
Enhanced Security by using AWS MQTT Broker as Middleware Architecture for IoT Environment
 Section A-Research paper

1272
Eur. Chem. Bull. 2023,12(7), 1272-1286

Enhanced Security by using AWS MQTT Broker as Middleware

Architecture for IoT Environment

1. (Author & Corresponding author) Prof. Nimavat Dhaval M., Research Scholar, Computer

Engg. Dept., RK University, Rajkot. Email: dhaval.nimavat@gmail.com 9428075424

2. (Co-Author) Dr. Raiyani Ashwin G.,Nirma University, Ahmedabad. Email:

ashwin.rkcet@gmail.com

Financial/Non-Financial Conflicts of Interest

There are no competing interests to declare, here we are declaring that the article confirms that there

are no relevant financial or non-financial competing interests to report.

Abstract

The act of preserving security on Internet-connected devices and the networks to which they are

connected as well as locating, tracking, and repairing issues from various devices that potentially pose

security threats is known as IoT security.The issue of securing devices that are connected to the

internet has always been difficult. The aim of the given research work is to enhance security in an IoT

environment by leveraging AWS IoT Core concepts and the AWS MQTT broker by implementing

X.509 digital certificates, using private keys and applying AWS IoT Core device policies. AWS IoT

Core is a managed cloud service provided by Amazon Web Services (AWS) that enables the secure

and scalable connection of IoT devices to the cloud. It provides various features and functionalities to

manage and interact with IoT devices effectively. By utilizing X.509 digital certificates, we enhance

the security of the communication between IoT devices and AWS IoT Core. To implement enhanced

security, we generate our own private key, which will be used to sign and encrypt your digital

certificates. The private key should be kept confidential and securely stored. We would then configure

AWS IoT Core to use X.509 certificates for device authentication and secure communication. This

involves registering your devices with AWS IoT Core and associating the corresponding digital

certificates with each device. The devices will present their digital certificates during the connection

process to establish a secure connection with the AWS MQTT broker.

Keywords: IoT, Security, MQTT Broker, AWS IoT Core, Node-Red

1. Introduction to IoT Security

IoT security refers to securing internet-connected gadgets including smart devices, sensors, and digital

machinery. Each IoT component is described by a "Thing," which has unique identifiers that can send

and receive data using various protocols that are supported such as CoAP, DDS, LoRa, LoRaWAN,

LWM2M, and MQTT. The protocol is in charge of both the security and transmission of data because,

if not properly safeguarded, the internet exposes data to a number of major dangers[1].

mailto:dhaval.nimavat@gmail.com
mailto:ashwin.rkcet@gmail.com

Enhanced Security by using AWS MQTT Broker as Middleware Architecture for IoT Environment
 Section A-Research paper

1273
Eur. Chem. Bull. 2023,12(7), 1272-1286

It is crucial to make sure that all networks with connected Internet of Things devices are secure. IoT

security always focuses ona wide range of techniques, tactics, protocols and actions with the objective

of minimising the growing IoT vulnerabilities over internet-connected devices. IoT security measures

like API (Application Programme Interface) security and Public Key Infrastructure(PKI)

Authentication are frequently used to protect against hacker attacks and cybercrime[2].

1.1. Challenges within IoT Security

Remote Access allows unknown entities to interact with devices remotely, taking advantage of the

prevalence of HTTP (Hypertext Transfer Protocol) and APIs in internet-connected devices. This

presents security risks, particularly when it comes to network targets that hackers often exploit for

phishing attacks. As a result, it has become crucial to employ Cloud Security measures to protect

against such threats.

Industries such as automotive and healthcare are expanding the range of IoT devices to increase

productivity and efficiency as part of their digital transformation. However, increased reliance on

technology also makes it more vulnerable to the consequences of a successful data breach. Of

particular concern is the vulnerability of IoT devices. Also, many Medicare and auto manufacturers

are not ready to devote the necessary resources and sufficient financial resources to secure these

devices. Therefore, the lack of consensus in the industry intends many institutions and companies to

the cyber security threat.

Another key challenge to IoT security is the resource limits of various IoT devices. In contrast to

traditional computing systems, not all IoT devices have enough processing capacity to handle

complex security measures such as strong firewalls or antivirus software. Some gadgets even have

difficulty with basic connectivity. As a result, IoT devices that use Bluetooth and other technologies

have become targets for data breaches. These security flaws have had a substantial impact on the

automotive industry in particular[3]–[5].

