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Abstract 

The interaction between plants and microbes is pivotal to sustainable agriculture, encompassing mutualistic, 

pathogenic, and commensurate interactions. Plants and microbes communicate chemically through various 

molecules, including phytohormones, secondary metabolites, and quorum-sensing molecules. These molecules 

play a significant role in plant defence, growth, and microbial communication. A plant's defence mechanisms 

against pathogens involve identifying pathogen-associated molecular patterns (PAMPs) and triggering 

effector-triggered immunity (ETI), as well as activating hypersensitive reactions and systemic acquired 

resistance through resistance (R) proteins. In addition to contributing to the antimicrobial activity of plants, 

phytoalexins induce systemic resistance as well. Beneficial plant-microbe interactions, including those with 

plant growth-promoting rhizobacteria, mycorrhizal associations, and endophytic microbes, offer potential for 

sustainable agriculture by enhancing nutrient uptake, stress tolerance, and crop productivity. These interactions 

reduce reliance on chemical fertilizers and pesticides, enhance crop resilience, and offer bioremediation 

potential. However, understanding the complexity of plant-microbe interactions and developing targeted 

strategies for manipulating these interactions present challenges. Future research directions include exploring 

the potential of synthetic biology, addressing ethical and regulatory considerations, and leveraging the benefits 

of plant-microbe interactions for sustainable agriculture. The review provides a comprehensive overview of 

the current understanding of plant-microbe interactions and highlights the importance of further research in 

harnessing these interactions for sustainable agriculture. 
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1. Introduction  

The interaction between plants and microbes is 

critical to sustainable agriculture since it influences 

plant growth, health, and productivity. 

Understanding these interactions is important for 

the development of sustainable agricultural 

practices, as they can both be beneficial and 

detrimental. Plant-associated microbes have the 

potential to provide economical and sustainable 

solutions to current agricultural challenges (Ke et 

al., 2021). These interactions can improve plant 

growth and health, making them a focal point in 

sustainable agricultural research (Coker et al., 

2022). Exploiting plant-microbe interactions is 

important for meeting agricultural demands 

sustainably (Mataranyika et al., 2022). 

Furthermore, plant-microbe interactions are 

essential for controlling ecosystem functioning and 

can significantly influence nutrient availability 

(Gondal et al., 2021). 

Plant-microbe interactions are also important for 

sustainable agriculture as they improve crop 

production and agricultural sustainability (Nguyen 

et al., 2022). It has been shown that these 

interactions can improve plant resistance and 

tolerance to abiotic stresses, ultimately enhancing 

crop productivity (Poudel et al., 2019). 

Additionally, plant-microbe interactions can 

influence above- and belowground interactions 

between plants and other organisms, making them 

valuable for managing agricultural ecosystems 

(Löser et al., 2022). Understanding the ecological 

consequences of these interactions is crucial for 

sustainable agricultural practices, as they can 

impact the overall community assembly of plant-

root microbiomes (Hietaranta et al., 2022). 

The significance of microbes in sustainable crop 

production (Patil et al., 2020) is highlighted by their 

essential role in promoting plant growth under 

stressful conditions. Furthermore, the information 

gained from studying plant-microbe interactions 

may be used to formulate these microbes into 

biofertilizers for sustainable crop production 

(Nosheen et al., 2021). The multifaceted roles of 

flavonoids in regulating plant-microbe interactions 

further underscore the importance of understanding 

these relationships for sustainable agriculture 

(Wang et al., 2022). Moreover, the ability of plant-

associated microbes to influence indirect plant 

defenses has implications for disease transmission 

and herbivory, further emphasizing their 

importance in agricultural sustainability (Pulido et 

al., 2019). 

Plant-microbe interactions can, however, 

negatively affect plant recruitment and generalist 

predators as well, highlighting the complexity of 

these relationships and the need for comprehensive 

research to understand their full impact (O'Brien et 

al., 2021). Additionally, the inconsistent 

functionality and persistence of plant beneficial 

microbes in the field pose challenges to their 

effective utilization in sustainable agriculture (Hu 

& Chen, 2021). 

In conclusion, plant-microbe interactions are of 

paramount importance in sustainable agriculture, 

as they have the potential to improve crop 

productivity, enhance plant resilience to stress, and 

contribute to the overall health of agricultural 

ecosystems. Understanding the complexities of 

these interactions is crucial for developing effective 

and sustainable agricultural practices. 

 

2. Mutualistic interactions and Symbiotic 

relationships 

The mutualistic interactions between plants and 

microbes encompass a wide range of symbiotic 

relationships that are vital to both partners' health 

and functioning. Particularly symbiotic 

relationships facilitate beneficial mutualistic 

interactions between plants and microbes, 

promoting nutrient acquisition, stress tolerance, 

and overall plant health (Khaliq et al., 2022). These 

relationships are characterized by a mutually 

beneficial exchange of resources and services, 

ultimately enhancing the fitness and physiology of 

both partners (Jaiswal et al., 2023). 

