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Abstract 

In the recent years, many researches have showed a great deal of interest to improve the scheduling of workload in 

the cloud platforms. On the other hand, to carry out the execution of the scientific workloads in the cloud 

environment, it consumes much time and is expensive; hence, it is neither time efficient nor cost-efficient. Due to 

this reason, many research studies have been carried, by which the researchers tend to reduce the processing time 

and make a cost-efficient method as the users are charged based on the usage. Very few studies have been done to 

optimize the cost with processing time and energy parameters together in order to meet the Service Level Agreement 

(SLA) and Quality of Service (QoS) of the workload task. Hence, in this paper, we present an Adaptive Workload 

Scheduling (AWS) model that ensures the Task Level SLA (TLS) prerequisites in a heterogeneous distributed-

computing environment. This AWS-TLS model approach reduces the amount of energy and time needed to execute 

a given workloads. Cybershake and Inspiral scientific workload has been utilized for the studying proposed AWS-

TLS model. When model was compared with the standard workload scheduling approach, our model reduced the 

consumption of cost, energy and time. 

Keywords: Cloud computing, MapReduce, Quality of services, Resource utilization, Service level agreement, Task 
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1 INTRODUCTION 

There are many scientific complex workloads, which 

are widely used for the scientific and business 

investigation [1]. Some of these examples include 

astronomy workloads known as LIGO and Montage, 

earthquake detection workload known as CyberShake 

and genome sequencing workloads known as SIPHT 

and Epigenomics [2].  There are other scientific 

workloads, which are widely used for various 

purposes. These complicated scientific workloads are 

run on a variety of platforms, including Amazon 

EC2, Pegasus, and MapReduce [3], [4]. For the 

execution of the sophisticated scientific workloads, 

cloud platforms offer high quality computing and 

storage resources, including networks, services, and 

applications [5]. In the recent time, different 

scientific fields like the physics, bio-informatics and 

astronomy are currently using the cloud resources for 

modelling the different scientific complex workloads 

to provide better solutions for the realtime problems 

[6].  

 

Fig. 1. Basic architecture of workload scheduling using cloud. 

The complex workloads can be described using a 

Directed Acyclic Graph (DAG) in which the vertices 

of the DAG describe the dependencies and the edges 

of the DAG describe the various tasks [7-8].In the 

recent years, there has been an increasing adoption of 

cloud services for different applications uses. Due to 
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this, most of the researchers are using the cloud 

services to schedule the workload [9]. A 

straightforward architecture for scheduling workloads 

in a cloud environment is shown in Figure 1. 

However, creating an effective workload-scheduling 

model by examining the existing models poses a 

number of difficulties, such as performing 

increasingly complicated scientific workloads, which 

takes more time to complete and is more expensive to 

execute. When things must be completed by a certain 

date, it becomes more difficult. Various studies have 

been done by the various researchers where they have 

developed various heuristic algorithms to provide an 

optimal solution for such problems. Further, the 

heuristics model are not time efficient. Hence, most 

of the researchers have failed to get an optimal 

solution, which affects the SLA violation and QoS. 

Additionally, it is said that workload scheduling is an 

NP-hard problem [10]. In reality, workload 

scheduling makes it exceedingly difficult to optimize 

both time and cost [11]. For example, if a scheduling 

model aims to cut costs, it will take longer to 

accomplish a particular task. This is due to the 

relationship between time and cost. The cost and 

makespan optimization challenge still exists since 

many existing models do not take virtual machine 

selection policy into account while constructing 

schedules [12]. [13]. This research provides an 

adaptive workload scheduling method that ensures 

SLA at the task level to address the aforementioned 

issue. The AWS model provides energy minimization 

with performance assurance at the task level.  

The significance of AWS-TLS is given below:  

1. The AWS-TLS provide effective workload 

scheduling that minimize energy dissipation 

and meet task-dead line prerequisite.   

2. The AWS-TLS reduces energy dissipation 

reduce makespan, and cost for executing 

data-intensive workload in comparison with 

standard model.  

3. The AWS-TLS is very efficient is execution 

of scientific workflow that is CPU, I/O, and 

memory intensive in nature.  

