

Newer 1,2,3 Triazole Appended Piperazine: Molecular docking, ADME studies, Synthesis, Anti-Microbial and Invitro Anti-cancer studies.

C Geetha Priya Loganathan, ¹*Dr. Karthickeyan Krishnan¹, Dr.S .D Vachala, Dr.N Srinivasan, R Raveendra.

AssistantProfessor, RR College Of Pharmacy , Department Of Pharmaceutical Chemistry, Chikkabanavara, Bangalore.

Professor and Head, Department of Pharmacy Practice, Vels Institute of Science, Professor and Head, RR College Of Pharmacy , Department Of Pharmaceutical Chemistry, Chikkabanavara, Bangalore.

Assistant professor, Annamalai university, Chidambaram 608002, Tamil Nadu AssistantProfessor, Cauvery college of pharmacy, Department Of Pharmaceutical Chemistry, Mysur Author for Correspondence:

C. Geetha Priya Loganathan,

Department of Pharmaceutical Chemistry,

R R College of Pharmacy, Chikkabanavara,

Bangalore, Karnataka, India.

Email: geethavaishu2009@gmail.com

ABSTRACT

Drug discovery and development is a time-consuming, interdisciplinary and expensive process. Advances in computational procedures have empowered *in silico* routines, and specifically structure based drug design technique, to accelerate new target choice through the recognizable proof of hits for the improvement of lead compounds in the medication discovery process. Hence, the present work aims to identify the potent 1,2,3 triazole appended piperazine compounds for synthesis. In-silico design of novel analogues were carried out using Auto Dock Vina,Swiss ADME software was used to analyse 'Lipinski Rule of Five' and drug likeness properties. Ten derivatives which obeyed the rule of five and having desired physio-chemical properties and highest docking score were synthesized The synthesis has been carried out in two step process to determine their Anti-microbial and Invitro Anti-cancer activity.

KEW WORDS:Docking; 3PPO;Benzotriazole; Piperazine; Amines; Antibacterial; Anticancer activity; ADME.

INTRODUCTION:

1,2,3 triazole are of great importance in medicinal chemistry and can be used for the synthesis of numerous heterocyclic compounds with different biological activities such as, Antimicrobial 1,2,3,4 Anti hiv⁵, Antibacterial 6,7,8 ,Anticancer 9,10,11,12 Anti-proliferative agents 13,14 Anti

tubercular activity 15,16 Anti-oxidant 17 Anthelmintic 18, Antipsychotic 19, Antimalarial 20. Mannich bases is a beta-amino ketone ^{21,22}, which is formed by nucleophilic addition reaction of an amine, formaldehyde (or an aldehyde) and a carbon acid ²³. The literature survey had demonstrated that Mannich bases are very reactive so it has been utilized for development of Nitrogen containing mixes. Furthermore, triazole can be found in a variety of naturalgoods, metabolic products of fungus and primitive marine creatures etc. Because of their importance in industry, agriculture, andbiological activity. We synthesize a group of compounds containing 1,2,3 -Triazole derivatives in coordination with piperazine associated with various primary aromatic amines (Table 1) and to evaluate their antibacterial potency and Invitro Anti-cancer activity. Insilico design were carried out for fifteen derivatives using software Auto Dock Vina , by using pdb id: 3QTK,3PP0,4ZAUand compared with standard drug ciprofloxacin and dauxorubicin. Ten derivatives which have highest docking score (Table2, Table3, Table4) were synthesized (Table-5) and their Structures were elucidated with FTIR, ¹H NMR, ¹³C NMR, MASS and elemental analysis. Antibacterial activity was observed in the synthesized compounds by using disc diffusion method, among this compound 1A,2A,5A,12A shows significant antibacterial activity and compound 4A &13A shows appreciable anti-bacterial activity in E.coli and 2A & 5Ashows appreciable activity in *streptococcus*(Table6).Invitro Anti-cancer screening were conducted against a two different cancer cell line, breast cancer MCF7, and colon cancer CaCO2. The results of this investigation showed that compounds 2A and 6A have anticancer activity against the cancer cell lines MCF-7 and CACO2 (Table7, Table8, Table9). ADME properties and drug-likeness prediction were carried out using Swiss ADME(Table-10).

1.EXPERIMENT SECTION:

Materials And Methods:

All the chemicals utilized in this study were obtained from vasa chemicals Malleshwaram, Bangalore. FTIR spectra were recorded on ABB Bomem FTLA 2000-102 FTIR instrument involving KBr pellets in the 400-4000 cm-1. The ¹H and ¹³C NMR spectra were recorded on Bruker Avance 300 (300 MHz) and Bruker 600MHz. The compound relocations are given in parts per million (ppm) involving TMS as interior norm at 300 and 75 MHz separately.

Synthesis of 1-((4-nitrophenyl) piperazin-1-yl)methyl)-1H -benzo(d)(1,2,3)-triazole(Compound A) $^{(24)}$:

Benzotriazole (0.01Mol) was dissolved inethanol, and added to para nitro Benzaldehyde (0.05mol), and Piperazine (0.01mol) until the mixture completely dissolved. The reaction mixture was heated

to reflux for 8 hr at room temperature 27°C. The precipitate was filtered and recrystallized with suitable solvent (DMF & Ethanol). The reaction was confirmed by TLC using ethyl acetate & n-hexane (3:7). Light yellow colour, M.P. 88°C, Yield 90%.

Synthesis of 1- (4-(1H - benzo(d) (1,2,3)-triazole-1-yl) (4-nitrophenyl)methyl) piperazin-1-yl) - N -benzylmethanamine (Compound 1A):

The mixture of compound A (0.01Mol) was dissolved in ethanol, and added to formaldehyde (0.05mol), and Benzyl amine (0.01Mol) until the mixture completely dissolved. The reaction mixture was heated to reflux for 8 hr at room temperature 27°C. The precipitate was filtered and recrystallized with suitable solvent (DMF & Ethanol). The reaction was confirmed byby TLC using ethyl acetate& n-hexane (3:7).