The symbiotic relationship between arbuscular 

mycorrhizal fungi (AMF) and plants is an excellent 

example of a mutualistic interaction. In addition to 

improving plant survival and productivity, AMF 

forms symbiotic associations with plant roots, 

facilitating the exchange of nutrients and water. 

This enhances the plant's ability to withstand 

environmental stresses and promotes overall 

growth and productivity.  The importance of 

nutrient transport as the core of these symbiotic 

relationships highlights the essential role of AMF 

in facilitating beneficial interactions with plants 

(Sun et al., 2021). Furthermore, the establishment 

of mycorrhizal symbiosis requires genetic and 

epigenetic reprogramming and metabolome 

modulation by the exchange of effector molecules 

between the beneficial microbe and the plant, 

emphasizing the intricate nature of these 

mutualistic associations (Šečić et al., 2021). 

The mutualistic relationship between nitrogen-

fixing rhizobia bacteria and leguminous plants is 

another example of a positive mutualistic 

interaction. As a result of this symbiosis, 

atmospheric nitrogen is converted into a form that 

is readily available to plants, thereby increasing soil 

fertility and promoting plant growth and 
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productivity (Harris et al., 2021).  Extensive 

research efforts have been made to understand the 

molecular, physiological, and ecological aspects of 

this symbiotic relationship, highlighting its 

significance in promoting plant health and 

productivity (Habtewold & Goyal, 2023). 

Moreover, the mutualistic interactions between 

plants and Streptomyces bacteria, as well as 

pollinating bees, exemplify the diverse nature of 

beneficial mutualistic associations. These 

interactions contribute to the overall health and 

resilience of plants, highlighting the multifaceted 

roles of microbes in establishing mutualistic 

relationships with both plants and insects (Kim et 

al., 2019). 

Ultimately, mutualistic interactions between plants 

and microbes provide a wide range of symbiotic 

relationships that are vital to promoting plant 

health, stress tolerance, and overall productivity. 

Examples such as the symbiotic relationships with 

arbuscular mycorrhizal fungi, nitrogen-fixing 

rhizobia bacteria, and Streptomyces bacteria, as 

well as pollinating bees, underscore the 

significance of these interactions in shaping the 

dynamics of plant-microbe associations and their 

implications for sustainable agriculture. 

 

3. Pathogenic interactions and attack 

mechanism   

Plants are attacked by pathogens through a 

complex interplay between the pathogen and the 

host plant's defense mechanisms. When pathogens 

attack the plant's immune system, conserved 

molecular patterns, known as pathogen-associated 

molecular patterns (PAMPs), trigger basal immune 

responses called PAMP-triggered immunity (PTI) 

(Campos et al., 2022). The rhizosphere, the region 

of soil influenced by the plant's roots, acts as the 

first line of defense against pathogen infection, 

serving as an initial filter for the subset of microbes 

that will colonize the root as endophytes (Liu et al., 

2019). Furthermore, the alteration of the cuticle in 

leaves of mycorrhizal plants may be part of the 

priming mechanism to more efficiently react to 

subsequent pathogen attacks (Mendoza-Soto et al., 

2022). Actinobacteria are known for the production 

of secondary metabolites under stress, which 

initiates pre-signaling to enable induced immunity 

at early plant stages to tackle pathogen attacks 

during the later stages of plant development (Arun 

et al., 2023). Additionally, the sensing of abiotic 

stress, mechanical injury, or pathogen attack by a 

single plant tissue results in the activation of 

systemic signals that travel from the affected tissue 

to the entire plant, alerting it of an impending stress 

or pathogen attack (Fichman & Mittler, 2021). 

Plant diseases caused by pathogenic interactions 

can have a significant impact on crop productivity, 

since they can lead to substantial yield losses. In 

response to pathogen attacks, the induced defense 

mechanism is activated, and it has been shown that 

the alteration of the cuticle of leaves in mycorrhizal 

plants may serve as a priming mechanism for the 

plant to be able to respond to future pathogen 

attacks more efficiently (Mendoza-Soto et al., 

2022). Furthermore, the interaction between 

Crocus sativus and Fusarium oxysporum, based on 

dual RNA-seq, indicates that in the host saffron, its 

phenylpropanoid metabolism, plant hormone 

signal transduction, and plant-pathogen interaction 

pathways were activated during the infection 

process, which were conducive to the enhancement 

of cell wall, the occurrence of hypersensitivity, and 

the accumulation of various antibacterial proteins 

and phytoantitoxins (Luo et al., 2022). 

Additionally, the recognition of pathogen effectors 

by specific resistant (R)-proteins in plants initiates 

an immune mechanism termed effector-triggered 

immunity, which plays a crucial role in plant 

defense against pathogen attacks (Campos et al., 

2021). 

The mechanisms of pathogen attack on plants are 

complex and involve interactions between the 

pathogen and the host plant's defence responses, 

which include the recognition of PAMPs, alteration 

of the cuticle and systemic signalling. The impact 

of pathogenic interactions on crop productivity is 

significant, as plant diseases caused by pathogen 

attacks can lead to substantial yield losses. 

Understanding these mechanisms and their impact 

on crop productivity is crucial for developing 

effective strategies to mitigate the effects of 

pathogen attacks and promote sustainable 

agriculture. 

