
Adaptive Workload Scheduling Design with Task Level SLA in Parallel Computational Framework

Section A-Research paper

8262

Eur. Chem. Bull. 2023,12(10), 8262-8269

Adaptive Workload Scheduling Design with Task Level SLA in

Parallel Computational Framework

1
Jagadevi Bakka,

2
Sanjeev c Lingareddy,

Abstract

In the recent years, many researches have showed a great deal of interest to improve the scheduling of workload in

the cloud platforms. On the other hand, to carry out the execution of the scientific workloads in the cloud

environment, it consumes much time and is expensive; hence, it is neither time efficient nor cost-efficient. Due to

this reason, many research studies have been carried, by which the researchers tend to reduce the processing time

and make a cost-efficient method as the users are charged based on the usage. Very few studies have been done to

optimize the cost with processing time and energy parameters together in order to meet the Service Level Agreement

(SLA) and Quality of Service (QoS) of the workload task. Hence, in this paper, we present an Adaptive Workload

Scheduling (AWS) model that ensures the Task Level SLA (TLS) prerequisites in a heterogeneous distributed-

computing environment. This AWS-TLS model approach reduces the amount of energy and time needed to execute

a given workloads. Cybershake and Inspiral scientific workload has been utilized for the studying proposed AWS-

TLS model. When model was compared with the standard workload scheduling approach, our model reduced the

consumption of cost, energy and time.

Keywords: Cloud computing, MapReduce, Quality of services, Resource utilization, Service level agreement, Task

scheduling, Workloads.

1
Associate Professor, Dept. of CSE, East Point College of Engineering and Technology, Bangalore, India

2
Prof. & HOD, Dept of CSE, Sri Venketeshwara College Of Engineering, Bangalore, India

1 INTRODUCTION

There are many scientific complex workloads, which

are widely used for the scientific and business

investigation [1]. Some of these examples include

astronomy workloads known as LIGO and Montage,

earthquake detection workload known as CyberShake

and genome sequencing workloads known as SIPHT

and Epigenomics [2]. There are other scientific

workloads, which are widely used for various

purposes. These complicated scientific workloads are

run on a variety of platforms, including Amazon

EC2, Pegasus, and MapReduce [3], [4]. For the

execution of the sophisticated scientific workloads,

cloud platforms offer high quality computing and

storage resources, including networks, services, and

applications [5]. In the recent time, different

scientific fields like the physics, bio-informatics and

astronomy are currently using the cloud resources for

modelling the different scientific complex workloads

to provide better solutions for the realtime problems

[6].

Fig. 1. Basic architecture of workload scheduling using cloud.

The complex workloads can be described using a

Directed Acyclic Graph (DAG) in which the vertices

of the DAG describe the dependencies and the edges

of the DAG describe the various tasks [7-8].In the

recent years, there has been an increasing adoption of

cloud services for different applications uses. Due to

Adaptive Workload Scheduling Design with Task Level SLA in Parallel Computational Framework

Section A-Research paper

8263

Eur. Chem. Bull. 2023,12(10), 8262-8269

this, most of the researchers are using the cloud

services to schedule the workload [9]. A

straightforward architecture for scheduling workloads

in a cloud environment is shown in Figure 1.

However, creating an effective workload-scheduling

model by examining the existing models poses a

number of difficulties, such as performing

increasingly complicated scientific workloads, which

takes more time to complete and is more expensive to

execute. When things must be completed by a certain

date, it becomes more difficult. Various studies have

been done by the various researchers where they have

developed various heuristic algorithms to provide an

optimal solution for such problems. Further, the

heuristics model are not time efficient. Hence, most

of the researchers have failed to get an optimal

solution, which affects the SLA violation and QoS.

Additionally, it is said that workload scheduling is an

NP-hard problem [10]. In reality, workload

scheduling makes it exceedingly difficult to optimize

both time and cost [11]. For example, if a scheduling

model aims to cut costs, it will take longer to

accomplish a particular task. This is due to the

relationship between time and cost. The cost and

makespan optimization challenge still exists since

many existing models do not take virtual machine

selection policy into account while constructing

schedules [12]. [13]. This research provides an

adaptive workload scheduling method that ensures

SLA at the task level to address the aforementioned

issue. The AWS model provides energy minimization

with performance assurance at the task level.