4. Works well to provide task level SLA for 

both smaller and larger task.  

2 LITTERATURE SURVEY   

The state-of-art scheduling of complex-workload is 

studied in this study [12], [13] to determine its 

advantages and drawbacks. For heterogeneous 

computation platforms, [14] focuses on optimizing 

cost and energy and jointly to create scheduling of 

workload. Here a min function is used to save energy 

consumption and satisfy work deadlines, considering 

that job information is scattered geographically. 

Considered diverse deadlines and classified by 

deadline small to large here. Finally, a method of 

adaptive search is proposed for the selection of an 

efficient timetable for the execution of the process. 

According to [15], increased computing costs for 

service supply are directly related to an increase in 

energy consumption. The most important metrics in 

service supply are reliability and timeliness. In order 

to reduce the amount of energy required to run 

workloads, they came up with a scheduling 

architecture namely energy-min scheduling (EMS) 

that met both the reliability and the timeliness 

requirements.  

When it comes to dealing with cloud computing's 

uncertain resource availability, a tradeoff was 

modelled in [16]. Multi-objective optimization 

models of cost and make-span are combined here. 

Various levels of interruption are explored, and the 

results reveal that existing models perform better 

[17]. An evolutionary computing model, NPSO 

(Nested-Particle-Swarm-Optimization), as well as a 

faster version, FNPSO (FastNested-Particle Swarm 

Optimization), were designed in [18] with the goal of 

improving the execution of complex workloads. In 

comparison to the NPSO model, the FNPSO is 

greatly reduced. Heterogeneous earliest finish time 

(HEFT) and Q-Learning (QL) were coupled to create 

an efficient scheduling system called QL-HEFT in 

[19]. In order to speed up computations, the QL-

HEFT has been designed. QL's reward function is 

modified based on HEFT's rising ranks. This helps 

the Q-Learning system learn more efficiently. To 

begin, the QL determines the most efficient task 

sequence and then selects the best machine for the 

job based on the earliest completion time. Contention 

awareness was taken into consideration in [20] when 

designing a scheduling system for workload 

execution.  

In [21], they have proposed a workload scheduling 

approach based on an evolutionary computing model 

for meeting deadlines while minimizing costs, 

namely DCOH. It was also upgraded with multi-

objective parameter optimization under hybrid cloud 

platform to improve DCOH. Scheduling workload 

applications to fulfil application deadlines and costs 

is now possible in [22]. During resource allocation, 

budget and cost ratio are utilized to correlate budget 

and timeline constraints. Here, they improved priority 

selection design for job ordering. Certain decisions 

are discarded in order to increase success rate (i.e., 

reliability). According to [23], a cloud-based 
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scheduling strategy must meet user deadline 

requirements and service level agreements (SLAs). 

They used a multi-cloud platform to suit the 

performance and cost requirements of the stream 

workload application. Using a multi-cloud platform 

and a fault-tolerant scheduling design, create [24-25]. 

In addition, the model ensures that the reliability 

criterion is met and that the cost is decreased. An 

analysis of failure and reliability rates was performed 

using a continuous probability distribution. Once the 

cost of executing on the multi-cloud platform has 

been calculated, the next step is to define a fault-

tolerant workload scheduling design that ensures 

reliability, reduces cost, reduces execution time and 

is cost effective. However, the application's cost 

constraints could not be met due to a lack of load 

balancing. The following part proposes a cost and 

performance-aware scheduling strategy for 

heterogeneous cloud environments to address the 

aforementioned challenges.  