 

4. Commensal interactions 

The communal interactions between plants and 

microbes involve a type of ecological relationship 

where one organism benefits from the other 

without being significantly harmed or benefited. 

Plant microbiota interact in such a manner that 

contributes significantly to the overall health and 

resilience of plants. Examples of commensal 

interactions include the association of plants with 

beneficial, commensal, and pathogenic microbes, 

which collectively make up the plant microbiota. 

The root microbiome consists of commensal, 

pathogenic, and plant-beneficial microbes, 

highlighting the diverse nature of microbial 

interactions in the rhizosphere. Furthermore, plants 

form commensal associations with soil 

microorganisms, creating a root microbiome that 
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provides benefits to the host, including protection 

against pathogens. 

Various aspects of plant health and functioning are 

affected by commensal interactions, which have 

many potential benefits for plants. It is well known 

that commensal interactions with microbial 

communities can have a significant impact on 

plants' ability to adapt to their environment and 

evolve, resulting in their resilience and survival as 

a result.  Additionally, the root microbiome plays a 

crucial role in enhancing the defense potential of 

plants by activating a broad-spectrum immune 

response in leaves, known as induced systemic 

resistance (ISR). Moreover, commensal 

interactions with soil microorganisms can directly 

benefit the host plant by enhancing plant growth 

and indirectly by producing hydrolytic enzymes 

and priming plant defense. 

In conclusion, commensal interactions between 

plants and microbes are integral to the plant 

microbiota and contribute to the overall health, 

resilience, and adaptive capacity of plants. 

Understanding the diverse nature of commensal 

interactions and their potential benefits for plants is 

crucial for elucidating the complex dynamics of 

plant-microbe associations and their implications 

for sustainable agriculture. 

 

5. Chemical Signaling in Plant-Microbe 

Interactions 

Various aspects of plant health, growth, and stress 

responses can be affected by chemical signaling in 

plant-microbe interactions. Phytohormones, such 

as auxins, cytokinins, and gibberellins, are 

significant for the bi-directional communication 

between plants and microbes, regulating processes 

such as root development, nutrient uptake, and 

stress responses Rodríguez et al. (2019). 

Additionally, emerging evidence has shown that 

extracellular vesicles (EVs) play a prominent role 

in plant-microbe interactions by safely transporting 

functional molecules, such as proteins and RNAs, 

to interacting organisms, thereby influencing 

interkingdom communication and signaling (He et 

al., 2021). 

The volatile organic compounds produced by 

microbes have been shown to be plants growth 

promoters as well as signaling molecules between 

holobionts and their rhizosphere communities, 

which influence plant-microbe interactions and 

ecosystem functions (Lyu et al., 2021).  

Furthermore, the modulation of the plant defense 

system in response to microbial interactions 

involves the activation of the sophisticated plant 

immune system at the molecular level, highlighting 

the intricate chemical signaling mechanisms 

involved in plant-microbe interactions (Nishad et 

al., 2020). Chemical interactions at the interface of 

plant root hair cells and intracellular bacteria 

contribute to the maintenance of symbiosis and 

enhanced plant cell growth, emphasizing the role of 

chemical signaling in promoting beneficial plant-

microbe interactions (Chang et al., 2021). 

The nitric oxide molecule has been found to be a 

potential signaling molecule in plant-microbe 

interactions, influencing the establishment of 

symbiotic relationships and regulating plant 

responses to microbial colonization (Pande et al., 

2021).  Moreover, chemical signaling between 

bacteria-bacteria, bacteria-fungi, and plant-

microbe interactions plays diverse roles in 

mediating microbial communication and 

influencing plant-microbe associations (White et 

al., 2019). The development of chemical probes for 

key signaling molecules and phytohormones is 

essential for better understanding plant-microbe 

interactions, particularly beneficial interkingdom 

relationships (Vivian, 2021). 

The coordination of tripartite interactions among 

plants and microbes in the rhizosphere is also 

facilitated by chemical signaling between plants 

and microbes, which facilitates info-chemical 

exchanges, signaling molecules, and biological 

mechanisms that influence plant-microbe and 

microbe-microbe interactions (Mashabela et al., 

2022).  Efforts to understand the chemistry behind 

the interactions in the plant holobiont have revealed 

a complex network of molecules and metabolic 

pathways that modulate plant-microbe and 

microbe-microbe communication pathways, 

regulating diverse ecological responses (Berlanga-

Clavero et al., 2020). Additionally, the effect of 

strigolactones on the recruitment of the rice root-

associated microbiome demonstrates the active 

exudation of signaling molecules by plants to 

recruit beneficial microbes, influencing plant-

microbe interactions and ecosystem functioning 

(Kim et al., 2022). 

In conclusion, chemical signaling in plant-microbe 

interactions encompasses a diverse array of 

signaling molecules, phytohormones, and chemical 

communication pathways that mediate the 

coordination and communication between plants 

and microbes. Understanding these chemical 

signaling mechanisms is crucial for elucidating the 

complex dynamics of plant-microbe associations 

and their implications for sustainable agriculture 

and ecosystem functioning. 