2.BIOLOGICAL ACTIVITY:

2.1Anti bacterial-activity^{25,26,27}

The antibacterial activity of synthesized compounds was done by using disc diffusionmethodagainst that followingorganism as directed by Ellen JB or on

E.coli-Gramnegative

Streptococcus - Gram positive

TestSample: 1A,2A,4A,5A,6A,11A,12A,13A,14A,15A

Preparationoftest and standard solutions:

The test sample 1A,2A,4A,5A,6A,11A,12A,13A,14A,15A were used in concentration of 100mg/ml, using dimethyl sulfoxide assolvent and ciprofloxacin in concentration, 50mg/ml usin DMSO as solvent.

PreparationofNutrient Agar:

Peptone	0.5%
Sodiumchloride	0.5%
Beefextract	0.5%
Agar	3.0%
Distilledwater	q.s
Phadjusted	7.2-7.4

Thenthe mediais distributed in 5mlquantity into culture flask and sterilized by autoclaving.

DiscDiffusion Method:

To the sterile nutrient agar, suspension of *Escherichia coli&Streptococcus* was added at 45 degree Celsius andtransferred to sterile petri dish and allowed to solidify. Sterile discs of 5 mm in

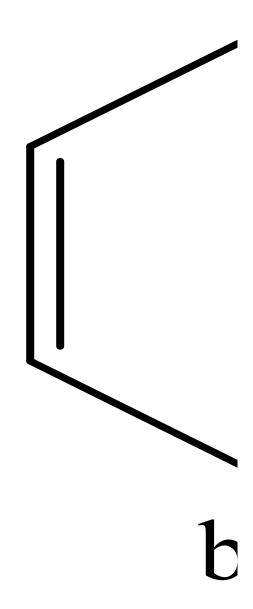
Newer 1,2,3 Triazole Appended Piperazine: Molecular docking, ADME studies, Synthesis, Anti-Microbial and Invitro Anti-cancer studies.

Section A-Research paper

diameter was madeusing Whatmann filter paper and sterilized. They were loaded with test compound and standard, Then they were placed on the surfaceofagarmedium. The plates were left standing for one hour at room temperature as period of pre incubationdiffusiontominimizetheeffectofvariationintimebetweentheapplicationsofdifferentsolutio ns. Then the plates were incubated at 37 degree Celsius for 18 hours and observed for antibacterialactivity. The zone of inhibition was measured and tabulated.

2.2 Invitro Anticancer Activity: ^{28,29,30,31,32,33}

Cell lines used in the study:


- (1) MCF7 (human breast cancer cell line)
- (2) CACO2 (human intestinal epithelial cell line)

Seeded cells in 96-well plates containing a final volume of 100μ l/well with a cell density of 10,000 cells/well.Cells were treated with different concentrations of the given compound upon attainment of 75% cell confluency.The plates were kept in the incubator for 24, 48 and 72 hours. After that 100μ l of 0.5mg/ml MTT solution was added.Again the plates were kept in the incubator for 3 to 4 hrs at 37°C. Then $100~\mu$ l of DMSO was added to each well to dissolve formazan crystals and mixed to ensure complete solubilization. The percentage viability was calculated by measuring the absorbance at 570 nm.

% viability = ((OD of sample-OD of Blank)/(OD of untreated-OD of blank))*100

Cell Culture Media: DMEM with 10% FBS (MCF7) and MEM with 20% FBS (CACO2)

3.SCHEME

Compounds 1-15A

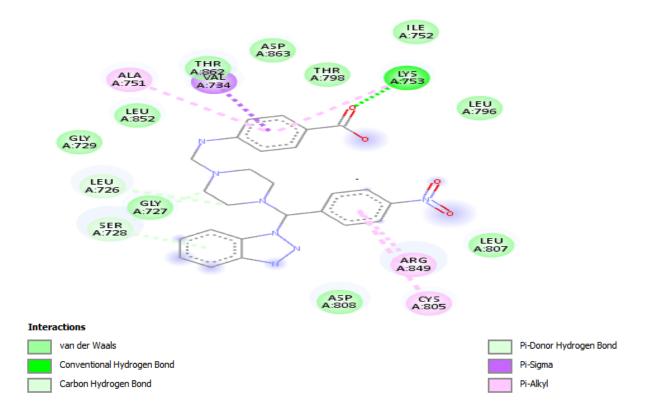
Table-01 List of aromatic primary amines used in the synthesis

Sl No	Compo	R	Sl No	Compo R
	unds			unds
1	1A		7	7A
2	2A		8	8A
3	3A		9	9A
4	4A		10	10A
5	5A		11	11 A
6	6A		12	12 A

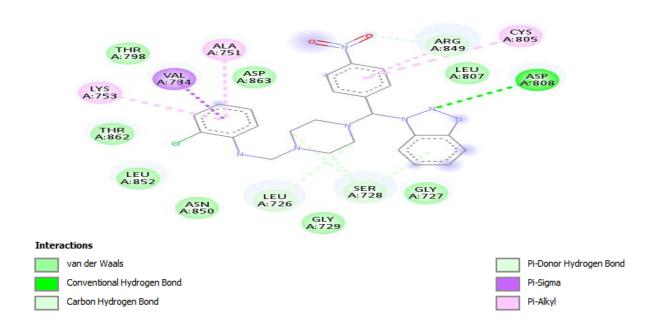
Newer 1,2,3 Triazole Appended Piperazine: Molecular docking, ADME studies, Synthesis, Anti-Microbial and Invitro Anti-cancer studies.

Sl No	Compo	R1	Sl No	Compou	R1
	unds			nds	
13	13 A		15	15 A	
14	14 A				

4.MOLECULAR DOCKING^{34,35,36,37,38,39,40}

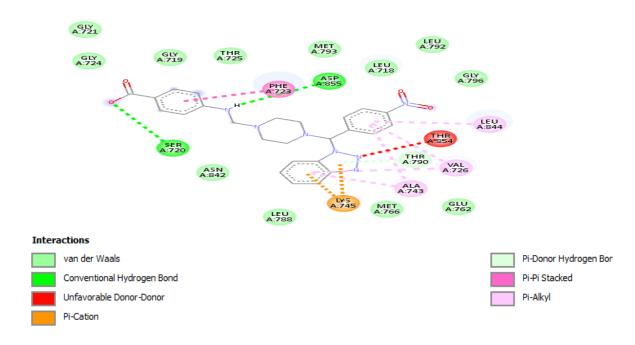

Before the docking analysis, ligands were prepared from the optimized Compounds and saved in pdb file format using spartan,14 .The 3D compound of VEGF, HER-2, EGFR protein were, downloaded from the protein bank (with pdb ID:3QTK,3PPO, 4ZAU).The enzyme was prepared with help of discovery studio visualizer for the docking analysis. In the course of the preparation, hydrogen was added, water molecule, heteroatoms and co-ligands were eliminated from the crystal Compound saved in pbd file.