3 ADAPTIVE WORKLOAD SCHEDULING 

DESIGN WITH TASK LEVEL SLA IN 

PARALLEL COMPUTATIONAL 

FRAMEWORK 

In this section, we present our model for scheduling 

the workload, which provides a better performance 

by keeping the SLA violations constant at the task-

level in a parallel-computational architecture. For 

monitoring the process, we design and implement an 

adaptive workload scheduling, also known as AWS-

TLS, which takes into account several restrictions 

including task dependency, priority, parallel 

computing as well as various parameters like energy 

consumption and make-span minimization. A 

scientific complex workload has a various kind of 

tasks and huge amount of data. Hence, to execute 

these large data, a significant number of clusters are 

required for the execution of each task. Further, there 

are many tasks which are running parallel in the 

clusters, which needs a well-organized scheduling 

and efficient use of resources. There are mainly two 

key elements to solve the problem of workload 

scheduling, which can be broken down into two 

separate issues: workload scheduling and optimal-

task scheduling. Moreover, the workload scheduling 

has to be done in a way where different constraints 

can be fulfilled like task priority, energy constraint, 

task monitoring, makespan constraint and parallel 

computation. Hence, by using a multi-level 

scheduling workload model, these issues can be 

addressed by executing and scheduling each tasks at 

each level, as well as monitoring them with time and 

energy constraints. For the initial stage, let’s consider 

a large number of tasks 𝑜 running parallelly in each 

cluster, each having a certain size ℙ1, ℙ2, … . , ℙ𝑜 

and set of constraints with the necessity for executing 

a task 1, 𝑠2, … . , 𝑠𝑜. Moreover, to optimize the 

energy consumption 𝐹 with respect to the task 

scheduling on the given processor in a data center is 

to compute the various power supplies 𝑞1, 𝑞2, … . , 𝑞𝑜 

on a processor 𝑛 is such a way that the length of 

scheduling is reduced and the energy consumed 

should not exceed the energy consumption 𝐹. 

Furthermore, it has been determined that most of the 

recent works have only focused on the single 

constraints, which is impractical for real-time models 

and does not provide a feasible optimal solution. 

Hence, multiobjective constraint at different levels is 

considered for the constructing adaptive workload 

scheduling with task-level SLAs in section 𝐵.   

3.1 Resource Usage Estimation Metric:  

In this given section, we present a system model, 

which provides an task and power model. In this 

section, the main concern is to reduce the power 

consumption for the given computational framework. 

Thus, we first describe the power consumption using 

the given Equation (1).  

q =  g𝕓DW2 
 

(1) 

In Equation (1), 𝑞 is considered the power 

consumption and is calculated to an approximate 

value. 𝑔 is used describe the clock frequency,   

describes the load capacity that it can handle and 𝑊 

is used to describe the voltage. Further, 𝑊∝𝑔𝛿 is used 

to describe the relationship between the voltage and 

the frequency of the clock in which 𝛿 is considered to 

be a constant. Moreover, the speed consumed for the 

execution is represented using  which is proportional 

to the frequency of clock 𝑔. Assume two scenarios in 

which 𝑊 = 𝑐𝑔𝜙 and 𝑇 = 𝑑𝑔. In these scenarios let 𝑐 

and 𝑑 be a constant value. Using this scenario, the 

power consumption can be evaluated using the given 

below equations.   

q =  μTb (2) 

 
b =  2α +  1 (3) 

μ =  bc2CD (d2α + 1) − 1 (4) 
Equation (2) has been generated by using the 

equation (1). The evaluation of 𝑏 and 𝜇 is calculated 

by utilizing the Equation (3) and Equation (4) 

respectively.  

In a Directed Acyclic Graph, each tasks are first 

designed and any of the parallel task denoted by 𝑜 

can be represented using 𝐻 = (𝑊, 𝐹). In 𝐻 = (𝑊, 𝐹), 
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𝑊 is used to indicate the tasks and 𝑊 = {1,2,3, … . , 