1.2. IoT Security Parameter

Digital Certificates and Personal Key Infrastructure (PKI) are crucial elements of contemporary

cryptographic systems used to safeguard communications and confirm the legitimacy of digital

entities. The management, distribution, and use of cryptographic keys are made possible by the PKI

framework. To build trust between participants in online transactions and communications, it offers a

secure and trustworthy means to create, store, distribute, and revoke digital certificates.

The data integrity transmitted or received from IoT devices to pub/sub systems must be protected, and

only authorised devices, developers, and apps should be able to interface with APIs. Due to a certain

API, the mobile massive exposed the personal details of millions of consumers, including those

customers' phone numbers along with other personal information.

Enhanced Security by using AWS MQTT Broker as Middleware Architecture for IoT Environment
 Section A-Research paper

1274
Eur. Chem. Bull. 2023,12(7), 1272-1286

The IoT security process includes the following steps[3]:

1. Key Generation - This field generates a pair of encryption keys - a private (secret) key

and a corresponding public key.

2. Request Certificate - The entity provides a Certificate Authority (CA) with a certificate

signing request (CSR), together with its public key and identification data.

3. Certificate Issuance: The CA verifies the entity's identification and then issues a digital

certificate following successful validation. The CA creates a digital signature on the

certificate by signing it with its private key.

4. Certificate Distribution: The entity receives the digital certificate, allowing it to use it to build

trust and validate its identity.

5. Certificate Validation: Relying parties can confirm the digital certificate by validating the

CA's digital signature and checking its revocation status.

2. Working withMQTT Broker

Message Queuing Telemetry Transport (MQTT) is a lightweight message protocol that is widely used

in machinetomachine (M2M) and Internet of Things (IoT) applications as shown in figure 1. An

MQTT broker is a central intermediate server that allows MQTT clients to exchange messages[2].

Following are the important parameters for MQTT Broker

1. MQTT brokers accept messages broadcast by MQTT clients and route them to their intended

receivers. The broker serves as a messaging hub, allowing various clients to communicate

with one another.

2. Topic-based Publish/Subscribe communications structure: MQTT employs a

publish/subscribe communications structure. Messages can be published on specified topics

by clients, and other clients can subscribe to those topics to receive the messages. The broker

handles subscriptions and guarantees that published messages are delivered to subscribers

who are interested.

Fig 1. MQTT Broker

Enhanced Security by using AWS MQTT Broker as Middleware Architecture for IoT Environment
 Section A-Research paper

1275
Eur. Chem. Bull. 2023,12(7), 1272-1286

3. MQTT provides many Quality of Service (QoS) levels for message delivery. The broker

guarantees that messages are delivered and acknowledged in accordance with the QoS level

established by the publisher.

4. Persistent Messaging: Because MQTT brokers may store and keep messages, new subscribers

who subscribe to a subject can get previously published messages. This function makes

certain that subscribers do not miss out on important information.

5. Scalability: MQTT brokers are intended to efficiently manage a high number of clients and

messages. They may be horizontally scaled to meet additional traffic while maintaining

excellent availability.

6. Security and Authentication: To ensure secure communication between clients and the broker,

MQTT brokers frequently provide security measures such as Transport Layer Security (TLS)

encryption and authentication.

7. MQTT brokers are frequently integrated with IoT platforms and frameworks, providing

smooth connectivity and communication between IoT devices and applications.

MQTT brokers are critical in enabling effective and dependable messaging in MQTT-based IoT

systems. They control message routing, QoS, and scalability and security, making them an

essential component of MQTT-based communication infrastructures[6], [7].

3. Proposed Algorithm

There are several methods available to meet the various security needs of an IoT System. The first and

most important need is mutual authentication between the IoT device and the gateway inside the IoT

System's resource-constrained environment.To improve security mechanisms, we presented Amazon

Web Services (AWS) Core Concepts and MQTT Broker as IoT Middleware, coupled with custom

digital certification, private key, and custom policy to enable safe communication in an IoT

environment in this research paper[8], [9].

Step 1: Connect AWS IoT Core from Amazon Web Services

To define a customised policy for secured communication, it’s essential to establish a connection

betweenclients or things or Publisher Subscriber "RKU1" tothe AWS IoT Core environment.

Syntax

Enhanced Security by using AWS MQTT Broker as Middleware Architecture for IoT Environment
 Section A-Research paper

1276
Eur. Chem. Bull. 2023,12(7), 1272-1286

Step 2: Create a Topic for IoT Core Device

IoT Services need a topic to recognize messages transmitted or received from publishers. Using the

following command, we can create single or multiple topics as per the need of communication as

shown in figures 2 and 3 with a general and specific topic subscription.

