[(𝑚 − 𝑗)𝑝𝐶𝑖−𝑗(𝑝−1)]𝑚
𝑗=0 }𝑚𝑝

𝑖=1  𝑥 𝑖+𝑚. We 

also characterize certain graphs for which 𝑑𝑠(𝐺) is of class 1 and class 2. For any tree 𝑇 with 𝑛 ≥

2, there exists a vertex 𝑣 ∈ 𝑉 such that 𝑑𝑠(𝑇 − 𝑣) = 𝑑𝑠(𝑇). Also, we study the domination 

polynomial and roots for a zero-divisor graph. 
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Introduction 

By a graph 𝐺 = (𝑉, 𝐸) we mean a finite, undirected graph without loops or multiple edges. 

Let 𝐺 = (𝑉, 𝐸) be a graph. A subset 𝑆 of 𝑉 is called a dominating set of 𝐺 if every vertex 𝑉\𝑆 is 

adjacent to at least one vertex in 𝑆. The domination number 𝛾 in 𝐺 is the minimum cardinality of 

a dominating set in 𝐺. Fundamentals of domination and several advanced topics are given in 

Haynes et.al. A dominating set with cardinality 𝛾(𝐺) is called a 𝛾-set. An 𝑖-subset of 𝑉(𝐺) is a 

subset of 𝑉(𝐺) of cardinality 𝑖. Let 𝒟(𝐺, 𝑖) be the family of dominating sets of 𝐺 which are 𝑖- 

subsets and let 𝑑(𝐺, 𝑖) = |𝒟(𝐺, 𝑖)|. The polynomial 𝐷(𝐺, 𝑥) = ∑ 𝑑(𝐺, 𝑖)𝑥𝑖|𝑉 (𝐺)|
𝑖=𝛾  is defined as 

domination polynomial of 𝐺. A root of 𝐷(𝐺, 𝑥) is called a domination root of 𝐺. For any vertex 𝑢 

of 𝐺, the eccentricity of 𝑢 is 𝑒(𝑢) = 𝑚𝑎𝑥{𝑑(𝑢, 𝑣);  𝑣 ∈ 𝑉}. The diameter 𝑑𝑖𝑎𝑚 𝐺 is defined as 

𝑑𝑖𝑎𝑚 𝐺 =  𝑚𝑎𝑥{𝑒(𝑣); 𝑣 ∈ 𝑉}. Acharya introduced the concept of domsaturation number 𝑑𝑠 of a 

graph. The least positive integer 𝑘 such that every vertex of 𝐺 lies in a dominating set of cardinality 

𝑘 is called the domsaturation number of 𝐺 and is denoted by 𝑑𝑠(𝐺). 

 

Definition 1.1. [7] A graph 𝐺 is said to be of class 1 or class 2 according as 𝑑𝑠 = 𝛾 or 𝛾 + 1. 

Definition 1.2. [9] A tree 𝑇 of order 3 or more is a caterpillar if the removal of its leaves produces 

a path. 

Notation 1.3. [2] A graph obtained by joining any number of isolated vertices to each pendant 

vertex of a graph 𝐺 is denoted by 𝐺(𝑆). 

Notation 1.4. [2] If 𝐺 is a graph with vertex set 𝑉 = {𝑢1,  𝑢2, . . . }, then the graph obtained by 

identifying one of the end vertices of 𝑛2 copies of 𝑃2, 𝑛3 copies of 𝑃3,... at 𝑢1, 𝑚2 copies of 𝑃2, 

𝑚3 copies of 𝑃3,... at 𝑢2,..` is denoted by 𝐺[𝑢1(𝑛2𝑃2, 𝑛3𝑃3, . . . ); 𝑢2(𝑚2𝑃2, 𝑚3𝑃3, . . . );  . . . ]. 

Theorem 1.5. [2] If 𝐺 is a tree, then 𝛾(𝐺) = 2 if and only if 𝐺 is either 𝑃2(𝑆) or 𝑃3(𝑆) or 𝑃4(𝑆). 

Theorem 1.6. [6] Let 𝑛 ≥ 2 be a natural number. The size of the smallest dominating set 

containing both end vertices of 𝑃𝑛 is  ⌈
𝑛+2 

3
⌉. Moreover, if 𝑛 ≥ 4 and ≢ 1(𝑚𝑜𝑑 3) , there are at 

least two dominating sets of size ⌈
𝑛+2 

3
⌉ containing both end vertices of 𝑃𝑛. 

Theorem 1.7. [6] Let 𝐺 be a connected graph with exactly two distinct domination roots. Then 

(𝐺, 𝑥) = 𝑥 𝑛 (𝑥 +  2)𝑛 , where 𝑛 is a natural number. Indeed 𝐺 = 𝐻 ∘ 𝐾1, for some graph 𝐻 of 

order 𝑛. 

