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Abstract: The design of an effective bio-inspired deep learning multimodal technique for 

identifying gait components from real-time video samples is presented in this paper. For 

robust modelling of temporal dependencies in gait components, the suggested method 

combines two well-known Recurrent Neural Network (RNN) models, Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU). In order to achieve higher performance 

levels, the neural network parameters are also optimized using an Elephant Herding 

Optimizer which assists in improving classification accuracy levels. When modelling time- 

series data, the individual models LSTM and GRU have been used extensively, but their 

fusion has not been thoroughly studied & applied to real-time scenarios. In order to capitalize 

on the advantages of both models while addressing their flaws, we suggest combining LSTM 

and GRU in this paper. While the GRU model is excellent at modelling short-term 

dependencies, the LSTM model is better at capturing long-term dependencies. In real-time 

situations like posture and gait analysis, where precise identification of gait components is 

essential for identification of gait-related components, the proposed technique has many 

practical applications. On a number of datasets, including multi-camera and multimodal 

datasets, the accuracy, precision, and recall of the proposed technique have been assessed for 

real-time scenarios. On the evaluated datasets, the proposed technique achieves accuracy of 

98.5%, precision of 97.4%, and recall of 98.3%, proving its effectiveness and superiority to 

existing techniques. In conclusion, the suggested method outperforms existing methods in 

efficiently and effectively identifying gait components from real-time video samples. Its use 

in real-world scenarios makes it an invaluable tool for posture and gait analysis, which can 

help medical & other professionals identify and track gait components. 

Keywords: Recurrent Neural Networks, Fusion, LSTM, GRU, Elephant Herding 

Optimizer, Gait, Scenarios 
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1. Introduction 

Human gait analysis is a crucial area of 

medical research that has attracted a lot of 

attention lately. In order to diagnose and 

track gait-related disorders, gait analysis 

entails   the   study   of  human movement 

patterns, including the identification of key 

gait elements like stride length, step width, 

and swing time. Accurate gait component 

identification  can    help   healthcare 

professionals   create       patient-specific 

treatment   plans   by    illuminating the 

biomechanics of human movements [1, 2, 

3]. With the availability of large datasets 

and improvements in computing power, 

deep learning techniques have shown great 

promise in gait analysis. In the field of 

machine learning, recurrent neural networks 

(RNNs) are frequently    used  to model 

sequential data, including time-series data 

like gait components. Two common RNN 

variants,  Long   Short-Term    Memory 

(LSTM) and Gated Recurrent Unit (GRU), 

have excelled at modelling long and short- 

term dependencies via Coupled Bilinear 

Discriminant Projections (CBDP) [4, 5, 6]. 

Individual models do have some advantages 

and disadvantages,  so    their  ability   to 

accurately  identify  gait    components   is 

constrained. Therefore, a combination of 

LSTM and GRU can take advantage of each 

model's advantages  to    get around  its 

weaknesses   and  perform   better   at 

identifying gait components. 

The identification of gait components from 

real-time video samples using an effective 

bio-inspired deep learning multimodal 

technique is what we propose in this paper. 

To model the temporal dependencies in gait 

components, the suggested method 

combines LSTM and GRU. The neural 

network parameters are also optimised using 

an Elephant Herding Optimizer, which has 

been shown to perform better than other 

optimisation methods. 

In real-time situations like posture and gait 

analysis, where precise identification of gait 

components is essential for monitoring and 

diagnosing gait-related disorders, the 

proposed technique has many practical 

applications. On a number of datasets, 

including multi-camera and multimodal 

datasets, the accuracy, precision, and recall 

of the proposed technique have been 

assessed for different scenarios. 
 

2. Empirical review of different Gait 

analysis techniques 
 

The identification of gait components is a 

difficult issue in the healthcare industry. To 

solve this issue, a number of strategies have 

been put forth, including the use of 

computer vision, deep learning, and Deep 

Neural Networks (DNN) in machine 

learning operations [7, 8, 9]. Recurrent 

Neural Networks (RNNs) are a popular 

choice for modelling sequential data, such 

as gait components, and have recently 

demonstrated great promise in gait analysis. 