 

5.1. Plant-derived signaling molecules 

Plant-derived signaling molecules, including 

phytohormones and secondary metabolites, play a 
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crucial role in mediating various aspects of plant-

microbe interactions. Salicylic acid (SA), jasmonic 

acid (JA), and ethylene (ET) are phytohormones 

that play a key role in regulating plant growth and 

development as well as in defending plants from 

pathogens and herbivores Han & Kahmann 

(2019)Zhao & Li, 2021; Zhou et al., 2022; Batool 

et al., 2022; Ahmad et al., 2022; V et al., 2023; 

Zhuang et al., 2021; Ahmad et al., 2022; Islam et 

al., 2019; Dodueva et al., 2021; Dhar et al., 2020; 

Ramabulana et al., 2020; Ofir et al., 2021; Gao et 

al., 2020; Yang et al., 2020; Abhyankar & Kottayi, 

2021; Sreelakshmy et al., 2021; Deryabin et al., 

2021; Betti et al., 2021). These phytohormones are 

critical for activating plant immune responses, 

inducing systemic acquired resistance (SAR) and 

induced systemic resistance (ISR), and modulating 

the trade-off between plant growth and defense 

(Zhou et al., 2022; Batool et al., 2022; Ahmad et 

al., 2022). Additionally, secondary metabolites 

derived from plants, including terpenoids, 

flavonoids, alkaloids, tannins, and anthraquinones, 

exhibit antimicrobial activity and contribute to the 

plant's ability to combat microbial infections 

(Ramabulana et al., 2020; Ofir et al., 2021; Gao et 

al., 2020; Yang et al., 2020; Abhyankar & Kottayi, 

2021; Sreelakshmy et al., 2021; Deryabin et al., 

2021; Betti et al., 2021; Nam et al., 2019; Twaij et 

al., 2022; Ogundairo et al., 2023; Okezie et al., 

2023; Christiansen et al., 2020; Inayah et al., 2022; 

Ouyang et al., 2021; Cokera & Adeniyi-Aogo, 

2022; Dave et al., 2019; Alkhulaifi et al., 2019; 

Mesta et al., 2020; Nayak et al., 2019). 

The secondary metabolites derived from plants, 

such as terpenoids, flavonoids, and alkaloids, have 

also been found to possess antimicrobial properties, 

inhibiting the growth of pathogenic 

microorganisms and contributing to the plant's 

defense against microbial infection (Twaij et al., 

2022; Ogundairo et al., 2023; Okezie et al., 2023; 

Christiansen et al., 2020; Inayah et al., 2022; 

Ouyang et al., 2021; Cokera & Adeniyi-Aogo, 

2022; Dave et al., 2019; Alkhulaifi et al., 2019; 

Mesta et al., 2020; Nayak et al., 2019). These 

secondary metabolites are involved in regulating 

plant-microbe interactions and influencing the 

production of various defense-related enzymes and 

pathogenesis-related proteins (Ramabulana et al., 

2020; Ofir et al., 2021; Gao et al., 2020; Yang et 

al., 2020; Abhyankar & Kottayi, 2021; 

Sreelakshmy et al., 2021; Deryabin et al., 2021; 

Betti et al., 2021; Nam et al., 2019). The interplay 

between plant hormones and secondary metabolites 

contributes to the modulation of plant defense 

responses and the regulation of antimicrobial 

activities (Ramabulana et al., 2020; Ofir et al., 

2021; Gao et al., 2020; Yang et al., 2020; 

Abhyankar & Kottayi, 2021; Sreelakshmy et al., 

2021; Deryabin et al., 2021; Betti et al., 2021; Nam 

et al., 2019). 

Phytohormones and secondary metabolites are 

plant-derived signaling molecules that play an 

important role in mediating plant-microbe 

interactions, regulating defense responses, growth 

promotion, and antimicrobial properties. 

Understanding the intricate interplay between these 

signaling molecules and their impact on plant-

microbe interactions is essential for elucidating the 

complex dynamics of plant defense and microbial 

interactions. 

 

5.2 Microbe-derived signaling molecules 

For microbial communication and plant immunity, 

microbe-derived signalling molecules such as 

farnesol, tyrosol, and autoinducers are essential. 

Rodrigues & Černáková (2020)Naguib et al., 2022; 

Jung & Meile, 2020; Tan et al., 2019; Liang et al., 

2019).These molecules enable bacteria to 

coordinate their response to external or internal 

stimuli and regulate behaviors such as biofilm 

formation and antimicrobial resistance. Effector 

molecules, produced by pathogens and pests, also 

play a significant role in modulating plant 

immunity and promoting effector-triggered 

susceptibility (ETS) through the manipulation of 

host protein activities (Todd et al., 2022; Guo & 

Cheng, 2022; Kim et al., 2022; Prešern, 2023; 

Motamedifar et al., 2021; Liu et al., 2020). These 

effector molecules are recognized by plant immune 

receptors, such as nucleotide-binding leucine-rich 

repeat receptors (NLRs), triggering defense 

responses and influencing the outcome of plant-

pathogen interactions. Effector molecules are 

essential for the establishment of pathogenicity and 

virulence in microbial pathogens and pests, 

contributing to the modulation of plant defense 

pathways and the suppression of host immune 

responses. 