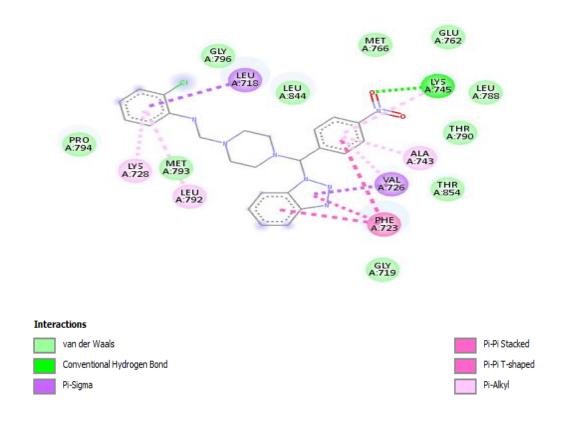
The docking of the ligands to the active site was achieved with the help of pyrex software using Autodock vina. After successful docking protocol, reformation of the complexes (ligand-receptor) for further investigation was also achieved utilizing chimera software. Discovery studio visualizer and pyMOL were used to investigate the interactions of the complexes.


4.1 Table -02Docking And Glide Score Of 3PPO(1-15A)

Sl no	Compound	3PPO	Amino acids involved in ligand binding
	Code		
1.	1A	-7.8	Ser,Arg,Val,Ala,Thr
2.	2A	-8.5	Ala,Val,Lys,Arg,Cys
3.	3A	-6.7	Ser,Arg,Val, Ala
4.	4A	-7.7	Gln,Tyr,Val,Val,Ala
5.	5A	-8.8	ASP,ASP ARG,Cys,Val,Lys,Leu,Ser
6.	6A	-8.4	Val,Lys,Ala,Arg,Cys,Asp
7.	7A	-6.8	Arg,Ser,Cys
8.	8A	-6.9	Leu,Ser,Arg
9.	9A	-5.2	Ala,Leu,Lys
10.	10A	-6.7	Val,Thr,Ala,Lys
11.	11A	-9.7	Arg,Ser,Cys,Arg,Leu,Val,Thr,Ala,Lys
12.	12A	-8.6	Lys,Val,Ala,Leu,Ser,Arg
13.	13A	-8	Leu, Val, Ala, Leu, Ser, Arg
14.	14A	-8.5	Val,Ala,Leu,Lys,Cys,Arg
15.	15A	-8.2	Val,Lys,Leu,Arg,Asp

COMPOUND 2A

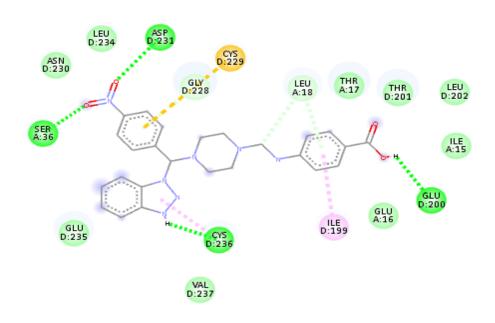

COMPOUND 6A


4.2 Table- 03Docking And Glide Score Of 4ZAU (1-15a)

Sl no	Compound Code	4ZAU	Amino acids involved in ligand binding
1.	1 A	-9.4	Phe,Lys,Ala,Thr,Val,Leu,Met,Leu
2.	2 A	-10.2	Ser,Phe,Asp,Thr,Lys,Ala,Val,Ala
3.	3A	-6.5	Asp,Thr,Lys,Ala
4.	4A	-8.7	Gly,Phe,Asp,Arg,Sas,Lys,Thr,Val
5.	5A	-9.9	Lys,Leu,Met,Lys,Val,Phe,Ala
6.	6A	-9.8	Leu,Val,Phe,Ala,Lys
7.	7A	-5.8	Sas,Lys,Thr,Val
8.	8A	-6.2	Lys,Leu,Met
9.	9A	-6.7	Val,Lys,Ala
10.	10A	-5.9	Met,Leu,Lys
11.	11A	-9.8	Met,Leu,Lys,Phe,Val,Lys,Ala
12.	12A	-10.1	Lys,Leu,Met,Phe,Val,Ala,Lys
13.	13A	-9.7	Leu,Gly,Pro,Phe,Val,Ala,Cys,Pro,Lys
14.	14A	-9.9	Leu,Lys,Phe,Val,Lys,Als,Val
15.	15A	-10	Phe,Met,Val,Ala,Lys,Leu

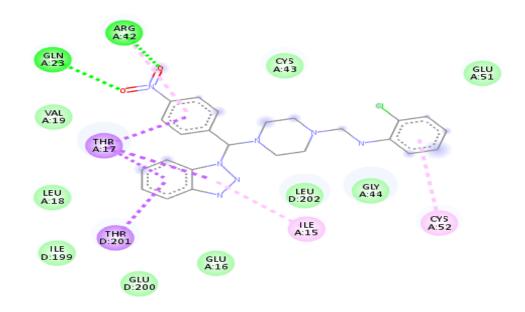
COMPOUND 2A

COMPOUND 6A



4.3 Table-04Docking And Glide Score Of 3qtk(1-15A)

Sl no	Compound code	3QTK	Amino acids involved in ligand binding
1.	1A	-8.1	Arg,Gln,Thr,Ile,Gly,Cys,Ile
2.	2A	-8.4	Asp,Ser,Cys,Glu,Ile
3.	3A	-7.0	Arg,Gln,Thr
4.	4A	-8.2	Asp,Ser,Lys
5.	5A	-7.9	Gly,Thr,Lys,Ile,Arg
6.	6A	-8.1	Arg,Gly,Thr,Ile,Cys
7.	7A	-6.5	Thr,Glu,Ile,Cys
8.	8A	-6.8	Thr,Glu,Ile
9.	9A	-5.8	Gly,Asp,Cys,Ile
10.	10A	-6.1	Thr,Arg,Gln
11.	11A	-8.3	Arg,Thr,Glu,Ile,Cys
12.	12A	-8.2	Asp,Thr,Arg,Gln,
13.	13A	-8.1	Thr,Gln,Arg,Ile
14.	14A	-8.1	Thr,Ile,Gln,Arg,Cys