𝑜} and 𝐹 represents the priority of the task. Further, if 

any two tasks, consider task 1 as 𝑗 and task 2 as 𝑘, 

then the relationship between the two tasks 𝑗 and 𝑘 

can be represented using the 𝑎𝑟𝑐(𝑗, 𝑘) which explains 

the task 𝑘 cannot be executed until and unless the 

task 𝑗 has been completed and finished. Furthermore, 

ℙ𝑗 represents the resources required by the task 𝑗 for 

the execution of the task, and is calculated using the 

given equation 𝑋𝑗= ℙ𝑗𝑠𝑗. For each task  processor is 

considered. For example, if we want to execute a task  

which has been given an 𝑛 processor from the data 

center, then it executes the task and also provides 

parallel computation. Further, to evaluate the parallel 

computation, consider an application 𝑣 which is 

running parallel and has some tasks 𝐻1,𝐻2,….., 𝐻𝑣 

for the given processor 𝑛. In this application, the 

multiple tasks are also designed under the single task 

using the multi-level method. In addition, the power 

supplied to the task 𝑗 of the application can be 

represented using 𝑞𝑗 and can be evaluated using the 

equation 𝑇𝑗= 𝑞𝑗
1⁄𝑏 which is also used to determine the 

execution speed. Further, 𝑞𝑗= 𝑇𝑗
𝑏 and time required 

for the execution is evaluated using the Equation (5). 

During the execution of the tasks the speed of the 

processor remains the same. The energy required for 

the execution of the task is given using the Equation 

(6). 

uj =   
sj

Qi  b − 1 (5) 

 
fj =  TJB − 1Xj (6) 

  In Equation (6), 𝑋𝑗 represents the amount of work 

that has to be executed by the task 𝑗. Furthermore, it 

should be taken into consideration that in a real 

processor, the clock frequency and the execution 

speed can only take finite values, as the 𝑋𝑗 is the 

executed work, which has been executed earlier.  

3.2 SLA constraint modelling:  

We determine the lower bound in this section. 

Consider the parameter 𝑋, which may be represented 

by the equation, as the quantity of work completed 

for a particular parallel task 𝑜. (7) 

X =  x1 +  x2 + ⋯ +  xo 
=  ℙ1 s1 +  ℙ1 s2 
+  ⋯ +  ℙoso 

(7) 

 

F′ and U′ are used to represent the lowest energy and 

ideal length needed for an optimal schedule, 

respectively. In a multi-level workload-scheduling 

paradigm, the lower bound that helps to shorten the 

makespan can be evaluated by taking into account all 

of these characteristics. 

 

𝑛𝑋 𝑏1/(𝑏 − 1) 
𝑈′ ≥  (() ) 

𝐹       𝑛 

(8) 

According to equation (8), the lower bound shortens 

the makespan and the supplied Equation (9) below 

shows the lower bound to cut back on energy 

consumption.  

𝑋 𝑏 
𝐹′ ≥  𝑛 () (𝑈̃𝑏 − 1) − 1 

𝑛 

(9) 

Both the Equation (8) and Equation (9) can be used 

for any dependent, independent and parallel task.  

3.3 Adaptive Workload Scheduling Method:  

An adaptive workload scheduling approach has been 

shown in this section. The AWS method starts by 

taking into considers  𝑐 as the amount of time needed 

to complete job 𝑂𝑘𝑑. The tasks that are not scheduled 

in this part are examined and monitored to determine 

whether they are available for execution, that is, to 

determine whether the resources needed to complete 

the work are readily available. As a result, this 

includes more tasks than the earlier approaches [15], 

[24]. The task's scheduling also aids in increasing the 

processor's efficiency. The equation, which states that 

when the job 𝑂=1, then, can be used to represent the 

task scheduling  

𝑁 
𝑄 ∗ (𝑂, 𝑁)  =  ∑ 𝑛𝑠𝑛 

𝑛 =  1 

(10) 

Suppose the task 𝑂 is more than 1 then it is 

represented using the Equation (11)  

𝑄 ∗ (𝑂,𝑁)  =  ∑𝑁𝑛
= 1 𝑠𝑛(𝑛 +  𝑄 ∗ (𝑂 
−  1, 𝑁 −  𝑛))  
+  (∑𝑛
> 𝑁 𝑠𝑛)𝑄 ∗ (𝑂 
−  1, 𝑁) 

(11) 

If the size of the first task is large, then the resources, 

which are available, are used and all the other tasks 

are terminated. After this all the other remaining task 

𝑜 − 1 are scheduled. Further average scheduling after 

the above situations is 𝑄∗(𝑂 − 1, 𝑁) 

3.4 Adaptive Workload Scheduling with Task 

Level SLA Method: 