In conclusion, microbe-derived signalling 

molecules, such as quorum sensing molecules and 

effector molecules, play an important role in 

influencing plant immunity and facilitating 

microbial communication. Understanding the 

intricate interplay between these signaling 

molecules and their impact on plant-microbe 

interactions is essential for elucidating the complex 

dynamics of microbial communication and its 

implications for plant health and disease resistance. 

 

6. Plant Defense Mechanisms against Pathogens 

The plant's defence mechanisms against pathogens 

involve a complex interplay of molecular, cellular, 
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and physiological processes aimed at preventing 

microbial invasions. Plant survival depends heavily 

on these defence mechanisms, which play a 

significant role in shaping the outcomes of 

interactions between plants and pathogens. 

Investigating the molecular mechanisms of plant-

pathogen interactions, including pathogenicity and 

plant resistance, is essential for developing novel 

and safer strategies for effectively controlling plant 

diseases Cheng et al. (2020). 

Plants possess specialized structures, chemicals, 

and complex defense mechanisms against 

pathogens. These defense mechanisms include the 

production of antimicrobial compounds, reactive 

oxygen species, and the hypersensitive response, as 

well as the deposition of callose and lignin to 

strengthen cell walls and block pathogen entry 

(Irkitbay et al., 2022; Gupta et al., 2021; Iqbal et 

al., 2021; Oblessuc et al., 2020; Gupta et al., 2020; 

Bi et al., 2022). Additionally, plants produce 

phytoalexins, which are antimicrobial secondary 

metabolites, as part of their defense response to 

pathogen attack (Bi et al., 2022). The induction of 

systemic acquired resistance (SAR) and the 

activation of plant immunity inducers are also 

critical components of plant defense against 

pathogens (Hu et al., 2022; Fatima & Senthil-

Kumar, 2021; Gold, 2021; Kv, 2019; Benjamin et 

al., 2022). 

The effector-triggered immunity (ETI) mechanism 

is another essential defense mechanism in plants, 

involving the recognition of pathogen effectors by 

plant immune receptors, which activates defense 

responses and suppresses the pathogen's virulence 

factors (Wang et al., 2021; Pantiya & Mikhailova, 

2020; Tan et al., 2019; Pran, 2022). The 

deployment of immune receptors and the 

modulation of plant immunity play a crucial role in 

plant defense against pathogens (Bufford et al., 

2019; Yang et al., 2022; Jiang et al., 2020). 

Furthermore, the interplay between plant immune 

receptors and pathogen effectors is a key 

determinant of plant disease resistance and 

susceptibility (Xi et al., 2021; Luo et al., 2022; Guo 

& Cheng, 2022). 

Additionally, plants establish mutualistic 

relationships with beneficial microbes while 

deploying the immune system to defend against 

pathogenic ones (Kourelis et al., 2023; Campos et 

al., 2021; Morcillo et al., 2019). The role of the 

plant microbiota in gating proper 

immunocompetence and the impact of eubiotic 

microbiota on plant immunity have been the focus 

of recent research (Paasch et al., 2023; Bjornson & 

Zipfel, 2021). 

In conclusion, plant defense mechanisms against 

pathogens involve a diverse array of molecular and 

physiological processes, including the production 

of antimicrobial compounds, the activation of 

immune receptors, and the establishment of 

mutualistic associations with beneficial microbes. 

Understanding these defense mechanisms is crucial 

for developing effective strategies to enhance plant 

resistance to pathogens and mitigate the impact of 

plant diseases. 

 

6.1 Recognition of pathogen-associated 

molecular patterns (PAMPs) 

Plant defense mechanisms are triggered by 

recognition of pathogen-associated molecular 

patterns (PAMPs) in pathogen-microbe 

interactions. PAMPs are conserved molecular 

patterns present in microbial pathogens, such as 

bacteria, fungi, and oomycetes, and are recognized 

by plant pattern recognition receptors (PRRs) to 

trigger a series of immune responses, collectively 

known as PAMP-triggered immunity (PTI) (Hu et 

al., 2022; Zhou et al., 2021; Zhao, 2023; Teixeira 

et al., 2019; Piazza et al., 2021; Gamir et al., 2020; 

Janda et al., 2019; Wang et al., 2019). Upon 

recognition of PAMPs, PRRs initiate a cascade of 

signaling events, leading to the activation of 

defense mechanisms, including the production of 

antimicrobial compounds, reinforcement of cell 

walls, and the induction of 

systemic acquired resistance (SAR) (Hu et al., 

2022; Zhou et al., 2021; Zhao, 2023; Teixeira et al., 

2019; Piazza et al., 2021; Gamir et al., 2020; Janda 

et al., 2019; Wang et al., 2019). 

PAMPs can include a wide range of molecules, 

such as bacterial flagellin, chitin, and other 

conserved microbial components, which are 

recognized by specific PRRs, leading to the 

activation of defense responses in plants (Hu et al., 

2022; Zhou et al., 2021; Zhao, 2023; Teixeira et al., 

2019; Piazza et al., 2021; Gamir et al., 2020; Janda 

et al., 2019; Wang et al., 2019). 