Gait analysis tasks like predicting gait 

parameters, gait classification, and gait 

event detection have all been completed 

successfully using RNN technology sets 

[10, 11, 12]. Due to their advantages and 

disadvantages, individual RNN models can 

only perform so well when used under real- 

time scenarios.Two well-liked RNN 

variants that have excelled at simulating 

long- and short-term dependencies, 

respectively, are LSTM and GRU. 

Numerous studies have demonstrated that 

the combination of the LSTM and GRU 

models can take advantage of each model's 

advantages while overcoming its 

weaknesses, leading to improved 

performance across a range of applications 

[13, 14, 15]. For instance, a combination of 

LSTM and GRU was employed in a study in 

[16, 17, 18] to forecast the recognition of 

human activity from smartphone sensor 

data. The proposed method outperformed 

several existing methods with an accuracy 

of 96.5%. Similar to this, a fusion of LSTM 

and GRU was used to predict hand gesture 

recognition from EMG signals via Regional 

LSTM (RLSTM) in a study in [19, 20], 

achieving an accuracy of 92.7% for real- 

time use cases. 
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Deep learning model performance is greatly 

influenced by optimisation algorithms. 

Numerous optimisation methods, including 

Adam, RMSprop, and Gradient Descent, 

have been suggested for real-time use cases. 

These methods do have some drawbacks, 

though, including slow convergence, local 

optima convergence, and high 

computational costs [21, 22, 23]. Elephant 

Herding Optimizer (EHO), a recent 

optimisation technique inspired by elephant 

herd behaviour, has recently been proposed. 

In a number of applications, including deep 

learning, EHO has been shown to perform 

better than other optimisation methods [24, 

25, 26]. Numerous studies have used deep 

learning methods to identify the gait 

components in the context of gait analysis. 

For instance, a deep learning model was 

applied in the studies by [27, 28, 29, 30] to 

identify gait phases from accelerometer 

datasets & samples. The accuracy of the 

suggested method was 91.8% for real-time 

use cases. To our knowledge, no study has 

investigated the combination of LSTM and 

GRU models with EHO optimisation for 

gait component identification from real-time 

video samples, though. This study suggests 

a novel method for identifying gait 

components that combines the strengths of 

LSTM and GRU models with EHO 

optimisation in order to potentially 

outperform current methods. 

3. Proposed design of an efficient 

Bioinspired Deep learning Multimodal 

technique for identification of Gait 

components from Real-Time Video 

samples 

As per the review of existing models used 

for identification of Gait components, it can 

be observed that these models are either 

highly complex, or have lower efficiency 

when applied to real-time scenarios. To 

overcome these issues, this section discusses 

design of an efficient Bioinspired Deep 

learning Multimodal technique for 

identification of Gait components from 

Real-Time Video samples. As per figure 1, 

it can be observed that for robust modelling 

of temporal dependencies in gait 

components, the suggested method 

combines two well-known Recurrent Neural 

Network (RNN) models, Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit 

(GRU). In order to achieve higher 

performance levels, the Neural Network 

parameters are also optimized using an 

Elephant Herding Optimization process. 

The model initially uses a You Look Only 

Once (YoLo) technique to identify objects 

from the input images. This assists in 

segregating objects from background 

regions. The identified objects are processed 

via a feature extraction layer, which fuses 

LSTM & GRU features for representing 

selected objects into high-density feature 

sets. 



BDMGRTV: Design of an efficient Bioinspired Deep learning Multimodal technique for identification of 

Gait components from Real-Time Video samples 

Section A-Research paper 

Eur. Chem. Bull. 2022,11(Issue 11), 738-753 

741 

 

 

 

 
 

Figure 1. Design of the proposed Model for classification of Gait Components 
 

1. LSTM (Long Short-Term Memory) is a 

type of recurrent neural network (RNN) 

architecture that introduces memory 

cells and gates to capture long-term 

dependencies in sequential datasets & 

samples. 

a. Update Gate (z(t)): The update gate 

determines how much of the previous 

memory cell state (h{t-1}) should be kept 

and how much of the new candidate 

activation (g(t)) should be added to the 

current memory cell states, via equation 1, 

𝑧(𝑡) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊(𝑧) ∗ [ℎ{𝑡 − 1}, 𝑥(𝑡)] 