The significance of AWS-TLS is given below:

1. The AWS-TLS provide effective workload

scheduling that minimize energy dissipation

and meet task-dead line prerequisite.

2. The AWS-TLS reduces energy dissipation

reduce makespan, and cost for executing

data-intensive workload in comparison with

standard model.

3. The AWS-TLS is very efficient is execution

of scientific workflow that is CPU, I/O, and

memory intensive in nature.

4. Works well to provide task level SLA for

both smaller and larger task.

2 LITTERATURE SURVEY

The state-of-art scheduling of complex-workload is

studied in this study [12], [13] to determine its

advantages and drawbacks. For heterogeneous

computation platforms, [14] focuses on optimizing

cost and energy and jointly to create scheduling of

workload. Here a min function is used to save energy

consumption and satisfy work deadlines, considering

that job information is scattered geographically.

Considered diverse deadlines and classified by

deadline small to large here. Finally, a method of

adaptive search is proposed for the selection of an

efficient timetable for the execution of the process.

According to [15], increased computing costs for

service supply are directly related to an increase in

energy consumption. The most important metrics in

service supply are reliability and timeliness. In order

to reduce the amount of energy required to run

workloads, they came up with a scheduling

architecture namely energy-min scheduling (EMS)

that met both the reliability and the timeliness

requirements.

When it comes to dealing with cloud computing's

uncertain resource availability, a tradeoff was

modelled in [16]. Multi-objective optimization

models of cost and make-span are combined here.

Various levels of interruption are explored, and the

results reveal that existing models perform better

[17]. An evolutionary computing model, NPSO

(Nested-Particle-Swarm-Optimization), as well as a

faster version, FNPSO (FastNested-Particle Swarm

Optimization), were designed in [18] with the goal of

improving the execution of complex workloads. In

comparison to the NPSO model, the FNPSO is

greatly reduced. Heterogeneous earliest finish time

(HEFT) and Q-Learning (QL) were coupled to create

an efficient scheduling system called QL-HEFT in

[19]. In order to speed up computations, the QL-

HEFT has been designed. QL's reward function is

modified based on HEFT's rising ranks. This helps

the Q-Learning system learn more efficiently. To

begin, the QL determines the most efficient task

sequence and then selects the best machine for the

job based on the earliest completion time. Contention

awareness was taken into consideration in [20] when

designing a scheduling system for workload

execution.

In [21], they have proposed a workload scheduling

approach based on an evolutionary computing model

for meeting deadlines while minimizing costs,

namely DCOH. It was also upgraded with multi-

objective parameter optimization under hybrid cloud

platform to improve DCOH. Scheduling workload

applications to fulfil application deadlines and costs

is now possible in [22]. During resource allocation,

budget and cost ratio are utilized to correlate budget

and timeline constraints. Here, they improved priority

selection design for job ordering. Certain decisions

are discarded in order to increase success rate (i.e.,

reliability). According to [23], a cloud-based

Adaptive Workload Scheduling Design with Task Level SLA in Parallel Computational Framework

Section A-Research paper

8264

Eur. Chem. Bull. 2023,12(10), 8262-8269

scheduling strategy must meet user deadline

requirements and service level agreements (SLAs).

They used a multi-cloud platform to suit the

performance and cost requirements of the stream

workload application. Using a multi-cloud platform

and a fault-tolerant scheduling design, create [24-25].

In addition, the model ensures that the reliability

criterion is met and that the cost is decreased. An

analysis of failure and reliability rates was performed

using a continuous probability distribution. Once the

cost of executing on the multi-cloud platform has

been calculated, the next step is to define a fault-

tolerant workload scheduling design that ensures

reliability, reduces cost, reduces execution time and

is cost effective. However, the application's cost

constraints could not be met due to a lack of load

balancing. The following part proposes a cost and

performance-aware scheduling strategy for

heterogeneous cloud environments to address the

aforementioned challenges.