 

6.1.1 Activation of PAMP-triggered immunity 

(PTI) 

Plants are capable of recognizing pathogen-

associated molecular patterns (PAMPs) by pattern 

recognition receptors (PRRs), causing PAMP-

triggered immunity (PTI) to be activated. Upon 

recognition of PAMPs, PRRs initiate a cascade of 

signaling events, leading to the activation of 

defense mechanisms, including the production of 

reactive oxygen species (ROS), induction of 

calcium influx, activation of mitogen-activated 

protein kinase (MAPK) cascades, and 

transcriptional induction of defense-related genes 
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(Sun & Zhang, 2020; Wang et al., 2019; Teixeira et 

al., 2019; Wang et al., 2019; Majhi & Sessa, 2019; 

Piazza et al., 2021; Ngou et al., 2022; Yuan et al., 

2021). 

The activation of PTI is a rapid, non-specific 

response to a wide range of pathogens, forming the 

first line of defence for plants against microbial 

infections. The signaling events triggered by PTI 

play a crucial role in priming the plant's immune 

system and initiating a series of defense responses 

to combat pathogen invasion. These responses 

include the reinforcement of cell walls, the 

production of antimicrobial compounds, and the 

induction of systemic acquired resistance (SAR) 

(Sun & Zhang, 2020; Wang et al., 2019; Teixeira et 

al., 2019; Wang et al., 2019; Majhi & Sessa, 2019; 

Piazza et al., 2021; Ngou et al., 2022; Yuan et al., 

2021). 

The understanding of the molecular mechanisms 

underlying the activation of PTI and the signaling 

events involved is essential to elucidate the 

dynamics of plant defense against pathogens and to 

develop novel strategies for enhancing plant 

resistance to diseases. 

Given the importance of PTI in plant defense, the 

references (Sun & Zhang, 2020; , Wang et al., 

2019; , Teixeira et al., 2019; , Wang et al., 2019; , 

Majhi & Sessa, 2019; , Piazza et al., 2021; , Ngou 

et al., 2022), and Yuan et al. (2021) provide 

valuable insights into the molecular and cellular 

processes involved in the activation of PTI and the 

signaling events triggered by PAMP recognition. 

If you need further information on any specific 

aspect of PTI activation or the signaling events 

involved, please feel free to let me know! 

 

6.2 Effector-triggered immunity (ETI) 

The effector-triggered immunity (ETI) mechanism 

is a crucial part of plant defence against pathogens. 

The mechanism involves recognition of pathogen-

derived effectors by plant resistance (R) proteins, 

particularly the nucleotide-binding leucine-rich 

repeats (NLR) immune receptors. Upon 

recognition of effectors, NLRs initiate a robust 

immune response, leading to the activation of ETI 

and the induction of defense mechanisms to 

counteract pathogen invasion. ETI is characterized 

by a rapid and specific response to pathogen 

effectors, often leading to the hypersensitive 

response (HR) and the restriction of pathogen 

growth and proliferation (Ngwaga et al., 2021; 

Todd et al., 2022; Wang et al., 2022; Yin et al., 

2022; Breit-McNally et al., 2022; Chen et al., 2023; 

Kretschmer et al., 2019; Niu et al., 2021; Chen & 

Mao, 2020; Yang et al., 2021; Wang et al., 2020; 

Karre et al., 2021; Varden et al., 2019; Fitoussi et 

al., 2021; Jing et al., 2020; Yoshihisa et al., 2021; 

Romero-Contreras et al., 2019; Liu et al., 2020; 

Pogorelko et al., 2019; Yuan et al., 2019; Sang et 

al., 2019; Fitoussi et al., 2019; Varden et al., 2019). 

The activation of ETI is essential for plant defense 

against a wide range of pathogens, including 

bacteria, fungi, oomycetes, and nematodes. 

Effectors are small, secreted molecules that alter 

host cell structure and function, facilitating 

infection or triggering a defense response. Plants 

have evolved intracellular resistance (R) proteins to 

directly or indirectly perceive effectors, leading to 

the activation of ETI and the subsequent restriction 

of pathogen growth and proliferation (Ngwaga et 

al., 2021; Todd et al., 2022; Wang et al., 2022; Yin 

et al., 2022; Breit-McNally et al., 2022; Chen et al., 

2023; Kretschmer et al., 2019; Niu et al., 2021; 

Chen & Mao, 2020; Yang et al., 2021; Wang et al., 

2020; Karre et al., 2021; Varden et al., 2019; 

Fitoussi et al., 2021; Jing et al., 2020; Yoshihisa et 

al., 2021; Romero-Contreras et al., 2019; Liu et al., 

2020; Pogorelko et al., 2019; Yuan et al., 2019; 

Sang et al., 2019; Fitoussi et al., 2019; Varden et 

al., 2019). 