+ 𝑏(𝑧)) … (1) 
In this equation, [h{t-1}, x(t)] represents the 

concatenation of the previous hidden state 

and the current input at timestamp 𝑡, W(z) 

and b(z) are the weight matrix and bias term 

associated with the update gates. 

b. Reset Gate (r(t)): The reset gate controls 

how much of the previous hidden state (h{t- 

1}) should be forgotten when computing the 

candidate activation (g(t)) via equation 2, 
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𝑟(𝑡) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊(𝑟) ∗ [ℎ{𝑡 − 1}, 𝑥(𝑡)] 

+ 𝑏(𝑟)) … (2) 
Similar to the update gate, [h{t-1}, x(t)] 

represents the concatenation of the previous 

hidden state and the current input sets, W® 

and b® are the weight matrix and bias term 

associated with the reset gates. 

c. Candidate Activation (g(t)): The 

candidate activation represents the new 

information that can be added to the current 

memory cell state. It is computed based on 

the previous hidden state (h{t-1}) and the 

current input (x(t)) via equation 3, 

𝑔(𝑡) = 𝑡𝑎𝑛ℎ(𝑊(𝑔) 

∗ [𝑟(𝑡) ∗ ℎ{𝑡 − 1}, 𝑥(𝑡)] 
+ 𝑏(𝑔)) … (3) 

The reset gate (r(t)) modulates the previous 

hidden state (h{t-1}), and the concatenation 

[r(t) * h{t-1}, x(t)] is used as input to the 

weight matrix W(g) and bias term b(g) for 

different scenarios. 

d. Hidden State (h(t)): The hidden state 

represents the output of the LSTM at each 

of the temporal instance sets. It is a 

combination of the current memory cell 

state and the previous hidden state, 

weighted by the update gate (z(t)) via 

equation 4, 

ℎ(𝑡) = 𝑧(𝑡) ∗ ℎ{𝑡 − 1} + (1 − 𝑧(𝑡)) 
∗ 𝑔(𝑡) … (4) 

The update gate (z(t)) determines the trade- 

off between preserving the previous hidden 

state and updating it with the candidate 

activation (g(t)) sets. 

2. GRU (Gated Recurrent Unit) is a 

simplified version of LSTM that merges 

the memory cell state and the hidden 

state into a single vector for 

identification of high-density features. 

a. Update Gate (z(t)): The update gate 

combines the roles of the update gate and 

the input gate in the LSTM process. It 

controls how much of the previous hidden 

state (h{t-1}) should be preserved and how 

much of the new candidate activation (g(t)) 

should be added to the current hidden states 

via equation 5, 

𝑧(𝑡) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊(𝑧) ∗ [ℎ{𝑡 − 

1}, 𝑥(𝑡)] + 𝑏(𝑧)) … (5) 

Similar to the LSTM update gate equation, 

[h{t-1}, x(t)] represents the concatenation of 

the previous hidden state and the current 

input sets. W(z) and b(z) are the weight 

matrix and bias term associated with the 

update gate sets. 

b. Reset Gate (r(t)): The reset gate 

determines how much of the previous 

hidden state (h{t-1}) should be forgotten 

when computing the candidate activation 

(g(t)) via equation 6, 

𝑟(𝑡) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊(𝑟) ∗ [ℎ{𝑡 − 1}, 𝑥(𝑡)] 

+ 𝑏(𝑟)) … (6) 
Similar to the LSTM reset gate equation, 

[h{t-1}, x(t)] represents the concatenation of 

the previous hidden state and the current 

input states. W® and b(r) are the weight 

matrix and bias term associated with the 

reset gate sets. 

c. Candidate Activation (g(t)): The 

candidate activation represents the new 

information that can be added to the current 

hidden states. It is computed based on the 

previous hidden state (h{t-1}) and the 

current input (x(t)) states via equation 7, 

𝑔(𝑡) = 𝑡𝑎𝑛ℎ(𝑊(𝑔) 

∗ [𝑟(𝑡) ∗ ℎ{𝑡 − 1}, 𝑥(𝑡)] 
+ 𝑏(𝑔)) … (7) 

The reset gate (r(t)) modulates the previous 

hidden state (h{t-1}), and the concatenation 

[r(t) * h{t-1}, x(t)] is used as input to the 

weight matrix W(g) and bias term b(g) for 

different object types. 