Theorem 1.8. [7] Let 𝑇 be a caterpillar. Then 𝑇 is of class 1 if and only if every support is adjacent 

to exactly one pendant vertex and for any two consecutive supports 𝑢 and 𝑣, 𝑑(𝑢, 𝑣) ≡ 1(𝑚𝑜𝑑 3). 
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Theorem 1.9. [7] The path 𝑃𝑛 of order 𝑛 is of class 1 if and only if 𝑛 ≡ 1(𝑚𝑜𝑑 3).  

Theorem 1.10. [2] If 𝐺 is a tree, then 𝛾(𝐺) = 3 if and only if 𝐺 is either 

𝑃3[𝑢1(𝑘1𝑃2); 𝑢2(𝑘2𝑃2); 𝑢3(𝑘3𝑃2)] or 𝑃4[𝑢1(𝑘1𝑃2); 𝑢2(𝑘2𝑃2); 𝑢4(𝑘3𝑃2)] or 

𝑃5[𝑢1(𝑘1𝑃2); 𝑢5(𝑘2𝑃2)] or 𝑃5[𝑢1(𝑘1𝑃2); 𝑢2(𝑘2𝑃2)); 𝑢5(𝑘3𝑃2)] or 

𝑃5[𝑢1(𝑘1𝑃2); 𝑢3(𝑘2𝑃2); 𝑢5(𝑘3𝑃2)] or 𝑃6[𝑢1(𝑘1𝑃2); 𝑢6(𝑘2𝑃2)] or 

𝑃6[𝑢1(𝑘1𝑃2); 𝑢3(𝑘2𝑃2); 𝑢6(𝑘3𝑃2)] or 𝑃7[𝑢1(𝑘1𝑃2); 𝑢7(𝑘2𝑃2)] or 

𝑃7[𝑢1(𝑘1𝑃2); 𝑢4(𝑘2𝑃2); 𝑢7(𝑘3𝑃2)] or any one of the graphs given in the below figure 

 

 

                                    

                                          𝑇1                                                         𝑇2 
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                                                                                           𝑇3 

    

Figure 1: Trees satisfying 𝛾(𝐺) = 3 

 

 

 

 

 Main Result                                                                                                                                

Theorem 2.1. For any positive integer 𝑚 ≥ 1 and 𝑝 ≥ 2, there exists a graph having 

polynomial such that 

𝑃(𝑥) = ∑ {∑ 𝑚𝐶𝑗[(𝑚 − 𝑗)𝑝𝐶𝑖−𝑗(𝑝−1)]𝑚
𝑗=0 }𝑚𝑝

𝑖=0  𝑥 𝑖+𝑚                                   (1) 

Proof. Let 𝑃 = (𝑣1, 𝑣2, . . . ,  𝑣𝑚) be a path on 𝑚 vertices. Attach the pendant vertices 

𝑢1, 𝑢2, . . . ,  𝑢𝑝, (𝑝 ≥ 2) to each 𝑣𝑖, 𝑖 = 1,2, . . . , 𝑚. For the resulting graph, we have 𝛾(𝐺) = 𝑚, 

which is minimal and the 𝛾-set is unique. Since the 𝛾-set is unique, the co-efficient of 𝑥𝑚 is 1. 

Case(i). 𝑚 = 1, 𝑝 ≥ 2. Therefore 𝛾(𝐺) = 1. Now, we find the co-efficient of 𝑥𝑚+𝑖. For 𝑖 = 1, 

{𝑣1} ∪ {𝑢𝑎}, 1 ≤ 𝑎 ≤  𝑝 is a dominating set of cardinality 𝑚 + 1. There are 𝑝𝐶1 choices. 

Therefore the number of dominating sets of cardinality 2 is 𝑝𝐶1. Proceeding like this, for                

𝑖 = 𝑚𝑝 − 1, there are 𝑝𝐶𝑝−1 choices. Also we can remove the support vertex 𝑣1 and add all 

the pendant vertices attached to that 𝑣1. In this case, the number of dominating sets of 

cardinality 𝑝 is 𝑝𝐶𝑝−1 + 1. For 𝑖 = 𝑚𝑝, the one and only one choice is to choose all the 

vertices. Therefore 𝑃(𝑥) = 𝑥 + 𝑝𝐶1𝑥2 + 𝑝𝐶2𝑥3+ . . . + [𝑝𝐶𝑝−1 + 1]𝑥𝑝 + 𝑥𝑝+1. For 𝑚 = 1, 

(1) equation contains only the first two terms and the remaining terms gets eliminated, because  

𝑚𝐶𝑗 [(𝑚 − 𝑗)𝑝𝐶𝑖−𝑗(𝑝−1)] = 1𝐶𝑗 [(1 −  𝑗)𝑝𝐶𝑖−𝑗(𝑝−1)] = 0, 𝑗 =  2, 3, . . . , 𝑚; 𝑖 = 0, 1, . . . , 𝑚𝑝. 