		~ ~ .	~
1 1 5	Λ Ι Q 2	Ser Gly Asp (Cyre Ho Lou
13. 131	A 1-0.3	Sci, Oiy, Asp,	Cys,Ile,Leu

COMPOUND 2A

COMPOUND 6A

5. RESULT AND DISCUSSION: The synthesized compounds were structurally elucidated using FTIR ,¹H NMR,¹³C NMR and MASS. The spectral details of the synthesized compounds were given below.

1- (4-(1H - benzo(d) (1,2,3)-triazole-1-yl) (4-nitrophenyl)methyl) piperazin-1-yl) - N - benzylmethanamine (Compound 1A):

M.P .82°C ,Yield 86%,Mol Formula: $C_{25}H_{27}N_7O_2$, Mol Wt: 457.22, Elemental Analysis C,65.63;H,5.95:N,21.43;O,6.99. IR (CH) bending 736, (NO) 1597 (N=N) 1661, (NH) 1582, (Aromatic) 1660, cm-1. HNMR(NH) 4.61(CH2) 2.71,(CH)8.0, 13 C NMR (CH2)52.8,(CH)119.6(C)140.2, m/z 457.22 (BASE PEAK) ION PEAK 458.23

4-(((4-(1H - benzo(d) (1,2,3)-triazole-1-yl) (4-nitrophenyl)methyl) piperazin-1-yl)methyl)amino)benzoic acid (Compound 2A):

Yellow colour, M.P .160°C ,Yield 85%, Mol Formula: $C_{25}H_{25}N_7O_4$, Mol Wt: 487.52, Elemental Analysis C,61.59;H,5.17:N,20.11;O,13.13, IR (CH) bending 736, (NO₂) 1660 (N=N) 1661, (NH) 1582, (Aromatic) 1660,(COOH) 3100 cm-1 1 HNMR, (NH) 6.34 (CH2) 2.71,(CH) 8.0 (OH) 12.71 13 C NMR, (CH2) 49.9 (C) 146.2 (CH) 110.0 Benzene , m/z 487.20(BASE PEAK) 488.20, 489.20

N-((4-((1H - benzo(d) (1,2,3)triazole-1-yl) (4-nitrophenyl)methyl) piperazin-1-yl)methyl)040methoxyaniline(Compound 4A):

Slight Yellow crystals, M.P .95°C ,Yield 90%, Mol Formula: $C_{25}H_{27}N_7O_3$, Mol Wt: 473.54, Elemental Analysis C,63.41;H,5.75:N,20.71;O,10.14, IR (CH) bending 736, (NO) 1597 (N=N) 1661, (NH) 1582, (Aromatic) 1660,(OCH3) 2800 1 HNMR, (NH) 6.34 (CH₂) 2.71,(CH) 8.0 (OH) 12.71 (CH₃) 3.81 13 C NMR, (CH₂) 49.9 (C) 130.4,(C) In benzene 151.7 (CH) 110.0 Benzene , m/z 473.22(BASE PEAK) 474.22, 475.22

N-((4-((1H - benzo(d) (1,2,3)triazole-1-yl) (4-nitrophenyl)methyl) piperazin-1-yl)methyl)-4-chloroaniline(Compound 5A):

Yellow crystals, M.P .86°C ,Yield 89%, Mol Formula: $C_{24}H_{24}ClN_7O_2$, Mol Wt: 477.17, Elemental Analysis C,60.31;H,5.06:N,20.51; Cl 7.42, O,6.69, IR (CH) bending 736, (NO) 1597 (N=N) 1661, (NH) 1582, (Aromatic) 1660, (Cl) 800 cm⁻¹, ¹HNMR, (NH) 6.34 (CH₂) 2.71,(CH₂) methylene(CH) 4.13 (OH) 12.71 (CH₃) 3.81 ¹³C NMR, (CH₂) 49.9 (CH₂) cyclohexane 52.6 (C) 130.4, (CH) 129.7 Benzene , m/z 477.17(BASE PEAK) 479.17, 478.17

N-((4-((1H - benzo(d) (1,2,3)triazole-1-yl) (4-nitrophenyl)methyl) piperazin-1-yl)methyl)-2-chloroaniline(Compound 6A):

Yellowish brown crystals, M.P .65°C ,Yield 82%, Mol Formula: $C_{24}H_{24}ClN_7O_2$, Mol Wt: 477.95, Elemental Analysis C,60.31;H,5.06: Cl 7.42, N,20.51;O,6.69, IR IR (CH) bending 736, (NO₂) 1650 (N=N) 1661, (NH) 1582, (Aromatic) 1660, (Cl) 800 cm⁻¹ HNMR, (NH) 5.80, (CH₂) 2.71,(CH₂) methylene 4.13 (CH) 6.11 13 C NMR, (CH₂) 49.9 (CH₂) cyclohexane 52.8 (C) 130.7, (CH) 129.7 Benzene , m/z 477.17(BASE PEAK) 479.17, 478.17

N- (4-(1H - benzo(d) 1,2,3-triazole-1-yl) (4-nitrophenyl) piperazin-1-yl) methyl) 4-Nitroaniline(Compound 11A):

Yellow crystals, M.P .85°C ,Yield 83%, Molecular formula $C_{24}H_{24}N_8O_4$, IR (CH) bending 736, (CH₃) 1923, (NO) 1597 (N=N) 1661, (NH) 1582, cm-1. Elemental Analysis (C,59.01;H,4.95;N,22.94;0,13.10). ¹H NMR 6.602, (m, H), 6.581, (m, H),6.674, (m, H),6.810, (m, H),7.583, (m,H),7.938, (m,H),7.958(m,H), ¹³C NMR, (CH₂) 49.9 (CH₂) cyclohexane 52.8 (C) 130.7, (CH) 129.7 Benzene m/z (161.09 Base peak 484.60(M⁺) .