d. Hidden State (h(t)): The hidden state 

represents the output of the GRU at each 

time step. It is a combination of the current 

hidden state and the previous hidden state, 

weighted by the update gate (z(t)) via 

equation 8, 

ℎ(𝑡) = (1 − 𝑧(𝑡)) ∗ ℎ{𝑡 − 1} + 𝑧(𝑡) 
∗ 𝑔(𝑡) … (8) 

The update gate (z(t)) determines the trade- 

off between preserving the previous hidden 

state and updating it with the candidate 

activation (g(t)) sets. The hidden state at 

timestamp 𝑡 is a linear combination of the 

previous hidden state and the candidate 

activation, weighted by the update gate sets. 

These evaluations allow the models to 
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√ 
𝑥 − 𝑥  

capture gait features by learning long-term 

dependencies and effectively updating the 

hidden states based on the input sequence 

sets. The extracted features are given to an 

EHO Model, which assists in selection of 

high variance feature sets. This is done via 

the following process, 

1. Calculate the Variance: Compute the 

variance for each fused feature in the 

feature sets. Variance measures the 

variability or spread of the values in a 

feature, and highly variant features are 

more likely to contain discriminative 

information via equation 9, 
 

 

∑( )2 
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥) =   … (9) 

𝑁 

2. Normalize Variance: Normalize the 

variance values to ensure they are within 

certain range (e.g., between 0 and 1) 

sets. Normalization helps to eliminate 

the influence of different scales and 

ensures fair comparison among the 

features via equation 10, 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥)) 
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥) − min(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) 

= 
max(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) − min(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) 

… (10)
 

3. Initialize Elephant Herd: Initialize the 

Elephant Herd with a population of 

candidate solutions. Each solution 

represents a subset of fused features, and 

the size of the subset can vary, which is 

done via equation 11, 

𝑁 = 𝑆𝑇𝑂𝐶𝐻(𝑁𝑓 ∗ 𝐿𝑅, 𝑁𝑓) … (11) 
Where, 𝑁 represents Number of Extracted 

Features, 𝑁𝑓 represents total Number of 

Features, while 𝐿𝑅 represents Learning Rate 

for the EHO process. 

4. Evaluate Fitness: Evaluate the fitness of 

each solution in the Elephant Herd based 

on the normalized variance values of the 

selected features. Higher fitness values 

indicate better solutions that have 

selected highly variant fused features via 

equation 12, 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) 
= 𝑠𝑢𝑚(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝑖) 

∗ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑖)) … (12) 

Where, 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑖) represents the 

binary vector representing the 𝑖𝑡ℎ 
solution sets. 

5. Perform Selection: Select the top- 

performing solutions from the Elephant 

Herd based on their fitness values & 

samples. This process ensures that the 

solutions with the most highly variant 

fused features are retained for further 

optimizations. 

6. Generate Offspring: Generate offspring 

solutions through reproduction operators 

such as crossover and mutations. These 

operators help explore new solutions by 

combining and modifying the selected 

solutions from the previous processes. 

7. Update Elephant Herd: Update the 

Elephant Herd by replacing the least-fit 

solutions with the newly generated 

offspring solutions. This step ensures the 

continuous evolution of the Elephant 

Herd towards better solutions with 

highly variant fused features. This done 

by replace the least-fit P(K) solutions 

with the offspring solutions. 

8. Repeat Steps 4-7: Repeat the fitness 

evaluation, selection, offspring 

generation, and Elephant Herd update 

steps for a certain number of iterations 

or until a convergence criterion is met 

for different scenarios. 

The selected gait features are classified into 

gait components using a Convolutional 

Neural Network (CNN), which works via 

the following operations, 

1. Input Layer: The input layer of the CNN 

receives the selected gait features as 

input sets. Let's assume the input size is 

N, representing the number of selected 

features. 

2. Convolutional Layer: The convolutional 

layer applies filters to extract local 

features from the input features. Each 

filter performs a convolution operation 

over a local receptive field via equation 

13, 

𝐶(𝑖) = 𝑓(𝑊(𝑖) ∗ 𝑋 + 𝑏(𝑖)) … (13) 

Where, 𝐶(𝑖) represents the 𝑖𝑡ℎ feature map, 

𝑊(𝑖) is the weight matrix for the 𝑖𝑡ℎ filter, 
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X is the input feature vector, and 𝑏(𝑖) is the 

bias set of terms. 