3 ADAPTIVE WORKLOAD SCHEDULING

DESIGN WITH TASK LEVEL SLA IN

PARALLEL COMPUTATIONAL

FRAMEWORK

In this section, we present our model for scheduling

the workload, which provides a better performance

by keeping the SLA violations constant at the task-

level in a parallel-computational architecture. For

monitoring the process, we design and implement an

adaptive workload scheduling, also known as AWS-

TLS, which takes into account several restrictions

including task dependency, priority, parallel

computing as well as various parameters like energy

consumption and make-span minimization. A

scientific complex workload has a various kind of

tasks and huge amount of data. Hence, to execute

these large data, a significant number of clusters are

required for the execution of each task. Further, there

are many tasks which are running parallel in the

clusters, which needs a well-organized scheduling

and efficient use of resources. There are mainly two

key elements to solve the problem of workload

scheduling, which can be broken down into two

separate issues: workload scheduling and optimal-

task scheduling. Moreover, the workload scheduling

has to be done in a way where different constraints

can be fulfilled like task priority, energy constraint,

task monitoring, makespan constraint and parallel

computation. Hence, by using a multi-level

scheduling workload model, these issues can be

addressed by executing and scheduling each tasks at

each level, as well as monitoring them with time and

energy constraints. For the initial stage, let’s consider

a large number of tasks 𝑜 running parallelly in each

cluster, each having a certain size ℙ1, ℙ2, … . , ℙ𝑜

and set of constraints with the necessity for executing

a task 1, 𝑠2, … . , 𝑠𝑜. Moreover, to optimize the

energy consumption 𝐹 with respect to the task

scheduling on the given processor in a data center is

to compute the various power supplies 𝑞1, 𝑞2, … . , 𝑞𝑜

on a processor 𝑛 is such a way that the length of

scheduling is reduced and the energy consumed

should not exceed the energy consumption 𝐹.

Furthermore, it has been determined that most of the

recent works have only focused on the single

constraints, which is impractical for real-time models

and does not provide a feasible optimal solution.

Hence, multiobjective constraint at different levels is

considered for the constructing adaptive workload

scheduling with task-level SLAs in section 𝐵.

3.1 Resource Usage Estimation Metric:

In this given section, we present a system model,

which provides an task and power model. In this

section, the main concern is to reduce the power

consumption for the given computational framework.

Thus, we first describe the power consumption using

the given Equation (1).

q = g𝕓DW2

(1)

In Equation (1), 𝑞 is considered the power

consumption and is calculated to an approximate

value. 𝑔 is used describe the clock frequency,

describes the load capacity that it can handle and 𝑊

is used to describe the voltage. Further, 𝑊∝𝑔𝛿 is used

to describe the relationship between the voltage and

the frequency of the clock in which 𝛿 is considered to

be a constant. Moreover, the speed consumed for the

execution is represented using which is proportional

to the frequency of clock 𝑔. Assume two scenarios in

which 𝑊 = 𝑐𝑔𝜙 and 𝑇 = 𝑑𝑔. In these scenarios let 𝑐

and 𝑑 be a constant value. Using this scenario, the

power consumption can be evaluated using the given

below equations.

q = μTb (2)

b = 2α + 1 (3)

μ = bc2CD (d2α + 1) − 1 (4)
Equation (2) has been generated by using the

equation (1). The evaluation of 𝑏 and 𝜇 is calculated

by utilizing the Equation (3) and Equation (4)

respectively.