Therefore, (1) reduces to  

𝑃(𝑥) = ∑{𝑝𝐶𝑖 + 1𝐶1[0𝐶𝑖−(𝑝−1)]}

𝑝

𝑖=0

𝑥 𝑖+1, 𝑝 ≥ 2 

Now, 0𝐶𝑖−(𝑝−1) = 1, for 𝑖 = 𝑝 − 1. Therefore  

𝑃(𝑥) = ∑ {∑ 𝑚𝐶𝑗[(𝑚 − 𝑗)𝑝𝐶𝑖−𝑗(𝑝−1)]𝑚
𝑗=0 }𝑚𝑝

𝑖=0  𝑥 𝑖+𝑚. 

Case(ii). 𝑚 > 1 and 𝑝 ≥ 2. 

Consider the dominating set of cardinality 𝑚 + 1. 

Subcase(i). 𝑝 = 2. Here {𝑣1, 𝑣2, . . . ,  𝑣𝑚} ∪ {𝑢𝑎}, 1 ≤ 𝑎 ≤ 𝑚𝑝 is a dominating set of 

cardinality 𝑚 + 1. In this case, the are 𝑚𝑝𝐶1 choices. Since 𝑝 = 2, {𝑣1, 𝑣2, . . . ,  𝑣𝑚} − {𝑣𝑖} ∪

{𝑢𝑎, 𝑢𝑏}, where 𝑢𝑎 and 𝑢𝑏 are the pendant vertices of same 𝑣𝑖, 1 ≤ 𝑖 ≤  𝑚, 1 ≤ 𝑎 ≤ 𝑚𝑝 and 

1 ≤ 𝑏 ≤ 𝑚𝑝. Therefore there are 𝑚𝐶1 choices. Hence the number of dominating sets of 

cardinality 𝑚 + 1 is 𝑚𝑝𝐶1 + 𝑚 for 𝑝 = 2. 
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𝑝 pendants 

Figure 2: Graph respresenting 𝑚 > 1 and 𝑝 ≥ 2 

Subcase(ii). 𝑝 > 2. The only way of getting the dominating set of cardinality 𝑚 + 1 is 

{{𝑣1, 𝑣2, . . . ,  𝑣𝑚} ∪ {𝑢𝑎}, 1 ≤ 𝑎 ≤ 𝑚𝑝 for 𝑝 > 2. Otherwise at least one non-dominated 

pendant vertex will be found.  

Therefore the number of dominating sets of cardinality 𝑚 + 1 is {
 𝑚𝑝𝐶1 + 𝑚𝐶1  𝑓𝑜𝑟 𝑝 = 2   

𝑚𝑝𝐶1              𝑓𝑜𝑟 𝑝 > 2
. 

For 𝑖 = 1, 𝑚 > 1 and 𝑝 ≥ 2, the co-efficient of 𝑥𝑚+1 in (1) reduces to  

𝑚𝑝𝐶1 + 𝑚𝐶1[(𝑚 −  1)𝑝𝐶1−(𝑝−1)]                                      (2) 

The remaining terms will become zero, because 𝑖 − 𝑗(𝑝 − 1) < 0, for 𝑗 ≥ 2. 

Therefore (2) becomes {
 𝑚𝑝𝐶1 + 𝑚𝐶1  𝑓𝑜𝑟 𝑝 = 2   

𝑚𝑝𝐶1              𝑓𝑜𝑟 𝑝 > 2
. 

Now, we consider the dominating set of cardinality 𝑚 + 2. 

Subcase(i). p=3. Here {𝑣1, 𝑣2, . . . ,  𝑣𝑚} ∪ {𝑢𝑎, 𝑢𝑏}, 𝑎 ≠ 𝑏, 1 ≤ 𝑎, 𝑏 ≤ 𝑚𝑝 is a dominating set 

of cardinality 𝑚 + 2. Therefore there are 𝑚𝑝𝐶2 choices. Since 𝑝 = 3, we remove any one of 

the support vertex and add pendant vertices attached to that 𝑣𝑖 , otherwise at least one pendant 

vertex of 𝑣𝑖 is not dominated. {𝑣1, 𝑣2, . . . ,  𝑣𝑚} −  {𝑣𝑖} ∪ {𝑢𝑎, 𝑢𝑏 , 𝑢𝑐}, 1 ≤ 𝑖 ≤ 𝑚 , 𝑎 ≠ 𝑏 ≠ 𝑐, 

and 1 ≤ 𝑎, 𝑏, 𝑐 ≤ 𝑚𝑝 is also a dominating set of cardinality 𝑚 + 2. There are 𝑚𝐶1 choices. 

Therefore we get 𝑚𝑝𝐶2 + 𝑚𝐶1 dominating sets of cardinality 𝑚 + 2 for 𝑝 = 3. 