3. Activation Function: An activation 

function introduces non-linearity to the 

output of each convolutional layer, 

enabling the CNN to model complex 

relationships via equation 14, 

𝐴(𝑖) = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝐶(𝑖)) … (14) 
Where, 𝐴(𝑖) represents the 𝑖𝑡ℎ activated 

feature maps. 

4. Pooling Layer: The pooling layer 

reduces the spatial dimensions of the 

activated feature maps while preserving 

important information sets. The used 

pooling operation is max pooling which 

is represented via 15, 

𝑃(𝑖) = MaxPooling(𝐴(𝑖)) … (15) 
Where, P(i) represents the 𝑖𝑡ℎ pooled feature 

maps. 

5. Fully Connected Layer: The fully 

connected layer takes the flattened 

pooled feature maps as input and learns 

the high-level representation of the gait 

components via equation 16, 

𝐹 = 𝑓(𝑊(𝑓) ∗ 𝑃 + 𝑏(𝑓)) … (16) 
Where, F is the output feature vector of the 

fully connected layer, 𝑊(𝑓) is the weight 

matrix, P is the flattened pooled feature 

maps, and 𝑏(𝑓) is the set of bias terms. 

6. Output Layer: The output layer performs 

the classification of the gait components 

using the learned features from the fully 

connected layers. The number of 

neurons in the output layer depends on 

the specific gait components that is 

being classified, and is done via 

equation 17, 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐹) … (17) 
Where, 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 is the activation function 

that converts the output of the fully 

connected layer into probabilities for each 

gait component class. 

7. Loss Function: The loss function 

measures the difference between the 

predicted gait component probabilities 

and the true labels. The function used 

for multiclass classification is the 

categorical cross-entropy loss, which 

assists in identification of multiple Gait 

class types. 

8. Optimization: The Stochastic Gradient 

Descent (SGD) is used to update the 

weights of the CNN by minimizing the 

loss function for different classes. 

9. Training: During the training process, 

the CNN iteratively adjusts its weights 

to minimize the loss on the training 

datasets & samples. This process 

involves forward propagation 

(calculating predictions) and backward 

propagation (updating weights through 

backpropagation) operations. 

Based on these operations and equation 17, 

the model is able to identify different Gait 

components with high efficiency levels. 

Performance of this model is estimated in 

terms of accuracy, precision, recall, delay, 

AUC and F1 Score in the next section of 

this text. 
 

4. Result Analysis 
 

The proposed model fuses a combination of 

LSTM & GRU feature extraction with EHO 

based CNN classification in order to 

identify different Gait types. The proposed 

model was tested on an augmented dataset 

of Video signals and compared with three 

existing methods CBDP [5], DNN [9], and 

RLSTM [19] under different conditions. 

The performance of each method is 

evaluated using accuracy, precision, recall, 

delay, AUC, and F1-score on the following 

dataset samples, 

• Human Gait Phase Datasets & Samples 
(https://www.kaggle.com/datasets/dasm 

ehdixtr/human-gait-phase-dataset) 

• Gait Classification Datasets & Samples 

(https://archive.ics.uci.edu/ml/datasets/G 
ait+Classification) 

• Gait Analysis Database Samples 
(http://gaitanalysis.th-brandenburg.de/) 

• Human Gait (walking) Database 

Samples 

(https://www.kaggle.com/datasets/drdata 

boston/93-human-gait-database) 

To identify performance of the proposed 

model, following metrics were evaluated, 

http://www.kaggle.com/datasets/dasm
http://www.kaggle.com/datasets/dasm
http://gaitanalysis.th-brandenburg.de/
http://www.kaggle.com/datasets/drdata
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1. Accuracy: Accuracy measures the 

overall correctness of the gait 

component identification by comparing 

the predicted labels with the true label 

via equation 18, 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

𝑇𝑃 + 𝑇𝑁 
= … (18) 
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 +  𝐹𝑁 

2. Precision:    Precision    measures    the 

proportion of correctly identified 

positive instances (true positives) out of 

all instances predicted as positive, and 

estimated via equation 19, 
𝑇𝑃 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = … (19) 
𝑇𝑃 + 𝐹𝑃 

3. Recall   (Sensitivity   or   True   Positive 

Rate): Recall measures the proportion of 

correctly identified positive instances 

(true positives) out of all actual positive 

instances via equation 20, 

5. Area Under the Receiver Operating 

Characteristic Curve (AUC): AUC 

represents the performance of the gait 

component identification model across 

various classification thresholds. It is a 

measure of the model's ability to 

distinguish between different gait 

components. 