N- (4-(1H - benzo(d) 1,2,3-triazole-1-yl) (4-nitrophenyl) piperazin-1-yl) methyl) -2,4-dimethylaniline (Compound 12A):

Brown colour, M.P .120°C ,Yield 85%, Molecular formula $C_{26}H_{29}N_7O_2$ IR - bending CH-aromatic 811,(CH₃)1454, (NO) 1513, (N=N) 1598, (NH) 1627,cm⁻¹,Elemental Analysis (C,66.22;H,6.20;N,20.79;0,6.79). ¹H NMR 6.991 (m,H),7.066(d,H),7.076(d,H),1.000, (s,3H) 2.292(s,3H),2.317(s,3H),2.493 (s,3H),2.497(s,3H), ¹³C NMR, (CH₂) 49.9 (CH₂) cyclohexane 49.9 (C) 130.4, (CH) 119.6,(CH₃) 17.9. Benzene. m/z 196 Base peak ,471.32, (M⁺) 315.24 (M⁺+1).

N- (4-(1H - benzo(d) 1,2,3-triazole-1-yl) (4-nitrophenyl) piperazin-1-yl) methyl) -2,6-dimethylaniline(Compound 13A):

Slighty Yellowish colour, M.P .158°C ,Yield 87%, Molecular formula $C_{26}H_{29}N_7O_2$, IR (CH)-bending 737,1443,(NO) 1520 (N=N) 1603, (NH) 1644 cm⁻¹. Elemental Analysis

(C,66.22;H,6.20;N,20.79;0,6.79). ¹H NMR 2.067, (s,3H)2.500, (s,3H)2.486, (s,3H)6.937, (m,H),6.957, (m,H),6.976, (m,H),7.071, (m,H),7.089(m,H), ¹³C NMR, (CH_2) 49.9 (CH_2) cyclohexane 52.8 (C) 130.4, (CH_3) 17.9, (CH) 119.6 Benzene. m/z 215.03 Base peak 459.57 (M⁺)

N- (4-(1H - benzo(d) (1,2,3) triazole-1-yl)(4-nitrophenyl)methyl) piperazin-1-yl)methyl) -2-methylaniline(Compound 14A):

Yellow colour, M.P -84°C ,Yield 85%, Mol Formula: $C_{25}H_{27}N_7O_2$, Mol Wt: 457.54, Elemental Analysis C,60.31;H,5.06: Cl 7.42, N,20.51;O,6.69, IR (CH)-bending 737,1443,(NO) 1520 (N=N) 1603, (NH) 1644, (CH₃)1400 cm⁻¹, ¹HNMR, (NH) 5.80, (CH₂) 2.71,(CH₂) methylene 4.13 (CH) 6.11 ¹³C NMR, (CH₂) 49.9 (CH₂) cyclohexane 52.8 (C) 130.7, (CH) 129.7 Benzene , m/z (BASE PEAK) 479.17, 478.17

N- (4-(1H - benzo(d) (1,2,3)-triazole-1-yl) (4-nitrophenyl) piperazin-1-yl) methyl) -4-methylaniline(Compound 15A):

Orange yellow colour, M.P .65°C ,Yield 90%,Mol Formula: $C_{25}H_{27}N_7O_2$, Mol Wt: 457.22, Elemental Analysis C,65.63;H,5.95: Cl 7.42, N,21.43;O,6.99, IR (CH)-bending 737,1443,(NO) 1520 (N=N) 1603, (NH) 1644(CH₃)1350 cm⁻¹, ¹HNMR, (NH) 6.34, (CH₂) methylene 2.71 (CH)8.00 benztriazole(CH) 8.20 benzene ¹³C NMR, (CH₂) 49.9 (CH₂) cyclohexane 52.8 (C) 130.7, (CH) 119.6 Benzene , m/z(BASE PEAK) 457.22,458.23,459.23

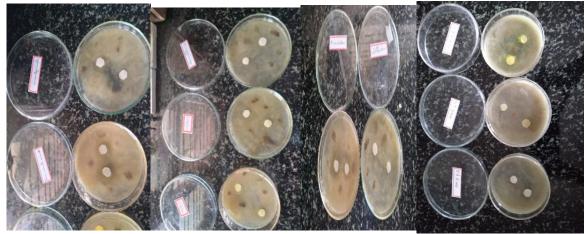
Table-05 Physio chemical properties of synthesized compound

Sl.No	Structure	M.P	Yield%
1A		82	86

2A	160	85
4A	95	90
5A	86	89
6A	65	82

11A	85	83
12 A	120	85
13A	158	87
144	9.4	85
14A	84	83

15A	65	90

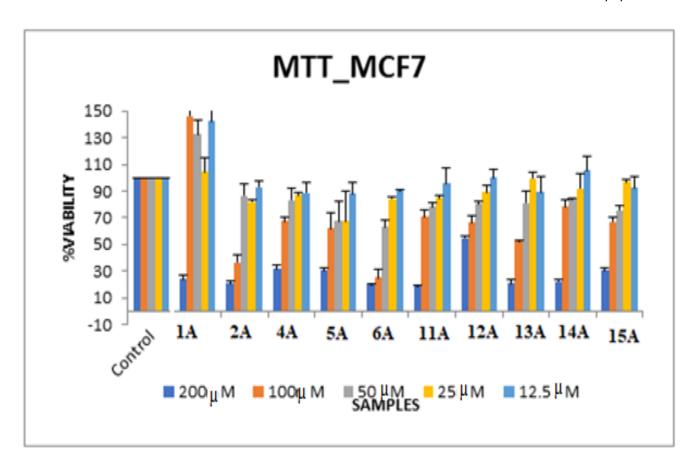

Anti-Bacterial activity and In vitroanticancer studies have been carried out for the following compounds 1A,2A,4A,5A, 6A,11A,12A,13A,14A,15A, in two different Bacteria (E.coli and Streptococcus) and two different cell line MCF7, and CaCO2. Among the compounds tested, 1A,2A,5A,12A showed significant anti-bacterial activity in E.coli and compounds 2A and 5A also showed appreciable anti-bacterial activity in streptococcuswhencomparedtostandardCiprofloxacin 35 mm.