The molecular mechanisms behind the activation of 

ETI and the signaling events involved are essential 

for understanding the complex dynamics of plant 

defense against pathogens and for developing 

strategies designed to enhance plant resistance to 

microbial infections. 

Given the importance of ETI in plant defense, the 

references (Ngwaga et al., 2021; , Todd et al., 2022; 

, Wang et al., 2022; , Yin et al., 2022; , Breit-

McNally et al., 2022; , Chen et al., 2023; , 

Kretschmer et al., 2019; , Niu et al., 2021; , Chen 

& Mao, 2020; , Yang et al., 2021; , Wang et al., 

2020; , Karre et al., 2021; , Varden et al., 2019; , 

Fitoussi et al., 2021; , Jing et al., 2020; , Yoshihisa 

et al., 2021; , Romero-Contreras et al., 2019; , Liu 

et al., 2020; , Pogorelko et al., 2019; , Yuan et al., 

2019; , Sang et al., 2019; , Fitoussi et al., 2019), and 

Varden et al. (2019) provide valuable insights into 

the molecular and cellular processes involved in the 

activation of ETI and the signaling events triggered 

by effector recognition. 

 

6.2.1 Role of resistance (R) proteins in ETI 

The resistance (R) proteins, particularly the 

nucleotide-binding leucine-rich repeat (NLR) 

proteins, are intracellular immune receptors, 

recognizing pathogen-derived effectors and 

initiating effector-triggered immunity in plants 

(Wu et al., 2020; Liu et al., 2021; Koseoglou et al., 

2022; Xie & Duan, 2023; Maruta et al., 2022; 

Ngwaga et al., 2021; Kourelis et al., 2021; Vo et 

al., 2022; Karre et al., 2022; Breit-McNally et al., 
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2022; Ding et al., 2022.). Upon recognition of 

effectors, R proteins trigger a cascade of signaling 

events, leading to the activation of ETI and 

subsequent restriction of pathogen growth and 

proliferation. This recognition specificity allows 

plants to mount a faster and stronger immune 

response, providing a critical layer of defense 

against a wide range of pathogens, including 

bacteria, fungi, oomycetes, and nematodes (Wu et 

al., 2020; Liu et al., 2021; Koseoglou et al., 2022; 

Xie & Duan, 2023; Maruta et al., 2022; Ngwaga et 

al., 2021; Kourelis et al., 2021; Vo et al., 2022; 

Karre et al., 2021; Breit-McNally et al., 2022; Ding 

et al., 2020). 

The molecular mechanisms underlying the role of 

R proteins in ETI and the signaling events involved 

are essential for understanding the complex 

dynamics of plant defense against pathogens and 

for developing novel strategies to enhance plant 

resistance to microbial infections. 

 

6.2.2 Hypersensitive response and systemic 

acquired resistance 

During plant-microbe interactions, hypersensitive 

responses (HR) and systemic acquired resistance 

(SAR) play vital roles as defense mechanisms 

against pathogens. 

The hypersensitive response (HR) is a rapid and 

localized cell death response triggered by the 

invasion of a pathogen. It is a crucial defense 

mechanism that restricts the spread of pathogens by 

sealing off the infected area. HR is often associated 

with the activation of resistance (R) proteins, 

particularly nucleotide-binding leucine-rich repeat 

(NLR) immune receptors, which specifically 

recognize pathogen effectors. Upon recognition, R 

proteins trigger a cascade of signaling events, 

leading to the induction of HR and subsequent 

restriction of pathogen growth and proliferation 

Castro-Moretti et al. (2020). 

Systemic acquired resistance (SAR) is a long-

lasting and broad-spectrum immune response that 

occurs throughout the entire plant following an 

initial localized infection. SAR is induced by the 

accumulation of signaling molecules, such as 

salicylic acid, and leads to enhanced resistance 

against a wide range of pathogens. This systemic 

immunity is triggered by local plant-microbe 

interactions and is studied as SAR or induced 

systemic resistance (ISR) depending on the site of 

induction and the lifestyle of the inducing 

microorganism (Vlot et al., 2020). 

The interaction between HR and SAR is crucial for 

the overall defense response of plants against 

microbial pathogens. HR provides an immediate 

localized response to contain the pathogen, 

whereas SAR provides long-term and broad-

spectrum immunity throughout the plant, which 

enhances its resistance to subsequent infections. 

Understanding the molecular mechanisms 

underlying HR and SAR, as well as the signaling 

events involved, is essential for elucidating the 

complex dynamics of plant defense against 

pathogens and for developing novel strategies to 

enhance plant resistance to microbial infections. 

 

7.  Chemical defense compounds 

The ability of plants to defend themselves against 

pathogens and herbivores is greatly enhanced by 

chemical defense compounds in plant-microbe 

interactions. The plants synthesize such 

compounds, including lignin, phytoalexins, 

alkaloids, terpenoids, flavonoids, and 

glucosinolates, in response to attacks by microbials 

and herbivores (Ninkuu et al., 2022) and 

herbivores. The production of these compounds is 

often induced by the recognition ofpathogen-

associated molecular patterns (PAMPs) or 

microbial effectors, leading to the activation of 

plant defense mechanisms (Ninkuu et al., 2022; 

Vlot et al., 2020). 