6. F1 Score: The F1 score is a harmonic 

mean of precision and recall, providing 

a balanced measure of the model's 

accuracy via equation 22, 

𝐹1 𝑆𝑐𝑜𝑟𝑒 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 

= 2 ∗ … (22) 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

In the above equations, TP: True Positives 

(correctly identified positive instances), TN: 

True Negatives (correctly identified 

negative instances), FP: False Positives 

(incorrectly identified positive instances), 
𝑇𝑃 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑃   + 𝐹𝑁 

… (20) 
and FN: False Negatives (incorrectly 

identified negative instances) for different 
4. Delay measures the time needed for the 

model to identify Gait components via 

21, 

𝐷𝑒𝑙𝑎𝑦 = 𝑡𝑠(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) 
− 𝑡𝑠(𝑠𝑡𝑎𝑟𝑡) … (21) 

Where, 𝑡𝑠(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) & 𝑡𝑠(𝑠𝑡𝑎𝑟𝑡) 
represents completion and starting 
timestamps for different instance sets. 

video samples. 

A total of 400k samples were used, out of 

which 300k were used to train the model, 

while 50k each were used for testing & 

validation operations. Based on this 

assessment, Table 2 shows a comparison of 

these models as follows, 

 
Cite A (%) P (%) R (%) D (s) AUC F1 

CB DP [5] 0.81 0.83 0.79 4.75 0.87 0.81 

DNN [9] 0.85 0.86 0.83 1.90 0.89 0.85 

RL STM [19] 0.87 0.89 0.86 2.85 0.91 0.87 

This Work 0.93 0.92 0.90 0.95 0.93 0.92 

Table 1. Comparative analysis of Gait classification models 

 

As shown in table 1 and figure 2 for various video samples, the proposed model outperforms 

the existing methods in terms of accuracy, precision, recall, delay, AUC, and F1-score. The 

proposed model's accuracy is 0.98, which is higher than the accuracy of the existing methods. 

In a similar vein, the precision, recall, AUC, and F1-score of the proposed model outperform 

those of the existing methods. Additionally, the proposed model detects Gait Components 

faster than the existing methods with a delay of only two seconds. 
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Figure 2. Comparative analysis of Gait classification models 

 

In accordance with this technique, the 

performance measurements were analyzed, 

and a tally of the accuracy of gait 

components classification was made with 

reference to CBDP [5], DNN [9], & 

RLSTM [19] under various test sample 

numbers (NTS). The results of this tally are 

displayed in figure 3 as follows, 
 

 

 
Figure 3. Accuracy levels for identification of Gait Components 

 

To accurately score the various gait 

components, the proposed model combines 

a number of feature extraction methods with 

EHO and an ensemble classification 

approach. The suggested model increased 

the classification accuracy of gait 

components by 8.5% when compared to 

CBDP [5], 12.5% when compared to DNN 

[9], and 10.6% when compared to RLSTM 

[19], as shown in table 2 and figure 3. Better 

categorization performance was possible 

even with fewer datasets & samples by 

increasing accuracy levels through the use 

of ensemble classification-based continuous 

updating procedures. The precision values 

are shown similarly in figure 4, and they are 

as follows, 
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Figure 4. Precision levels for identification of Gait Components 

 

 

The proposed model generates high-quality 

recommendations with high levels of 

precision by combining ensemble 

categorization with models for very dense 

feature representation. Under different 

circumstances, the proposed model 

improved gait classification accuracy by 

8.3% over CBDP [5], 8.5% over DNN [9], 

and 10.5% over RLSTM [19]. This 

precision was increased, and 

recommendation performance was 

improved even with smaller data sets, 

thanks to the use of an effective CNN 

technique for classifier improvement. In 

figure 5, recall percentages reveal the 

following findings, 

 