Compounds 2A,6A exhibited a significant activity against MCF7 cell line with the IC_{50} values of 86.26 and 94.03 µg/mL respectively. Compounds 2A,6A exhibited a significant activity against CaCO2 cell line with IC_{50} value of 108 and 131.3 µg/mL respectively.

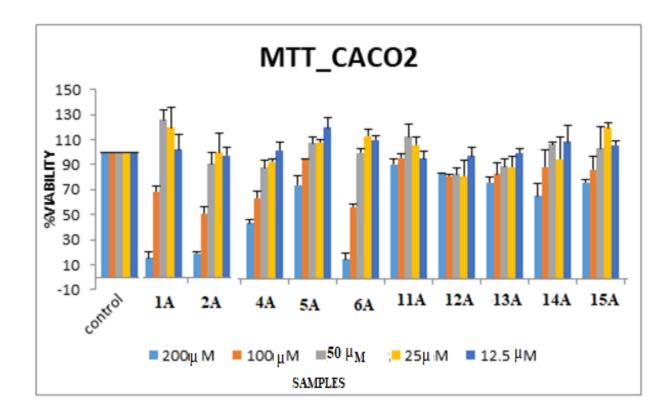

6.ANTIBACTERIALACTIVITY Table-06

Sl/N	Compounds	Antibacterial activity Zone of Inhibition(mm)		
		Escherichiacoli	Streptococc	
			us	
1	1A	25mm	15mm	
2	2A	23mm	20mm	
3	4A	17mm	25mm	
4	5A	20mm	18mm	
5	6A	15mm	14mm	
6	11A	15mm	12mm	
7	12A	20mm	10mm	
8	13A	17mm	15mm	
9	14A	10mm	19mm	
10	15A	5mm	12mm	
Std	Ciprofloxacin	35 mm.		

E.coli


Streptococcus

7. INVITRO ANTICANCER ACTIVITY


Table-07 MCF7 CELL LINE

%VIABILITY	200μΜ	100µM	5µM	25μΜ	12.5µM
Control	100	100	100	100	100
1A	23.9048	145.842	132.4328	104.2826	142.193
2A	20.97797	36.45095	86.21103	81.9797	93.01068
4A	31.77219	67.6065	83.14717	86.78286	88.83333
5A	30.34429	61.81188	67.18029	67.57703	87.95057
6A	19.59464	25.05297	63.14514	84.06038	90.22467
11A	18.78242	70.83273	78.18414	84.62788	95.81247
12A	54.76071	66.1438	80.16527	89.35987	99.74638
13A	20.64666	52.3609	81.17999	99.15667	88.85891
14A	22.34235	78.20146	83.84496	91.73872	105.4892
15A	30.50487	66.67344	75.48849	96.5173	92.50606

Table-08 CACO2 Cell Lines

%VIABILITY	200μΜ	100μΜ	50μΜ	25μΜ	12.5μΜ	
control	100	100	100	100	100	
1A	15.38221	68.45277	125.9489	119.3699	102.0307	
2A	18.85965	50.83663	90.67227	100.0084	97.32367	
4A	44.16988	64.49989	88.43283	93.13845	102.3748	
5A	74.59459	95.36391	108.0198	108.6756	120.6442	
6A	15.57018	57.05358	100.5801	113.7773	110.676	
11A	91.22807	96.41764	113.5072	106.7587	95.94889	
12A	84.02256	82.02907	83.32667	81.83205	97.88855	
13A	76.56642	83.26323	89.94163	89.29973	100.2994	
14A	66.00877	89.40368	107.0574	95.54996	109.4692	
15A	76.72306	87.18145	104.2131	120.5605	106.829	

The IC50 values for MCF7&CACO2Cell Line were displayed below. Table-09

CELL LINE	MCF7	CACO2		
COMPOUND CODE	IC50	IC50		
1A	191.57	142.62		
2A	86.26	108		
4A	147.37	170.5		
5A	127.8	306.2		
6A	94.03	131.3		
11A	128.98	813.04		
12A	204.09	400.59		
13A	122.79	441.9		
14A	142.26	280.3		
15A	143.32	317.07		

6. CONCLUSION:

As a result of the current study, The invitro anti-cancer activity shows that the compounds containing unsubstituted and disubstituted benzyl methyl amine in 4th position of piperazine ring system has no significant activity and mono substituted benzyl methyl amine in 4th position of piperazine ring system shows better cancer cell cytotoxicity. Among the screened compounds, the para acid substituted benzyl and ortho chloro benzyl substitution on the piperazine ring system have found to exhibit better in vitro anticancer activity. Moreover, the anti-bacterial activity of the same compounds has also been proved here, When comparing those two activities it is reveled that the compounds synthesized were more effective as anti-bacterial agents than anti-cancer agents. The results showed that the monosubstituted benzyl aminomethyl piperazine substitutions on N1 triazole imparted more on antibacterial activity. Thus the further substitutions on the N1 triazole systems need to be studied potentially valuable new anti-bacterial leads.

Table-10 ADMET⁴

Sl. No	Molecules	MW	HBD	НВА	GI Absorp tion	BBB Permea nt	Log K_p (s kin permeati on)	TPSA	Rule of Five
Acc epta ble ran ge	Acceptable range	130.0 - 725.0	0 - 6	2 - 20	HIGH- LOW	YES - NO	≤ 5	< 140Å ²	Maximum is 4
1.	Compound 1A	457.53 g/mol	1	7	High	No	-6.48 cm/s	95.04 Ų	0
2.	Compound 2A	487.51 g/mol	2	8	High	No	-8.18 cm/s	132.34 Ų	1
3.	Compound 4A	471.55 g/mol	1	6	High	No	-5.91 cm/s	95.04 Ų	0
4.	Compound 5A	491.97 g/mol	1	6	High	No	-5.85 cm/s	95.04 Ų	0
5.	Compound 6A	477.95 g/mol	1	6	High	No	-5.72 cm/s	95.04 Ų	1
6.	Compound 11A	488.50 g/mol	1	8	Low	No	-6.35 cm/s	140.86 Ų	1
7.	Compound 12A	471.55 g/mol	1	6	High	No	-5.61 cm/s	95.04 Ų	0
8.	Compound 13A	471.55 g/mol	1	6	High	No	-5.61 cm/s	95.04 Ų	0
9.	Compound 14A	457.53 g/mol	1	6	High	No	-5.78 cm/s	95.04 Ų	0
10.	Compound 15A	457.53 g/mol	1	6	High	No	-5.78 cm/s	95.04 Ų	0

ACKNOWLEDGMENTS:

The authors are thankful to the management, Director, Principal, and faculties of R. R. College of Pharmacy, Chikkabanavaram, for rendering the facilities to complete my work successfully. Specially I would like to thank Dr. Vachala Pharmaceutical chemistry Dept who guided to complete my work.