Subcase(ii). 𝑝 > 3. The only way to choose the dominating sets of cardinality 𝑚 + 2 is 

{𝑣1, 𝑣2, . . . ,  𝑣𝑚}  ∪ {𝑢𝑎, 𝑢𝑏}, 𝑎 ≠ 𝑏, 1 ≤ 𝑎, 𝑏 ≤ 𝑚𝑝, for 𝑝 > 3. Otherwise at least one non-

dominated pendant vertex will be found. Therefore the number of dominating sets of 

cardinality 𝑚 + 2 is 𝑚𝑝𝐶2. 

Subcase(iii). 𝑝 < 3, that is 𝑝 = 2. Clearly {𝑣1, 𝑣2, . . . ,  𝑣𝑚}  ∪ {𝑢𝑎, 𝑢𝑏} is a dominating set of 

cardinality m + 2. Then we remove any one of the support vertex 𝑣𝑖 and add two pendant 

vertices which are attached to that 𝑣𝑖 and one pendant vertex from different 𝑣𝑖 , 𝑖 = 1,2, . . . , 𝑚. 

In this case, we can choose 𝑚𝐶1[(𝑚 − 1)𝑝𝐶1] ways. It is also possible to remove two support 

vertices and add four pendant vertices, that is {𝑣1, 𝑣2, . . . ,  𝑣𝑚} −  {𝑣𝑖 , 𝑣𝑗} ∪ {𝑢𝑎, 𝑢𝑏 , 𝑢𝑐 , 𝑢𝑑},  

𝑖 ≠ 𝑗, 𝑎 ≠ 𝑏 ≠ 𝑐 ≠ 𝑑, 1 ≤ 𝑖, 𝑗 ≤ 𝑚, 1 ≤ 𝑎, 𝑏, 𝑐, 𝑑 ≤ 𝑚𝑝, where 𝑢𝑎 and 𝑢𝑏 are attached to 

either 𝑣𝑖 or 𝑣𝑗  and 𝑢𝑐 and 𝑢𝑑 are attached to either 𝑣𝑖 or 𝑣𝑗 . Otherwise at least one non-

dominated pendant vertex will be found. In this case there are 𝑚𝐶2 choices. Therefore the 

number of dominating sets of cardnality 𝑚 + 2 is 𝑚𝑝𝐶2 + 𝑚𝐶1[(𝑚 − 1)𝑝𝐶1] + 𝑚𝐶2. From 

the above cases, we get  
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The number of dominating sets of cardinality  

𝑚 + 2 = {

 𝑚𝑝𝐶2 + 𝑚𝐶1                                                    𝑓𝑜𝑟 𝑝 = 3   
𝑚𝑝𝐶2                                                                𝑓𝑜𝑟 𝑝 > 3

𝑚𝑝𝐶2 + 𝑚𝐶1[(𝑚 − 1)𝑝𝐶1] + 𝑚𝐶2            𝑓𝑜𝑟 𝑝 < 3
. 

For 𝑖 = 2, 𝑚 > 1 and 𝑝 ≥ 3, the coefficient of 𝑥𝑚+2 in (1) reduces to  

𝑚𝑝𝐶2 + 𝑚𝐶1[(𝑚 − 1)𝑝𝐶2−(𝑝−1)] + 𝑚𝐶2[(𝑚 − 2)𝑝𝐶2−2(𝑝−1)]      (3) 

The remaining terms will become zero because 2 − 𝑗(𝑝 − 1) < 0, for 𝑗 > 3 and 𝑝 − 1 > 3.  

Therefore (3) becomes 𝑚 + 2 = {

 𝑚𝑝𝐶2 + 𝑚𝐶1                                                    𝑓𝑜𝑟 𝑝 = 3   
𝑚𝑝𝐶2                                                                𝑓𝑜𝑟 𝑝 > 3

𝑚𝑝𝐶2 + 𝑚𝐶1[(𝑚 − 1)𝑝𝐶1] + 𝑚𝐶2            𝑓𝑜𝑟 𝑝 < 3
. 

Continuing this way, now we consider the dominating set of cardinality 𝑚𝑝. Here 𝑖 = 𝑚(𝑝 −

1). Suppose all the vertices belongs to the dominating set and we add 𝑚(𝑝 − 1) pendant 

vertices. There are 𝑚𝑝𝐶𝑚(𝑝−1)) choices. Suppose, if we remove one support vertex then we 

must add all the pendant vertices which are attached to that support vertex and (𝑚 − 1)(𝑝 −

1) pendants from the remaining support vertices. In this case, there are 𝑚𝐶1[(𝑚 −

 1)𝑝𝐶(𝑚−1)(𝑝−1)] choices. Continuing the above process, it is possible to remove all the support 

vertices and add all the pendant vertices to get the dominating set of cardinality 𝑚𝑝. In this 

case there is only one choice. Therefore the number of dominating sets of cardinality 𝑚𝑝 is  

 

 

 

𝑚𝑝𝐶𝑚(𝑝−1)) + 𝑚𝐶1[(𝑚 −  1)𝑝𝐶(𝑚−1)(𝑝−1)] + 𝑚𝐶2[(𝑚 −  2)𝑝𝐶(𝑚−2)(𝑝−1)]+. . . +1. 