In a Directed Acyclic Graph, each tasks are first

designed and any of the parallel task denoted by 𝑜

can be represented using 𝐻 = (𝑊, 𝐹). In 𝐻 = (𝑊, 𝐹),

Adaptive Workload Scheduling Design with Task Level SLA in Parallel Computational Framework

Section A-Research paper

8265

Eur. Chem. Bull. 2023,12(10), 8262-8269

𝑊 is used to indicate the tasks and 𝑊 = {1,2,3, … . ,

𝑜} and 𝐹 represents the priority of the task. Further, if

any two tasks, consider task 1 as 𝑗 and task 2 as 𝑘,

then the relationship between the two tasks 𝑗 and 𝑘

can be represented using the 𝑎𝑟𝑐(𝑗, 𝑘) which explains

the task 𝑘 cannot be executed until and unless the

task 𝑗 has been completed and finished. Furthermore,

ℙ𝑗 represents the resources required by the task 𝑗 for

the execution of the task, and is calculated using the

given equation 𝑋𝑗= ℙ𝑗𝑠𝑗. For each task processor is

considered. For example, if we want to execute a task

which has been given an 𝑛 processor from the data

center, then it executes the task and also provides

parallel computation. Further, to evaluate the parallel

computation, consider an application 𝑣 which is

running parallel and has some tasks 𝐻1,𝐻2,….., 𝐻𝑣

for the given processor 𝑛. In this application, the

multiple tasks are also designed under the single task

using the multi-level method. In addition, the power

supplied to the task 𝑗 of the application can be

represented using 𝑞𝑗 and can be evaluated using the

equation 𝑇𝑗= 𝑞𝑗
1⁄𝑏 which is also used to determine the

execution speed. Further, 𝑞𝑗= 𝑇𝑗
𝑏 and time required

for the execution is evaluated using the Equation (5).

During the execution of the tasks the speed of the

processor remains the same. The energy required for

the execution of the task is given using the Equation

(6).

uj =
sj

Qi b − 1 (5)

fj = TJB − 1Xj (6)

 In Equation (6), 𝑋𝑗 represents the amount of work

that has to be executed by the task 𝑗. Furthermore, it

should be taken into consideration that in a real

processor, the clock frequency and the execution

speed can only take finite values, as the 𝑋𝑗 is the

executed work, which has been executed earlier.

3.2 SLA constraint modelling:

We determine the lower bound in this section.

Consider the parameter 𝑋, which may be represented

by the equation, as the quantity of work completed

for a particular parallel task 𝑜. (7)

X = x1 + x2 + ⋯ + xo
= ℙ1 s1 + ℙ1 s2
+ ⋯ + ℙoso

(7)

F′ and U′ are used to represent the lowest energy and

ideal length needed for an optimal schedule,

respectively. In a multi-level workload-scheduling

paradigm, the lower bound that helps to shorten the

makespan can be evaluated by taking into account all

of these characteristics.

𝑛𝑋 𝑏1/(𝑏 − 1)
𝑈′ ≥ (())

𝐹 𝑛

(8)

According to equation (8), the lower bound shortens

the makespan and the supplied Equation (9) below

shows the lower bound to cut back on energy

consumption.

𝑋 𝑏
𝐹′ ≥ 𝑛 () (𝑈̃𝑏 − 1) − 1

𝑛

(9)

Both the Equation (8) and Equation (9) can be used

for any dependent, independent and parallel task.

3.3 Adaptive Workload Scheduling Method:

An adaptive workload scheduling approach has been

shown in this section. The AWS method starts by

taking into considers 𝑐 as the amount of time needed

to complete job 𝑂𝑘𝑑. The tasks that are not scheduled

in this part are examined and monitored to determine

whether they are available for execution, that is, to

determine whether the resources needed to complete

the work are readily available. As a result, this

includes more tasks than the earlier approaches [15],

[24]. The task's scheduling also aids in increasing the

processor's efficiency. The equation, which states that

when the job 𝑂=1, then, can be used to represent the

task scheduling

𝑁
𝑄 ∗ (𝑂, 𝑁) = ∑ 𝑛𝑠𝑛

𝑛 = 1

(10)

Suppose the task 𝑂 is more than 1 then it is

represented using the Equation (11)

𝑄 ∗ (𝑂,𝑁) = ∑𝑁𝑛
= 1 𝑠𝑛(𝑛 + 𝑄 ∗ (𝑂
− 1, 𝑁 − 𝑛))
+ (∑𝑛
> 𝑁 𝑠𝑛)𝑄 ∗ (𝑂
− 1, 𝑁)