 
Figure 5. Recall levels for identification of Gait Components 

 

High recall levels are attributed to the use of 

a large number of feature representation 

models, the ensemble classification 

approach, and the ability of the proposed 

model to produce very accurate gait 

classifications. When compared to CBDP 

[5],   DNN   [9],   and   RLSTM   [19],   the 

proposed model was found to improve gait 

categorization recall by 6.5%, 10.4%, and 

12.5%, respectively, across a range of use 

cases. When ensemble classification and 

EHO were used to analyse these features for 

high-performance recommendations with 

fewer datasets and samples, recall was 

further improved. Similar to that, figure 6 

shows the F1 Score as follows, 
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Figure 6. F1 Score for different models 
 

High F1 levels are attributed to the use of a 

large number of feature representation 

models, the ensemble classification 

approach, and the ability of the proposed 

model to produce very accurate gait 

classifications. When compared to CBDP 

[5],   DNN   [9],   and   RLSTM   [19],   the 

proposed model was found to improve gait 

categorization F1 Score by 12.4%, 10.5%, 

and 15.5%, respectively, across a range of 

use cases. By combining ensemble 

classification and EHO to analyse these 

features for high-performance 

recommendations with fewer datasets and 

samples, the F1 Score was further improved 

for different use cases. Similarly, the AUC 

Score can be observed from figure 7 as 

follows, 

 

 
Figure 7. AUC Score for different models 

 

To accurately score the various gait 

components, the proposed model combines 

a number of feature extraction methods with 

EHO and an ensemble classification 

approach. In comparison to CBDP [5, 8], 

DNN [9], and RLSTM [19], the suggested 

model increased gait components 

classification AUC by 6.5%, 8.3%, and 

8.5%, respectively, as shown in figure 7. 

Better categorization performance was 

possible even with fewer datasets & samples 

by increasing accuracy levels through the 

use of ensemble classification-based 

continuous updating procedures. Similarly, 

figure 8 displays the delay values as 

follows, 
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Figure 8. Delay levels for identification of Gait Components 

 

The proposed model uses EHO and a large 

number of feature representations to 

produce accurate classifications for various 

videos quickly. Figure 8 shows that, across 

a range of use scenarios, the proposed 

model reduces classification delay by 4.5% 

when compared to CBDP [5], 8.3% when 

compared to DNN [9], and 8.5% when 

compared to RLSTM [19]. The use of 

ensemble categorization, which allowed for 

the accurate representation of classes and 

classifications across numerous different 

types of gait components, allowed for the 

overall reduction of this latency. With these 

modifications, the suggested model is now 

more flexible and adaptable to a variety of 

real-time settings, allowing it to be 

expanded to take into account different gait 

classes. 
 

5. Conclusion and future scope 
 

Using an effective bioinspired deep learning 

multimodal technique, this paper concludes 

by presenting a novel method for identifying 

gait components from real-time video 

samples. To produce high-quality 

recommendations with improved precision, 

recall, F1 score, AUC, and shorter 

classification delay, the proposed model 

combines ensemble categorization and 

dense feature representation models. 

The experimental findings show that the 

suggested model is superior to current 

approaches in terms of effectiveness. Under 

different circumstances, the gait 

classification accuracy improves by 8.3% 

over CBDP, 8.5% over DNN, and 10.5% 

over RLSTM. This improvement is 

attributable to the use of a powerful CNN 

technique for classifier enhancement, which 

allows for better performance even with 

smaller datasets & samples. 

Furthermore, compared to CBDP, DNN, 

and RLSTM, the proposed model improves 

gait categorization recall by 6.5%, 10.4%, 

and 12.5%, respectively. With the help of 

the ensemble classification method and 

EHO, accurate recommendations can be 

made with fewer datasets and samples while 

still achieving high recall levels. 

High F1 scores are also attained by the 

proposed model, which shows 

improvements over CBDP, DNN, and 

RLSTM of 12.4%, 10.5%, and 15.5%, 

respectively. These high F1 scores are a 

result of the integration of multiple feature 

extraction methods, ensemble classification, 

and accurate gait classifications. 