For 𝑖 = 𝑚(𝑝 − 1), 𝑚 ≥ 1 and 𝑝 ≥ 3, the co-efficient of 𝑥𝑚𝑝 in (1) becomes  

{∑ 𝑚𝐶𝑗
𝑚
𝑗=0 [(𝑚 − 𝑗)𝑝𝐶𝑖−𝑗(𝑝−𝑖)]} 𝑥𝑚𝑝 = {

𝑚𝑝𝐶𝑚(𝑝−1) + 𝑚𝐶1[(𝑚 − 1)𝑝𝐶(𝑚−1)(𝑝−1)]

                                                            + . . . +1
} 𝑥𝑚𝑝. 

Consider the dominating set of cardinality > 𝑚𝑝. Suppose all the support vertices belong to 

the dominating set then we have to add greater than 𝑚(𝑝 − 1) pendants to get a dominating set 

of cardinality > 𝑚𝑝. There are 𝑚𝑝𝐶𝑚(𝑝−1)+𝑗 choices, 𝑗 = 1, 2, . . . , 𝑚. We can remove one 

support and add the pendants attached to that support also we add greater than (𝑚 − 1)(𝑝 − 1) 

pendants fom the remaining supports to get a dominating set of cardinality > 𝑚𝑝. In this case, 

there are 𝑚𝐶1[(𝑚 −  1)𝑝𝐶(𝑚−1)(𝑝−1)+𝑗] choices,  𝑗 = 1, 2, . . . , 𝑚 − 1. Continuing in this way, 

we can remove 𝑚 − 1 supports and add the pendants attached to that support also we add 𝑝 −

1 pendants from the remaining support. In this case, there are 𝑚𝐶𝑚−1[𝑝𝐶 (𝑝−1)+𝑗] choices, 𝑗 =
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1, that is 𝑚 choices. Combining all the cases ,we get  

𝑃(𝑥) = ∑ {∑ 𝑚𝐶𝑗[(𝑚 − 𝑗)𝑝𝐶𝑖−𝑗(𝑝−1)]𝑚
𝑗=0 }𝑚𝑝

𝑖=0  𝑥 𝑖+𝑚.                                                                                      

■ 

Definition 2.2. The domsaturation polynomial of a graph 𝐺 of order 𝑛 is the polynomial 

𝐷𝑠(𝐺, 𝑥) = ∑  𝑑(𝐺, 𝑖)𝑛
𝑖=𝑑𝑠 𝑥𝑖 , where 𝑑(𝐺, 𝑖) is the number of dominating sets of 𝐺 of size 𝑖 

and 𝑑𝑠 is the domsaturation number of 𝐺. 

Theorem 2.3. For any positive integer 𝑚 ≥ 1 and 𝑝 ≥ 2, there exists a domsaturation 

polynomial such that 

𝑃(𝑥) = ∑ {∑ 𝑚𝐶𝑗[(𝑚 − 𝑗)𝑝𝐶𝑖−𝑗(𝑝−1)]

𝑚

𝑗=0

}

𝑚𝑝

𝑖=1

 𝑥 𝑖+𝑚. 

Proof. Let 𝑃 = 𝑣1𝑣2 . . . 𝑣𝑚 be a path on 𝑚 vertices. Attach the pendant vertices 

𝑢1, 𝑢2, . . . ,  𝑢𝑝, (𝑝 ≥ 2) to each 𝑣𝑖, 𝑖 = 1,2, . . . , 𝑚. For the resulting graph, the support vertices 

belongs to the dominating set but the pendant vertices does not lie in a dominating set of 

cardinality 𝛾. Therefore 𝑑𝑠 = 𝑚 + 1. The remaining part follows from the above theorem.           

■ 

Theorem 2.4. Let 𝑇 be a caterpillar graph, such that each vertex in 𝑃𝑛 has atleast one pendant 

vertex then 

1. 𝑑𝑠 + 𝑑𝑠̅̅ ̅ = 𝑚 + 2 if 𝑇 is of class 1.  

2. 𝑑𝑠 + 𝑑𝑠̅̅ ̅ = 𝑚 + 3 if 𝑇 is of class 2. 

Proof. Let 𝑚 be the number of support vertices, then the cardinality of the minimal dominating 

set will be 𝑚, that is 𝛾 = 𝑚. 

1. Suppose 𝑇 is of class 1, then 𝑑𝑠 = 𝛾 = 𝑚. For 𝑇, 𝑑𝑠̅̅ ̅ = 2. Therefore, 𝑑𝑠 + 𝑑𝑠̅̅ ̅ = 𝑚 + 2. 

2. Suppose 𝑇 is of class 2 𝑑𝑠 = 𝛾 + 1 = 𝑚 + 1. Therefore, 𝑑𝑠 + 𝑑𝑠̅̅ ̅ = 𝑚 + 3.                            ■  

Theorem 2.5. Let 𝑛 ≥  2 be a natural number.Then the domsaturation number of 𝑃𝑛 containing 

both end vertices of 𝑃𝑛 is  ⌈
𝑛+4 

3
⌉.   