(11)

If the size of the first task is large, then the resources,

which are available, are used and all the other tasks

are terminated. After this all the other remaining task

𝑜 − 1 are scheduled. Further average scheduling after

the above situations is 𝑄∗(𝑂 − 1, 𝑁)

3.4 Adaptive Workload Scheduling with Task

Level SLA Method:

In this given section, we develop and design a

scheduling mechanism for the task level SLA in

distributed computing platform, which monitors and

reduces the consumption of energy and makespan

Adaptive Workload Scheduling Design with Task Level SLA in Parallel Computational Framework

Section A-Research paper

8266

Eur. Chem. Bull. 2023,12(10), 8262-8269

during parallel computation. Assume the parallel task

as which have priority constraint. Further, consider

two tasks 𝑗and 𝑘, also consider a cardinality order

𝒞which is denoted by using the DAG for the parallel

task 𝑜. Then, we can say that there is a relationship

between the two tasks 𝑗 and 𝑘, which can be

represented as 𝑗𝒞𝑘 such that the task 𝑘 can only start

the execution only when the task 𝑗 has been

completed. A task-level scheduling model contains

different stages with 𝑤 as the number of stages;

moreover, the task that have no priority constraint

like the first task takes the stage 1. In addition, a

particular task 𝑗 is considered at Stage 𝑚. Suppose, if

the number of nodes start from the staring task 𝑗, then

it is represented as 1 ≤ 𝑚 ≤ 𝑤. This method schedules

the various task using various stages, i.e., Stage 1,

Stage 2, Stage 3, ….,. Stage 𝑤. Moreover, the Stage

𝑚 + 1 never allows the execution of another task

until the task 𝑚 at the Stage 𝑚 has been completed.

For all the stages, same procedure is used. Also, the

residual energy 𝐹 ̃ is then allocated to the Stage 𝑣, in

which the Stage 1 consumes 𝐹𝑚 and𝐹1 + 𝐹2 + ⋯ +

𝐹𝑤= 𝐹̃. Further, the processor𝑛1 is considered for the

first task in the Stage 1 and the execution of the task

is represented using the 𝑠𝑚,1,𝑠𝑚,2, …….,𝑠𝑚,𝑛. Using

this the total amount of work can be evaluated by the

given Equation (12)

𝑋1 = 𝜋𝑚, 1𝑠𝑚, 1 + 𝜋𝑚, 2𝑠𝑚, 2
+ ⋯
+ 𝜋𝑚, 𝑜𝑚𝑠𝑠, 𝑜𝑚

(12)

When scheduling workloads, it's important to keep in

mind a variety of factors, such as the order in which

tasks are completed and the amount of energy and

time each task consumes.

3.5 F.Adaptive Workload Scheduling with

Task Level SLA Assurance Algorithm:

This section presents the algorithm of adaptive

workload scheduling assuring SLA at task level. The

AWS-TLS algorithm is described in Algorithm 1.

Algorithm 1. The algorithm of adaptive workload

scheduling assuring SLA at task level.

Step 1. Design a task and power model

Step 2. Compute the given lower performance

constraint limits

Step 3. Mechanism for adaptive task scheduling in

which tasks that have not been scheduled are tested to

see if the necessary resources are available for their

execution.

Step 4. Design the tasks in Directed Acyclic Graph.

The number of levels in the DAG is 𝑤, where 𝑤 is

the number of levels with varying energy and

makespan SLA constraint in the DAG.

Step 5. Non-urgent tasks fall under the category of

level 1.

Step 6. AWS-TLS organizes tasks into levels 1, 2, 3,

4, etc., and keeps track of all of them.

Step 7. Furthermore, unless the task in level 𝑚 is

finished, 𝑚 + 1 level cannot be executed. The

monitoring process is the same for each level 𝑚.

Step 8. As task are independent are different level as

a result, they are scheduled using adaptive task

scheduling technique.

The AWS-TLS model is evaluated by using the data-

intensive scientific workloads.