CONFLICTS OF INTEREST:

The authors declare no conflict of interest

REFERENCES:

- Frank PV, Poojary MM, Damodara N, Chikkanna C. Synthesis and antimicrobial studies of some Mannich bases carrying imidazole moiety. Acta Pharmaceutica. 2013 Jun 1;63(2):231-9.
- Bogdanov AV, Al'bina MV, Khasiyatullina NR, Krivolapov DB, Dobrynin AB, Voloshina AD, Mironov VF. New N-Mannich bases obtained from isatin and piperazine derivatives: the synthesis and evaluation of antimicrobial activity. Chemistry of Heterocyclic Compounds. 2016 Jan 1;52(1):25-30
- Thriveni KS, Padmashali B, Siddesh MB, Sandeep C. Synthesis of pyrimidine incorporated piperazine derivatives and their antimicrobial activity. Indian journal of pharmaceutical sciences. 2014 Jul;76(4):332
- 4 Zhao X, Lu BW, Lu JR, Xin CW, Li JF, Liu Y. Design, synthesis and antimicrobial activities of 1, 2, 3-triazole derivatives. Chinese Chemical Letters. 2012 Aug 1;23(8):933-5.
- 5 Sriram D, Banerjee D, Yogeeswari P. Efavirenz Mannich bases: synthesis, anti-HIV and antitubercular activities. Journal of enzyme inhibition and medicinal chemistry. 2009 Feb 1;24(1):1-
- 6 Sriram D, Banerjee D, Yogeeswari P. Efavirenz Mannich bases: synthesis, anti-HIV and antitubercular activities. Journal of enzyme inhibition and medicinal chemistry. 2009 Feb 1;24(1):1-
- Paneth A, Trotsko N, Popiołek Ł, Grzegorczyk A, Krzanowski T, Janowska S, Malm A, Wujec M. Synthesis and Antibacterial Evaluation of Mannich Bases Derived from 1, 2, 4- Triazole. Chemistry & biodiversity. 2019 Oct;16(10):e1900377
- 8 Tan W, Li Q, Wang H, Liu Y, Zhang J, Dong F, Guo Z. Synthesis, characterization, and antibacterial property of novel starch derivatives with 1, 2, 3-triazole. Carbohydrate polymers. 2016 May 20;142:1-7.
- 9 Pujar Gv. Design, Synthesis And In Vitro Anti-Cancer Activity Of Novel 1, 2, 4-Triazole Derivatives

- Pokhodylo N, Shyyka O, Matiychuk V. Synthesis of 1, 2, 3-triazole derivatives and evaluation of their anticancer activity. Scientia pharmaceutica. 2013 Sep;81(3):663-76.
- Penthala NR, Madhukuri L, Thakkar S, Madadi NR, Lamture G, Eoff RL, Crooks PA. Synthesis and anti-cancer screening of novel heterocyclic-(2 H)-1, 2, 3-triazoles as potential anti-cancer agents. MedChemComm. 2015;6(8):1535-43.
- Yan SJ, Liu YJ, Chen YL, Liu L, Lin J. An efficient one-pot synthesis of heterocycle-fused 1, 2, 3-triazole derivatives as anti-cancer agents. Bioorganic & medicinal chemistry letters. 2010 Sep 1;20(17):5225-8
- Nagesh HN, Suresh N, Prakash GV, Gupta S, Rao JV, Sekhar KV. Synthesis and biological evaluation of novel phenanthridinyl piperazine triazoles via click chemistry as anti-proliferative agents. Medicinal Chemistry Research. 2015 Feb 1;24(2):523-32.
- Kumar CA, Prasad SB, Vinaya K, Chandrappa S, Thimmegowda NR, Kumar YS, Swarup S, Rangappa KS. Synthesis and in vitro antiproliferative activity of novel 1-benzhydrylpiperazine derivatives against human cancer cell lines. European journal of medicinal chemistry. 2009 Mar 1;44(3):1223-9.
- Zhang S, Xu Z, Gao C, Ren QC, Chang L, Lv ZS, Feng LS. Triazole derivatives and their anti-tubercular activity. European Journal of Medicinal Chemistry. 2017 Sep 29:138:501-13.
- Ali AA, Gogoi D, Chaliha AK, Buragohain AK, Trivedi P, Saikia PJ, Gehlot PS, Kumar A, Chaturvedi V, Sarma D. Synthesis and biological evaluation of novel 1, 2, 3-triazole derivatives as anti-tubercular agents. Bioorganic & Medicinal Chemistry Letters. 2017 Aug 15;27(16):3698-703
- 17 Sánchez JS. Antioxidant activity and antimicrobial evaluation of 1-benzyl-1, 2, 3-triazole.
- 18 E. Bennet-Jenkins and C. Bryant, "Novel sources of anthelmintics," International Journal for Parasitology, vol. 26, no. 8-9, pp. 937–947, 1996.
- M. K. Scott, G. E. Martin, D. L. DiStefano et al., "Pyrrole mannich bases as potential antipsychotic agents," Journal of Medicinal Chemistry,vol.35,no.3,pp.552–558,1992.
- G. B. Barlin and C. Jiravinya, "Potential antimalarials . X. DiMannich Bases of 4-(7-Trifluoromethyl-1,5-naphthyridin4-ylamino)phenol and N-(4-Diethylamino-1-methylbutyl) 7-trifluoromethyl-1,5-naphthyridin-4-amine,"

 Australian JournalofChemistry,vol.43,no.7,pp.1175–1181,1990.
- Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, John Wiley & Sons, New York, NY, USA, 3rd edition, 1985.