Proof. We apply induction on 𝑛. For 𝑛 = 2,3,4 the assertion is trivial. Assume that 𝑥 ∈ 𝑉(𝑃𝑛), 

𝑑𝑒𝑔(𝑥) = 2, 𝑁(𝑥) = {𝑦, 𝑧} and 𝑑𝑒𝑔(𝑦) = 𝑑𝑒𝑔(𝑧) = 2. Let 𝑁(𝑦) = {𝑥, 𝑎} and 𝑁(𝑧) =

{𝑥, 𝑏}. Remove 𝑥, 𝑦, 𝑧 and join 𝑎 and 𝑏. Let 𝑘 be the domsaturation number of 𝑃𝑛. Let 𝛾𝑘-set 

be a dominating set of cardinality 𝑘. By induction hypothesis, the size of the smallest 

dominating set of cardinality 𝑘 containing end vertices of 𝑃𝑛−3 is ⌈
𝑛+1 

3
⌉. If 𝐷𝑆 is a 𝛾𝑘-set for 

𝑃𝑛−3 of size ⌈
𝑛+1 

3
⌉ containing end vertices and 𝑎 ∈ 𝐷𝑆, then 𝐷𝑆 ∪ {𝑧} is a 𝛾𝑘-set for 𝑃𝑛 of size 
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⌈
𝑛+4 

3
⌉. If DS is a 𝛾𝑘-set for 𝑃𝑛−3 of size ⌈

𝑛+1 

3
⌉ containing end vertices and 𝑏 ∈ 𝐷𝑆, then 𝐷𝑆 ∪

{𝑦} is a 𝛾𝑘-set for 𝑃𝑛 of size ⌈
𝑛+4 

3
⌉.  If 𝑎, 𝑏 ∉ 𝐷𝑆, then 𝐷𝑆 ∪ {𝑥} is a 𝛾𝑘-set for 𝑃𝑛 of size ⌈

𝑛+4 

3
⌉. 

Now, suppose that 𝑃𝑛 has a 𝛾𝑘-set, say 𝐷𝑆 of size less than ⌈
𝑛+4 

3
⌉ containing both end vertices 

of 𝑃𝑛. It is not hard to see that there exists a 𝑣 ∈ 𝐷𝑆 such that 𝑑𝑒𝑔(𝑣) = 2 and 𝑁(𝑣) ∩ 𝐷𝑆 =

∅. Consider 𝐷𝑆\𝑁[𝑣] and join two pendant vertices of two components 𝐷𝑆\𝑁[𝑣] to obtain a 

path of order 𝑛 − 3. This path has a 𝛾𝑘-set of size less than ⌈
𝑛+1 

3
⌉ containing end vertices of 

𝑃𝑛−3, a contradiction.                                   ■ 

 

Theorem 2.6. For any tree 𝑇 with 𝑛 ≥ 2, there exists a vertex 𝑣 ∈ 𝑉 such that                              

𝑑𝑠(𝑇 − 𝑣) = 𝑑𝑠(𝑇).  

Proof. Clearly, the result is true if 𝑇 = 𝐾2. Assume 𝑇 has at least one vertex 𝑣, with 𝑑𝑒𝑔(𝑣) ≥

2 that is adjacent to at least one end vertex and atmost one non end vertex. If 𝑣 is adjacent to 

two or more end vertices 𝑢1 and 𝑢2, then 𝑣 is in every 𝛾-set for 𝑇 but the pendants does not 

belong to any 𝛾-set. In this case 𝑑𝑠(𝑇 − 𝑢1) = 𝑑𝑠(𝑇). If not, then 𝑣 is adjacent to one end 

vertex 𝑢 and 𝑑𝑒𝑔(𝑣) = 2. Let 𝑇′ = 𝑇 − 𝑣 − 𝑢. For any graph 𝐺, if 𝑑𝑒𝑔(𝑢) = 1, then 𝑑𝑠(𝐺 −

 𝑢)  ≤  𝑑𝑠(𝐺). Hence 𝑑𝑠(𝑇′) ≤ 𝑑𝑠(𝑇 − 𝑢) ≤ 𝑑𝑠(𝑇). However, 𝑑𝑠(𝑇′) ≥ 𝑑𝑠(𝑇) − 1. If 

𝑑𝑠(𝑇′) = 𝑑𝑠(𝑇) − 1, then 𝑑𝑠(𝑇) = 𝑑𝑠(𝑇 − 𝑣). Otherwise, 𝑑𝑠(𝑇′) = 𝑑𝑠(𝑇) = 𝑑𝑠(𝑇 − 𝑢).                                          

■ 

Proposition 2.7. If each vertex in the path 𝑃𝑛 is attached to the wounded spider by subdividing 

𝑡 − 1 edges, the 𝛾 = 𝑑𝑠 = 𝛤. 