4 RESULT AND DISCUSSION

This section examines the effectiveness of the

proposed AWS-TLS over the current EMS-RTPW

[15] approach in terms of makespan, energy

efficiency, and cost effectiveness. Java programming

is used to implement AWS-TLS and EMS utilising

cloudsim [2], [3]. The CPU and I/O consuming

character CPU, memory, and cybershake intensive

nature Workload-scheduling model validation is done

using Inspiral. Metrics like makespan, energy

utilisation, and cost effectiveness are utilised to

verify workload-scheduling models.

4.1 Makespan performance:

In this section the makespan for completing

execution of small to extra-large workload of both

Inspiral and Cybershake is studied. In Fig. 2, the

makespan attained for executing Inspiral using AWS-

TLS and EMS-RTPW considering varied workload is

graphically shown. The Inspiral workload task size of

small, medium, large, and extra-large is equal to 30,

50, 100, and 1000, respectively. An average

makespan efficiency improvement of 83.07% is

achieved using AWS-TLS over EMS-RTPW. In Fig.

3, the makespan attained for executing Cybershake

using AWS-TLS and EMS-RTPW considering varied

workload is graphically shown. The Cybershake

workload task size of small, medium, large, and

extra-large is equal to 30, 50, 100, and 1000,

respectively. An average makespan efficiency

improvement of 78.99% is achieved using AWS-TLS

over EMS-RTPW.

Adaptive Workload Scheduling Design with Task Level SLA in Parallel Computational Framework

Section A-Research paper

8267

Eur. Chem. Bull. 2023,12(10), 8262-8269

4.2 Energy efficiency:

In this section, the energy efficiency for completing

execution of small to extra-large workload of both

Inspiral and Cybershake is studied. In Fig. 4, the

energy consumed for executing Inspiral using AWS-

TLS and EMS-RTPW considering varied workload is

graphically shown. The Inspiral workload task size of

small, medium, large, and extra-large is equal to 30,

50, 100, and 1000, respectively. An average energy

consumption reduction of 44.85% is achieved using

AWS-TLS over EMS-RTPW. In Fig. 5, the energy

consumed for executing Cybershake using AWS-TLS

and EMS-RTPW considering varied workload is

graphically shown. The Cybershake workload task

size of small, medium, large, and extra-large is equal

to 30, 50, 100, and 1000, respectively. An average

energy consumption reduction of 24.35% is achieved

using AWS-TLS over EMS-RTPW.

4.3 Cost efficiency:

In this section the cost efficiency for completing

execution of small to extra-large workload of both

Inspiral and Cybershake is studied. In Fig. 6, the cost

incurred for executing Inspiral using AWS-TLS and

EMS-RTPW considering varied workload is

graphically shown. The Inspiral workload task size of

small, medium, large, and extra-large is equal to 30,

50, 100, and 1000, respectively. An average cost

reduction of 82.88% is achieved using AWS-TLS

over EMS-RTPW. In Fig. 7, the cost incurred for

executing Cybershake using AWS-TLS and EMS-

RTPW considering varied workload is graphically

shown. The Cybershake workload task size of small,

medium, large, and extra-large is equal to 30, 50,

100, and 1000, respectively. An average cost

reduction of 78.68% is achieved using AWS-TLS

over EMS-RTPW.

Adaptive Workload Scheduling Design with Task Level SLA in Parallel Computational Framework

Section A-Research paper

8268

Eur. Chem. Bull. 2023,12(10), 8262-8269

5 CONCLUSION

In this research an effective workload scheduling is

presented that assures the task level Service Level

Agreement (SLA). None of the existing approaches

had considered workload scheduling at task level

SLA till yet. In this work, an adaptive scheduling

technique is established that can decrease the energy

consumption as well as maintain the performance on

high level, which reduces the execution cost

significantly. The AWS- TLS model is very much

effective in provisioning CPU, memory as well as I/O

intensive execution that leverages for distributed

platform for computing such as cloud environment.