In this given section, we develop and design a 

scheduling mechanism for the task level SLA in 

distributed computing platform, which monitors and 

reduces the consumption of energy and makespan 
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during parallel computation. Assume the parallel task 

as  which have priority constraint. Further, consider 

two tasks 𝑗and 𝑘, also consider a cardinality order 

𝒞which is denoted by using the DAG for the parallel 

task 𝑜. Then, we can say that there is a relationship 

between the two tasks 𝑗 and 𝑘, which can be 

represented as 𝑗𝒞𝑘 such that the task 𝑘 can only start 

the execution only when the task 𝑗 has been 

completed.  A task-level scheduling model contains 

different stages with 𝑤 as the number of stages; 

moreover, the task that have no priority constraint 

like the first task takes the stage 1. In addition, a 

particular task 𝑗 is considered at Stage 𝑚. Suppose, if 

the number of nodes start from the staring task 𝑗, then 

it is represented as 1 ≤ 𝑚 ≤ 𝑤. This method schedules 

the various task using various stages, i.e., Stage 1, 

Stage 2, Stage 3, ….,. Stage 𝑤. Moreover, the Stage 

𝑚 + 1 never allows the execution of another task 

until the task 𝑚 at the Stage 𝑚 has been completed. 

For all the stages, same procedure is used. Also, the 

residual energy 𝐹 ̃ is then allocated to the Stage 𝑣, in 

which the Stage 1 consumes 𝐹𝑚 and𝐹1 + 𝐹2 + ⋯ + 

𝐹𝑤= 𝐹̃. Further, the processor𝑛1 is considered for the 

first task in the Stage 1 and the execution of the task 

is represented using the  𝑠𝑚,1,𝑠𝑚,2, …….,𝑠𝑚,𝑛. Using 

this the total amount of work can be evaluated by the 

given Equation (12)     

𝑋1 =  𝜋𝑚, 1𝑠𝑚, 1 +  𝜋𝑚, 2𝑠𝑚, 2 
+ ⋯ 
+  𝜋𝑚, 𝑜𝑚𝑠𝑠, 𝑜𝑚 

(12) 

 

When scheduling workloads, it's important to keep in 

mind a variety of factors, such as the order in which 

tasks are completed and the amount of energy and 

time each task consumes.  

3.5 F.Adaptive Workload Scheduling with 

Task Level SLA Assurance Algorithm:  

This section presents the algorithm of adaptive 

workload scheduling assuring SLA at task level. The 

AWS-TLS algorithm is described in Algorithm 1.   

Algorithm 1. The algorithm of adaptive workload 

scheduling assuring SLA at task level.   

Step 1. Design a task and power model  

Step 2. Compute the given lower performance 

constraint limits  

Step 3. Mechanism for adaptive task scheduling in 

which tasks that have not been scheduled are tested to 

see if the necessary resources are available for their 

execution.  

Step 4. Design the tasks in Directed Acyclic Graph. 

The number of levels in the DAG is 𝑤, where 𝑤 is 

the number of levels with varying energy and 

makespan SLA constraint in the DAG.   

Step 5. Non-urgent tasks fall under the category of 

level 1.  

Step 6. AWS-TLS organizes tasks into levels 1, 2, 3, 

4, etc., and keeps track of all of them. 

Step 7. Furthermore, unless the task in level 𝑚 is 

finished, 𝑚 + 1 level cannot be executed. The 

monitoring process is the same for each level 𝑚. 

Step 8. As task are independent are different level as 

a result, they are scheduled using adaptive task 

scheduling technique.  

The AWS-TLS model is evaluated by using the data-

intensive scientific workloads.  

4 RESULT AND DISCUSSION  

This section examines the effectiveness of the 

proposed AWS-TLS over the current EMS-RTPW 

[15] approach in terms of makespan, energy 

efficiency, and cost effectiveness. Java programming 

is used to implement AWS-TLS and EMS utilising 

cloudsim [2], [3]. The CPU and I/O consuming 

character CPU, memory, and cybershake intensive 

nature Workload-scheduling model validation is done 

using Inspiral. Metrics like makespan, energy 

utilisation, and cost effectiveness are utilised to 

verify workload-scheduling models.  