Proposition 2.8. Let 𝐺 be a non complete graph of order 𝑛, then 
𝑛

1+∆
= 𝑑𝑠(𝐺) if and only if 

∆(𝐺) = 𝑛 − 1.  

 

 

 

 

Theorem 2.9. If 𝐺 is a tree, then 𝑑𝑠(𝐺) = 3 if and only if 𝐺 is either 𝑃2(𝑆) with at least one 

support has more than one pendant or 𝑃3(𝑆) or 𝑃4(𝑆)or any one of the graphs given in the 

below figure. 

                                     𝑇1                                                                 𝑇2 
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Figure 3: Trees satisfying 𝑑𝑠(𝐺) = 3 

Proof. We shall prove this theorem by 2 cases. 

Case(i). 𝐺 is of class 1, then 𝛾(𝐺) = 𝑑𝑠(𝐺). It is enough to show that 𝛾(𝐺) = 3 and 𝐺 is of 

class 1. By theorem 1.8, 𝐺 ≅ 𝑇1. Also the path 𝑃7 is of class 1, then by theorem 1.9, 𝐺 ≅ 𝑇2. 

Otherwise, from theorem 1.10, a non-pendant vertex which is adjacent to support vertex does 

not belong to any 𝛾-set. 

Case(ii). G is of class 2, then 𝑑𝑠(𝐺) = 𝛾(𝐺) + 1. By theorem 1.5, 𝐺 ≅

𝑃3(𝑆) 𝑜𝑟 𝑃3(𝑆) 𝑜𝑟 𝑃2(𝑆) with at least one support has more than one pendant.                                                                      

■ 

Theorem 2.10. If 𝐺 is a tree, then 𝑑𝑠(𝐺) = 4 if and only if 𝐺 is either 

𝑃3[𝑢1(𝑘1𝑃2); 𝑢2(𝑘2𝑃2); 𝑢3(𝑘3𝑃2)], atleast one 𝑘𝑖 ≥ 2, 1 ≤ 𝑖 ≤ 3 or 

𝑃4[𝑢1(𝑘1𝑃2); 𝑢2(𝑘2𝑃2); 𝑢4(𝑘3𝑃2)] or 𝑃5[𝑢1(𝑘1𝑃2); 𝑢5(𝑘2𝑃2)] atleast one 𝑘𝑖 ≥ 2, 1 ≤ 𝑖 ≤ 2 

or 𝑃5[𝑢1(𝑘1𝑃2); 𝑢2(𝑘2𝑃2); 𝑢5(𝑘3𝑃2)] or 𝑃5[𝑢1(𝑘1𝑃2); 𝑢3(𝑘2𝑃2); 𝑢5(𝑘3𝑃2)] or 

𝑃6[𝑢1(𝑘1𝑃2); 𝑢6(𝑘2𝑃2)] or 𝑃6[𝑢1(𝑘1𝑃2); 𝑢3(𝑘2𝑃2); 𝑢6(𝑘3𝑃2)] or 𝑃7[𝑢1(𝑘1𝑃2); 𝑢7(𝑘2𝑃2)] or 

𝑃7[𝑢1(𝑘1𝑃2); 𝑢4(𝑘2𝑃2); 𝑢7(𝑘3𝑃2)] or any one of the graphs given in the below figure. 

 

 
 

  
                                             𝑇1                                            𝑇2 

 

       𝑇3          𝑇4   

 

𝑇5   

Figure 4: Trees satisfying 𝑑𝑠(𝐺) = 4 

 

Proof. The proof follows from the above theorem.                                                                          ■  

Problem 2.11. Characterize graphs for which 𝑑𝑠 = 5. 

 

2 Minimal Dominating Polynomial 
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Definition 3.1. A graph 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) has 𝑉(𝐺) as the vertex set and 𝐸(𝐺) as the edge 

set. A subset 𝑆 ⊂ 𝑉 (𝐺) is a dominating set of 𝐺, if every vertex in 𝑉(𝐺) − 𝑆 is adjacent to 

some vertex in 𝑆. 𝑆 is said to be a minimal dominating set if 𝑆 − {𝑢} is not a dominating set 

for any 𝑢 ∈ 𝑆. 

Definition 3.2. The minimal dominating polynomial of a graph 𝐺 of order 𝑛 is the polynomial 

𝐷(𝐺, 𝑥) = ∑  𝑑(𝐺, 𝑖)Γ
𝑖=𝛾 𝑥𝑖, where 𝑑(𝐺, 𝑖) is the cardinality of the minimal dominating sets of 

𝐺 of size 𝑖 and 𝛾 is the minimum cardinality of a minimal dominating set and 𝛤 is the maximum 

cardinality of a minimal dominating set. 