Further, experiments shows the efficient outcomes of

AWS-TLS model with respect to energy efficiency

with an improvisation of 44.85% and 25.35% is

experienced by AWS-TLS over EMS-RTPW for

Inspiral and Cybershake workload, respectively. The

makespan for execution of workload is reduced by

83.07% and 78.99% by AWS-TLS over EMS-RTPW

for Inspiral and Cybershake workload, respectively.

Similarly, cost for execution of workload is reduced

by 82.88% and 78.68% by AWS-TLS over EMS-

RTPW for Inspiral and Cybershake workload,

respectively. In future the proposed scheduling model

will be tested with more diverse workload dataset.

Alongside would consider leveraging multi-cloud and

edge-cloud platform to further reduce cost and delay

of execution, respectively.

REFERENCES

[1] Lei Wu, Ran Ding, Zhaohong Jia, Xuejun Li, "Cost-
Effective Resource Provisioning for Real-Time

Workload in Cloud", Complexity, vol. 2020, Article ID

1467274, 15 pages, 2020.
https://doi.org/10.1155/2020/1467274.

[2] L. Chen, X. Li, Y. Guo and R. Ruiz, "Hybrid Resource
Provisioning for Cloud Workloads with Malleable and

Rigid Tasks," in IEEE Transactions on Cloud
Computing, vol. 9, no. 3, pp. 10891102, 1 July-Sept.

2021, doi: 10.1109/TCC.2019.2894836.

[3] J. Wang, X. Li, R. Ruiz, J. Yang and D. Chu, "Energy
Utilization Task Scheduling for MapReduce in

Heterogeneous Clusters," in IEEE Transactions on

Services Computing, vol. 15, no. 2, pp. 931944, 1
March-April 2022, doi: 10.1109/TSC.2020.2966697.

[4] Z. Wen, R. Qasha, Z. Li, R. Ranjan, P. Watson and A.
Romanovsky, "Dynamically Partitioning Workload

over Federated Clouds for Optimising the Monetary

Cost and Handling Run-Time Failures," in IEEE
Transactions on Cloud Computing, vol. 8, no. 4, pp.

1093-1107, 1 Oct.-Dec. 2020, doi:

10.1109/TCC.2016.2603477.

[5] Nasr AA, El-Bahnasawy NA, Attiya G, El-Sayed A

(2019) Cost-effective algorithm for workload

scheduling in cloud computing under deadline
constraint. Arab J Sci Eng 44(4):3765–3780.

[6] Zhou X, Zhang G, Sun J, Zhou J, Wei T, Hu S (2019)

Minimizing cost and makespan for workload
scheduling in cloud using fuzzy dominance sort based

heft. Futur Gener Comput Syst 93:278–289.

[7] Rodriguez MA, Buyya R (2017) Budget-driven

scheduling of scientific workloads in iaas clouds with

fine-grained billing periods. ACM Trans Auton Adapt
Syst (TAAS) 12(2):1–22.

[8] Anwar N, Deng H (2018) Elastic scheduling of

scientific workloads under deadline constraints in cloud
computing environments. Futur Int 10(1):5.

[9] Ismayilov G, Topcuoglu HR (2020) Neural network

based multi-objective evolutionary algorithm for
dynamic workload scheduling in cloud computing.

Futur Gener Comput Syst 102:307–322

[10] Manasrah AM, Ba Ali H (2018) Workload scheduling

using hybrid ga-pso algorithm in cloud computing.

Wirel Commun Mob Comput 2018.

[11] Yassir S, Mostapha Z, Claude T (2017) Workload

scheduling issues and techniques in cloud computing: A

systematic literature review. In: International
Conference of Cloud Computing Technologies and

Applications. Springer. pp 241–263.