4.1 Makespan performance:  

In this section the makespan for completing 

execution of small to extra-large workload of both 

Inspiral and Cybershake is studied. In Fig. 2, the 

makespan attained for executing Inspiral using AWS-

TLS and EMS-RTPW considering varied workload is 

graphically shown. The Inspiral workload task size of 

small, medium, large, and extra-large is equal to 30, 

50, 100, and 1000, respectively. An average 

makespan efficiency improvement of 83.07% is 

achieved using AWS-TLS over EMS-RTPW. In Fig. 

3, the makespan attained for executing Cybershake 

using AWS-TLS and EMS-RTPW considering varied 

workload is graphically shown. The Cybershake 

workload task size of small, medium, large, and 

extra-large is equal to 30, 50, 100, and 1000, 

respectively. An average makespan efficiency 

improvement of 78.99% is achieved using AWS-TLS 

over EMS-RTPW.   
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4.2 Energy efficiency:  

In this section, the energy efficiency for completing 

execution of small to extra-large workload of both 

Inspiral and Cybershake is studied. In Fig. 4, the 

energy consumed for executing Inspiral using AWS-

TLS and EMS-RTPW considering varied workload is 

graphically shown. The Inspiral workload task size of 

small, medium, large, and extra-large is equal to 30, 

50, 100, and 1000, respectively. An average energy 

consumption reduction of 44.85% is achieved using 

AWS-TLS over EMS-RTPW. In Fig. 5, the energy 

consumed for executing Cybershake using AWS-TLS 

and EMS-RTPW considering varied workload is 

graphically shown. The Cybershake workload task 

size of small, medium, large, and extra-large is equal 

to 30, 50, 100, and 1000, respectively. An average 

energy consumption reduction of 24.35% is achieved 

using AWS-TLS over EMS-RTPW.  

 

4.3 Cost efficiency:  

In this section the cost efficiency for completing 

execution of small to extra-large workload of both 

Inspiral and Cybershake is studied. In Fig. 6, the cost 

incurred for executing Inspiral using AWS-TLS and 

EMS-RTPW considering varied workload is 

graphically shown. The Inspiral workload task size of 

small, medium, large, and extra-large is equal to 30, 

50, 100, and 1000, respectively. An average cost 

reduction of 82.88% is achieved using AWS-TLS 

over EMS-RTPW. In Fig. 7, the cost incurred for 

executing Cybershake using AWS-TLS and EMS-

RTPW considering varied workload is graphically 

shown. The Cybershake workload task size of small, 

medium, large, and extra-large is equal to 30, 50, 

100, and 1000, respectively. An average cost 

reduction of 78.68% is achieved using AWS-TLS 

over EMS-RTPW.
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5 CONCLUSION  

In this research an effective workload scheduling is 

presented that assures the task level Service Level 

Agreement (SLA). None of the existing approaches 

had considered workload scheduling at task level 

SLA till yet. In this work, an adaptive scheduling 

technique is established that can decrease the energy 

consumption as well as maintain the performance on 

high level, which reduces the execution cost 

significantly. The AWS- TLS model is very much 

effective in provisioning CPU, memory as well as I/O 

intensive execution that leverages for distributed 

platform for computing such as cloud environment. 

Further, experiments shows the efficient outcomes of 

AWS-TLS model with respect to energy efficiency 

with an improvisation of 44.85% and 25.35% is 

experienced by AWS-TLS over EMS-RTPW for 

Inspiral and Cybershake workload, respectively. The 

makespan for execution of workload is reduced by 

83.07% and 78.99% by AWS-TLS over EMS-RTPW 

for Inspiral and Cybershake workload, respectively. 

Similarly, cost for execution of workload is reduced 

by 82.88% and 78.68% by AWS-TLS over EMS-

RTPW for Inspiral and Cybershake workload, 

respectively. In future the proposed scheduling model 

will be tested with more diverse workload dataset. 

Alongside would consider leveraging multi-cloud and 

edge-cloud platform to further reduce cost and delay 

of execution, respectively.     
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