Research has shown that lignin and its associated 

phytoalexins modulate plant defense against fungi, 

enhancing the plant's innate immunity against 

pathogens (Ninkuu et al., 2022). Additionally, 

systemic acquired resistance (SAR) and induced 

systemic resistance (ISR) are systemic immune 

responses triggered by the accumulation of 

signaling molecules, such as salicylic acid and 

pipecolic acid, leading to enhanced resistance 

against a wide range of pathogens (Vlot et al., 

2020). 

Furthermore, these chemical compounds have been 

identified as important defensive compounds in 

plants, exhibiting toxic, antinutritive, or repellent 

properties against herbivores and pathogens 

(Zhang et al., 2020; Lv et al., 2022). They not only 

act directly upon the insect or pathogen but also 

have an interplay with the herbivore’s microbiome, 

influencing plant-microbe interactions (Zhang et 

al., 2020; Lv et al., 2022; Mason et al., 2019). 

Moreover, chemical compounds have been shown 

to induce immunity and resistance against 

pathogens and insects, enhancing plant growth and 

defense signaling (Mostafa et al., 2021; Hoffmann 

et al., 2023). Understanding the diverse roles and 

mechanisms of action of these compounds is 

essential for developing sustainable strategies for 

crop protection and enhancing plant resilience to 

biotic stresses. 
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8. Phytoalexins and their antimicrobial activity 

in plant microbe interaction 

The phytoalexin is a secondary metabolite 

produced by plants in response to the attack of 

microorganisms or herbivores. Plants use these 

compounds to protect themselves against 

pathogens, exhibiting antimicrobial activity and 

contributing to their ability to resist infection. 

Phytoalexins are induced during the interaction 

between plants and pathogens or after physical and 

mechanical damage, and they are considered an 

important component of the plant's defense arsenal 

Ishihara, 2021; Cook et al., 2022; Pedras & Alavi, 

2020). 

The antimicrobial activity of phytoalexins is well-

documented, with many of these compounds 

targeting the cell wall or cell membrane of 

pathogens. They have been shown to exhibit 

toxicity towards pathogens, contributing to the 

plant's ability to resist microbial infections. 

Phytoalexins are inducible antimicrobial 

metabolites in plants and have been indicated to be 

important for the rejection of microbial infection 

(Ube et al., 2019; Ishihara, 2021; Cook et al., 

2022). 

The production of phytoalexins is a key aspect of 

plant-microbe interactions, and these compounds 

are considered an integral part of the plant's defense 

response. They are involved in the plant's ability to 

resist fungal or bacterial infections and play a 

crucial role in enhancing plant resilience to biotic 

stresses. Furthermore, phytoalexins are part of the 

plant's chemical defense system, contributing to its 

overall ability to defend against pathogens and 

herbivores (Bi et al., 2022; Ichinose et al., 2020; 

Pedras & Alavi, 2020). 

Understanding the diverse roles and mechanisms of 

action of phytoalexins is essential for developing 

sustainable strategies for crop protection and 

enhancing plant resilience to biotic stresses. 

 

9. Conclusion  

The interaction between plants and microbes 

involves a complex network of chemical signalling 

and defensive mechanisms. As low molecular 

weight secondary metabolites, phytoalexins play a 

crucial role in the defense of plants against 

pathogens, exhibiting antimicrobial activity and 

contributing to the plant's ability to withstand 

infection. The production of phytoalexins is an 

important aspect of the plant's defense response, 

often leading to systemic acquired resistance 

(SAR) and the induction of a hypersensitive 

reaction. These compounds are induced during the 

interaction between plants and pathogens or after 

physical and mechanical damage, and they are 

considered an important component of the plant's 

defense arsenal. 

The antimicrobial properties of phytoalexins are 

well established. Many of these compounds target 

the cell wall or membrane of pathogens, act as a 

toxicant toward pathogens, and contribute to the 

plant's ability to resist infection by bacteria. 

Furthermore, phytoalexins are part of the plant's 

chemical defense system, contributing to its overall 

ability to defend against pathogens and herbivores. 

The interplay between phytoalexins and the plant 

microbiome, as well as their role in shaping the 

composition and function of the plant microbiome, 

is an area of active research. 

The development of sustainable crop protection 

strategies and the enhancement of plant resilience 

to biotic stress requires a deeper understanding of 

phytoalexins' diverse roles. By integrating system 

phenotypes into microbiome networks and 

identifying candidate synthetic communities, 

research is being conducted with the aim of 

maximizing the potential of phytoalexins and 

beneficial microbes in agriculture. Moreover, 

specific metabolites are contributing to the 

resistance of plants to bacterial and fungal diseases, 

providing valuable insight into their defence 

mechanisms. 

The study of phytoalexins and their antimicrobial 

activity in plant-microbe interactions represents a 

promising avenue for the development of novel 

approaches to enhance plant immunity and promote 

sustainable agricultural practices. Further research 

in this area will continue to shed light on the 

intricate interplay between plants and microbes and 

the potential applications of phytoalexins in crop 

protection and disease management. 
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