[12] Qin Y, Wang H, Yi S, Li X, Zhai L (2020) An energy-
aware scheduling algorithm for budgetconstrained

scientific workloads based on multi-objective

reinforcement learning. J Supercomput 76(1):455–480

https://doi.org/10.1155/2020/1467274
https://doi.org/10.1155/2020/1467274
https://doi.org/10.1155/2020/1467274
https://doi.org/10.1155/2020/1467274

Adaptive Workload Scheduling Design with Task Level SLA in Parallel Computational Framework

Section A-Research paper

8269

Eur. Chem. Bull. 2023,12(10), 8262-8269

[13] Konjaang JK, Xu L (2020) Cost optimised heuristic

algorithm (coha) for scientific workload scheduling in
iaas cloud environment. In: 2020 IEEE 6th Intl

Conference on Big Data Security on Cloud

(BigDataSecurity), IEEE Intl Conference on High
Performance and Smart Computing,(HPSC) and IEEE

Intl Conference on Intelligent Data and Security (IDS).

IEEE Computer Society. pp 162–168.

[14] X. Li, W. Yu, R. Ruiz and J. Zhu, "Energy-aware cloud

workload applications scheduling with geodistributed

data," in IEEE Transactions on Services Computing,
doi: 10.1109/TSC.2020.2965106.

[15] B. Hu, Z. Cao and M. Zhou, "Energy-Minimized
Scheduling of Real-Time Parallel Workloads on

Heterogeneous Distributed Computing Systems," in

IEEE Transactions on Services Computing, doi:
10.1109/TSC.2021.3054754.

[16] T. Pham and T. Fahringer, "Evolutionary Multi-

objective Workload Scheduling for Volatile Resources
 in theCloud," in

 IEEE Transactions on

 Cloud Computing, doi:
10.1109/TCC.2020.2993250.

[17] H. Li, B. Wang, Y. Yuan, M. Zhou, Y. Fan and Y. Xia,

"Scoring and Dynamic Hierarchy-Based NSGA-II for

Multiobjective Workload Scheduling in the Cloud," in
IEEE Transactions on Automation Science and

Engineering, doi: 10.1109/TASE.2021.3054501.

[18] A. Song, W. Chen, X. Luo, Z. Zhan and J. Zhang,
"Scheduling Workloads with Composite Tasks: A

Nested Particle Swarm Optimization Approach," in

IEEE Transactions on Services Computing, doi:
10.1109/TSC.2020.2975774.

[19] Tong, Zhao & Deng, Xiaomei & Chen, Hongjian &
Mei, Jing & Liu, Hong. (2020). QL-HEFT: a novel

machine learning scheduling scheme base on cloud

computing environment. Neural Computing and
Applications. 32. 1-18. 10.1007/s00521-019-04118-8.

[20] Q. Wu, M. Zhou and J. Wen, "Endpoint

Communication Contention-Aware Cloud Workload
Scheduling," in IEEE Transactions on Automation

Science and Engineering, doi:

10.1109/TASE.2020.3046673.

[21] Zhou, Junlong & Wang, Tian & Cong, Peijin & Lu,

Pingping & Wei, Tongquan & Chen, Mingsong. (2019).
Cost and Makespan-Aware Workload Scheduling in

Hybrid Clouds. Journal of Systems Architecture. 100.

10.1016/j.sysarc.2019.08.004.

[22] G. Wang, Y. Wang, M. S. Obaidat, C. Lin and H. Guo,

"Dynamic Multiworkload Deadline and Budget

Constrained Scheduling in Heterogeneous Distributed
Systems," in IEEE Systems Journal, doi:

10.1109/JSYST.2021.3087527.

[23] M. Barika, S. Garg, A. Chan and R. Calheiros,
"Scheduling Algorithms for Efficient Execution of

Stream Workload Applications in Multicloud

Environments," in IEEE Transactions on Services
Computing, doi: 10.1109/TSC.2019.2963382.

[24] X. Tang, "Reliability-Aware Cost-Efficient Scientific
Workloads Scheduling Strategy on MultiCloud

Systems," in IEEE Transactions on Cloud Computing,

doi: 10.1109/TCC.2021.3057422.

[25] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G.

Mehta, and K. Vahi, ”Characterizing and profiling

scientific workloads,” Future Gen. Comput. Syst., vol.
29, no. 3, pp. 682-692, Mar. 2013.

https://confluence.pegasus.isi.edu/display/pegasus/Wor

kload Generator. Accessed 18 July 2020.