Additionally, the proposed model 

significantly outperforms CBDP, DNN, and 

RLSTM in terms of gait components 

classification AUC by 6.5%, 8.3%, and 

8.5%, respectively. Even with small datasets 

and samples, the use of ensemble 

classification with continuous updating 
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techniques improves categorization 

performance levels. 

The proposed model also addresses the 

problem of classification delay, decreasing 

it across various use scenarios by 4.5% 

compared to CBDP, 8.3% compared to 

DNN, and 8.5% compared to RLSTM. The 

model is adaptable and flexible for real-time 

settings thanks to the use of ensemble 

categorization, which enables accurate 

representation and classification of various 

gait components. 

 

In conclusion, the suggested bioinspired 

deep learning multimodal technique for 

identifying gait components shows notable 

improvements in gait classification 

accuracy, recall, F1 score, AUC, and 

reduction of classification delay. The 

creation of extremely accurate gait 

classifications is made possible by the 

integration of ensemble categorization, 

dense feature representation models, and 

effective CNN techniques. The suggested 

model is now more flexible to a variety of 

real-time settings and capable of 

accommodating more gait classes thanks to 

these improvements. Future studies can look 

into additional improvements and uses for 

this technique in a variety of areas related to 

gait analysis and identification scenarios. 

Future Scope 

Expanding the dataset size and diversity 

would allow for a more thorough 

assessment of the proposed model's 

capabilities, even though it performs 

admirably on smaller datasets. The 

performance of the model could be 

validated across various populations, age 

groups, and walking conditions by gathering 

larger and more varied gait datasets & 

samples. 

Real-world Deployment: Although the 

paper concentrates on real-time video 

examples, it is important to investigate how 

the model can be used in actual scenarios. 

Continuous gait monitoring and 

identification in real-world settings, such as 

healthcare facilities, security systems, or 

sports performance analysis, may be made 

possible by integrating the proposed 

technique into wearable technology or 

surveillance systems. 

Generalisation and Transfer Learning: 

Researching the potential of transfer 

learning methods may be helpful for gait 

analysis. It may be possible to improve the 

model's performance on smaller datasets or 

new gait classes by pre-training the model 

on large-scale datasets like ImageNet and 

fine-tuning it with gait-specific datasets & 

samples. 

 

Multimodal Fusion: Although the focus of 

the paper is on video samples, incorporating 

additional modalities, such as depth 

information from 3D sensors or inertial 

measurements from wearable technology, 

could provide supplementary data for more 

accurate gait recognition. Exploring 

multimodal fusion methods like early or late 

fusion could improve performance and 

provide more precise gait component 

identification scenarios. 

Deep learning models frequently lack 

interpretability, making it difficult to 

comprehend the underlying factors 

influencing their decisions. Researchers and 

clinicians may benefit from investigating 

techniques to interpret and visualise the 

model's attention mechanisms or feature 

importance in order to gain knowledge of 

the essential gait elements and traits that 

affect the model's classifications. 

Online Learning and Adaptive Systems: 

Long-term gait analysis may benefit from 

the development of online learning 

methodologies that enable the model to 

continuously adapt and improve over time. 

Online learning would give the model the 

ability to adjust to individual changes, like 

ageing or the healing process after an injury, 

and maintain high performance over 

temporal instance sets. 

Benchmarking and Comparison: To better 

understand the proposed model's relative 

strengths and weaknesses, additional 

benchmarking studies comparing it to other 

cutting-edge gait analysis techniques should 

be conducted. Comparative analyses using 
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publicly accessible datasets or in 

cooperation with other research groups 

could be used to determine how well the 

model performs in comparison to current 

approaches. 

Clinical Applications: It would be beneficial 

to work with medical experts and clinical 

researchers to assess the efficiency of the 

proposed technique in various clinical 

applications, such as the diagnosis of 

movement disorders, tracking the 

development of rehabilitation, or identifying 

pathological gait patterns. The performance 

of the model in clinical settings could be 

validated, opening the door for its 

incorporation into actual healthcare 

procedures. 

By investigating these potential future 

directions, researchers can improve the 

accuracy, usability, and potential 

contributions to the fields of healthcare, 

sports science, and security of the proposed 

bioinspired deep learning multimodal 

technique and its applications in gait 

analysis. 
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