- V. J. Belinelo, G. T. Reis, G. M. Stefani, D. L. Ferreira-Alves, and D. Pilo-Veloso, "Synthesis of 6 ' α ,7 β -dihydroxyvouacapan17 β -oic acid derivatives. Part IV: mannich base derivatives and its activities on the electrically stimulated guinea-pig ileum preparation," Journal of the Brazilian Chemical Society, vol. 13, no. 6, pp. 830–837, 2002.
- S. Joshi, N. Khosla, and P. Tiwari, "In vitro study of some medicinally important Mannich bases derived from anti-tubercular agent," Bioorganic & Medicinal Chemistry, vol. 12, no. 3, pp. 571–576, 2004
- C Geetha Priya Loganathan, Aidajinghun Syiemlieh.In silico Studies, Synthesis and Antibacterial Activity of Heterocyclic Compounds with Mannich Bases2023 Mar Volume: 13, Issue: 1, Page no. 15-23, DOI:10.26463/rjps.13_1_6.
- Gupta D, Jain DK. Synthesis, antifungal and antibacterial activity of novel 1, 2, 4-triazole derivatives. Journal of advanced pharmaceutical technology & research. 2015 Jul;6(3):141.
- Gao F, Wang T, Xiao J, Huang G. Antibacterial activity study of 1, 2, 4-triazole derivatives. European journal of medicinal chemistry. 2019 Jul 1;173:274-81.
- Mishra R, Kumar R, Kumar S, Majeed J, Rashid M, Sharma S. Synthesis and in vitro antimicrobial activity of some triazole derivatives. Journal of the Chilean Chemical Society. 2010;55(3):359-62.
- El Bourakadi K, Mekhzoum ME, Saby C, Morjani H, Chakchak H, Merghoub N, Bouhfid R. Synthesis, characterization and in vitro anticancer activity of thiabendazole-derived 1, 2, 3-triazole derivatives. New Journal of Chemistry. 2020;44(28):12099-106.
- Németh-Rieder A, Keglevich P, Hunyadi A, Latif AD, Zupkó I, Hazai L. Synthesis and In Vitro Anticancer Evaluation of Flavone—1, 2, 3-Triazole Hybrids. Molecules. 2023 Jan;28(2):626.
- Thanh ND, Giang NT, Ha NT, Le CT, Van HT, Toan VN. Synthesis and in vitro anticancer activity of 4H-pyrano [2, 3-d] pyrimidine—1H-1, 2, 3-triazole hybrid compounds bearing D-glucose moiety with dual EGFR/HER2 inhibitory activity and induced fit docking study. Journal of Molecular Structure. 2023 Jan 5;1271:133932.
- 31 Şenol H, Ağgül AG, Atasoy S, Güzeldemirci NU. Synthesis, characterization, molecular docking and in vitro anti-cancer activity studies of new and highly selective 1, 2, 3-triazole substituted 4-hydroxybenzohyrdazide derivatives. Journal of Molecular Structure. 2023 Jul 5;1283:135247.
- 32 Nallapu MR, Vadluri R, Arasan J. Design and synthesis of new Nilutamide-1, 2, 3-triazole derivatives as in vitro Anticancer agents. Chemical Biology Letters. 2022 Sep 14;9(4):405-.
- 33 El Bourakadi K, Mekhzoum ME, Saby C, Morjani H, Chakchak H, Merghoub N, Bouhfid R. Synthesis, characterization and in vitro anticancer activity of thiabendazole-derived 1, 2, 3-triazole derivatives. New Journal of Chemistry. 2020;44(28):12099-106.

- Muniyappan G, Kathavarayan S, Balachandran C, Kalliyappan E, Mahalingam SM, Salam AA, Aoki S, Arumugam N, Almansour AI, Kumar RS. Synthesis, anticancer and molecular docking studies of new class of benzoisoxazolyl-piperidinyl-1, 2, 3-triazoles. Journal of King Saud University-Science. 2020 Dec 1;32(8):3286-92.
- Özil M, Tacal G, Baltaş N, Emirik M. Synthesis and molecular docking studies of novel triazole derivatives as antioxidant agents. Letters in Organic Chemistry. 2020 Apr 1;17(4):309-20.
- Hussain M, Qadri T, Hussain Z, Saeed A, Channar PA, Shehzadi SA, Hassan M, Larik FA, Mahmood T, Malik A. Synthesis, antibacterial activity and molecular docking study of vanillin derived 1, 4-disubstituted 1, 2, 3-triazoles as inhibitors of bacterial DNA synthesis. Heliyon. 2019 Nov 1;5(11):e02812.
- Erazua EA, Oyebamiji AK, Adeleke BB. DFT-QSAR and Molecular Docking Studies on 1, 2, 3-Triazole-Dithiocarbamate Hybrids as Potential Anticancer Agents. Physical Science International Journal. 2018:1-0.
- Naidu KM, Srinivasarao S, Agnieszka N, Ewa AK, Kumar MM, Sekhar KV. Seeking potent anti-tubercular agents: Design, synthesis, anti-tubercular activity and docking study of various ((triazoles/indole)-piperazin-1-yl/1, 4-diazepan-1-yl) benzo [d] isoxazole derivatives. Bioorganic & medicinal chemistry letters. 2016 May 1;26(9):2245-50.
- Deshmukh TR, Khare SP, Krishna VS, Sriram D, Sangshetti JN, Khedkar VM, Shingate BB. Synthesis, bioevaluation and molecular docking study of new piperazine and amide linked dimeric 1, 2, 3-triazoles. Synthetic Communications. 2020 Jan 17;50(2):271-88.
- C Danta C, Piplani P. Design, synthesis and molecular docking studies of new potential piperazine derivatives as cognition enhancers. Central Nervous System Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Central Nervous System Agents). 2017 Aug 1;17(2):157-70.
- Nehra N, Tittal RK, Ghule VD. 1, 2, 3-Triazoles of 8-Hydroxyquinoline and HBT: Synthesis and Studies (DNA Binding, Antimicrobial, Molecular Docking, ADME, and DFT). ACS omega. 2021 Oct 6;6(41):27089-100.