Theorem 3.3. For any positive integer 𝑚 ≥ 1 and 𝑝 = 2, there exists a graph having minimal 

dominating polynomial 𝑥𝑚(𝑥 + 1)𝑚. 

Proof. Let 𝑃 = 𝑣1𝑣2 . . . 𝑣𝑚 be a path on 𝑚 vertices. Attach 2 copies of 𝐾1 to each 

𝑣1, 𝑣2 , . . . , 𝑣𝑚. For 𝑚 =1, the resulting graph is 𝐾1,2. Since all the support vertices form a 

minimal dominating set, it is minimum. The minimal dominating set of cardinality 𝑚 is 1. 

Now, for the minimal dominating set of cardinality 𝑚 + 1, we can remove one support vertex 

and add the pendants attached to that support. In this case, there are 𝑚𝐶1 choices. For the 

minimal dominating set of cardinality 𝑚 + 2, we can remove two supports and add the 

pendants attached to that support. In this case, there are 𝑚𝐶2 choices. Proceeding like this, the 

minimal dominating set of cardinality 2𝑚 is 1(that is all the pendants). Therefore, the minimal 

dominating polynomial is  

𝑥𝑚 + 𝑚𝐶1𝑥𝑚+1 + 𝑚𝐶2𝑥𝑚+1  + ⋯ + 𝑥𝑚+𝑚 = 𝑥𝑚(1 + 𝑚𝐶1𝑥 + 𝑚𝐶2𝑥2  + ⋯ + 𝑥𝑚) 

                                                                                             = 𝑥𝑚(𝑥 + 1)𝑚.                                                  ■ 

Problem 3.4. Characterize roots for the polynomial 𝑥𝑚(𝑥𝑝−1 + 1)𝑚. 

3 Domination Polynomial for Zero-Divisor Graph 

Definition 4.1. Let 𝑅 be a commutative ring(with 1) and let 𝑍(𝑅) be its set of zero-divisors. 

An element 𝑎 ∈ 𝑅 is called a zero-divisor if there exists a non-zero element 𝑏 ∈ 𝑅 such that         

𝑎. 𝑏 = 0. Let 𝑅 be a commutative ring with non-zero identity and let 𝑍(𝑅) be its sets of zero-

divisors. The zero-divisor graph of 𝑅 denoted by 𝛤(𝑅), is the (undirected) graph with vertices 

𝑍(𝑅)∗ = 𝑍(𝑅) − 0, the non-zero zero-divisors of 𝑅, and for distinct 𝑥, 𝑦 ∈ 𝑍(𝑅)∗ , the vertices 

𝑥 and 𝑦 are adjacent if and only if 𝑥𝑦 = 0. 

Notation 4.2. The roots of the domination polynomial of a zero-divisor graphs is denoted by 

𝑍(𝐷(𝛤(𝑅), 𝑥). 

 

 

Proposition 4.3. For any prime 𝑝, 𝑝 ≥ 3, there exists a 𝛤(𝑍2𝑝) with polynomial  
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𝑃(𝛤(𝑍2𝑝), 𝑥) = 𝑥𝑝 + 𝑝𝑥𝑝−1 + (𝑝 −  1)𝐶𝑝−3𝑥𝑝−2 + (𝑝 −  1)𝐶𝑝−4𝑥𝑝−3  +  … +

     (𝑝 − 1)𝐶𝑝+1

2

 𝑥𝑝−
𝑝−3

2 + (𝑝 − 1)𝐶𝑝−1

2

𝑥𝑝−
𝑝−1

2 + (𝑝 − 1)𝐶𝑝−3

2

𝑥𝑝−
𝑝+1

2 + . . . + (𝑝 − 1)𝐶1𝑥 2 + 𝑥. 

Theorem 4.4. Let 𝛤(𝑅) be a connected zero-divisor graph.Then 𝑍(𝐷(𝛤(𝑅), 𝑥)) = {0, −2} if 

and only if 𝛤(𝑅) ≅  𝛤(𝑍9). 

Proof. Sine 0 is a domination root with multiplicity 𝛾(𝛤(𝑅)), for every graph 𝛤(𝑅) and 

𝐷(𝛤(𝑅), 𝑥) has two distinct roots, we have D(𝛤(𝑅), 𝑥) = 𝑥𝑖(𝑥 +  𝑎)𝑚−𝑖 , for some 𝑖 ∈ 𝑁 and 

𝑎 > 0, where 𝑚 = |𝑉 (𝐷(𝛤(𝑅)|. By theorem 1.7, we observe that 𝛤(𝑍9) is the only zero-

divisor graph having the polynomial 𝑥(𝑥 + 2). Therefore 𝛤(𝑅) ≅  𝛤(𝑍9). Converse can be 

easily verified. 

                                                                                                                                            ■                                                                                               
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