Syntax

Example,

arn:aws:iot:us-east-1:topic/application/topic/device/sensor/temperature/room1 is Amazon Resource

Names for the topic application/topic/device/sensor.

The syntax for Topic Filter

For example,

arn:aws:iot:us-east-1:topicfilter/application/topic/+/sensor is an Amazon Resource Name for the topic

filter application/topic/+/sensor.

 Fig 2. General Topic Subscription Fig 3. Specific Topic Subscription

Step 3: Attaching custom digital certificate (.CSR)

Custom authentication empowers to establish their own method for client authentication and

authorization through the utilization of authorizer resources. Each authorizer encompasses a

connection to a Lambda function functioned by the customer, a public key for verifying the

credentials of devices, and supplementary configuration details[10].

Enhanced Security by using AWS MQTT Broker as Middleware Architecture for IoT Environment
 Section A-Research paper

1277
Eur. Chem. Bull. 2023,12(7), 1272-1286

A digital signature provides the following benefits,

Authentication: The recipient can verify the identity of the sender by confirming that the signature

matches the sender's public key[11].

Integrity: Any alteration to the signed message or document, no matter how small, will result in a

different hash value and thus fail the verification process[11].

Non-repudiation: The sender cannot deny having signed the message or document since their private

key is required to produce a valid signature[12].

Using OpenSSL, It’s required to generate a private key “dmn_private.key” in order to embed the same

into the digital certificate “RKU_CSR.csr” as shown in figures 4 and 5 respectively.

Fig 4. Generating private key using LibreSSL 2.8.3

Fig 5. Generating digital certificate using the previous step’s private key

Used the OpenSSL – LibreSSL 2.8.3 command to sign the x509 certificate. The next example creates

a custom digital certificate named RKU_CSR.csr using the previous step's private key

(dmn_private.key) and the signing request.

Step 4: Declare custom MQTT Policy

Enhanced Security by using AWS MQTT Broker as Middleware Architecture for IoT Environment
 Section A-Research paper

1278
Eur. Chem. Bull. 2023,12(7), 1272-1286

The policy of AWS IoT Core isbased on JSON format. Each policy contains various standards which

responsible for establishing connections, retaining messages, publishing messages, receiving

messages and also subscribing to topics[13]. Figure 6 describes the custom policy on AWS as

“RKU_Policy”.

Fig 6. Policy for publisher/subscriber

iot:Connect -Ability to connect to the AWS IoT Core broker. Every time a iot:Connect request is

issued to the broker, the iot:Connect authorization is verified. Two clients with the same client ID

cannot be connected to the message broker at the same time. The broker shuts the current connection

once the second client connects. Use the iot:Connect permission to restrict connections to just

authorised clients with a certain client ID.

iot:GetRetainedMessage-Permission to retrieve the contents of a single retained message. Messages

that were published with the RETAIN flag set and saved by AWS IoT Core are referred to as retained

messages.

iot:ListRetainedMessages -Represents the ability to access summary information about the account's

retained messages but not the messages' contents.

iot:Publish - Denotes the ability to publish MQTT topic. Each PUBLISH request is issued to the

broker, and this permission is verified. This may be used to enable clients to publish to certain topic

patterns.

iot:Receive - The authorization to receive messages from AWS IoT Core. Every time a message is

provided to a client, the iot:Receive permission is verified. It can use this permission to revoke rights

to clients who are currently subscribing to a subject since it is checked on every delivery.

iot:Subscribe –Enables to subscribe to the topic filter represented by this object. This permission is

verified every time a SUBSCRIBE request is issued to and for the broker. Allow customers to

subscribe to subjects that fit specified topicssuch as design[14].

Step 5: Allow specific or all publishers/subscriber request

Enhanced Security by using AWS MQTT Broker as Middleware Architecture for IoT Environment
 Section A-Research paper

1279
Eur. Chem. Bull. 2023,12(7), 1272-1286

Once the policy has been established, it is important to use "Action" to provide access to all or a

subset of clients. For instance, we only grant iot:Connect to all connected devices as described in

figure 7.

Fig 7. Allowing pub/sub for iot:Connect only

Step 6: Distribute generated certificate and private key among the authorized

publisher/subscriber.

Downloading certificate and private key files to install on publisher subscriber devices so that they

connect to AWS as described in figure 8.

Fig 8. Digital x509Certificate and Private Key

Step 7: Configure MQTT broker services with the given certificate and key using node-

red.

Within an AWS IoT context, the Node-RED platform has been used in a specific case to create and

put to use digital signature and policy techniques. Node-RED is a visual programming tool that

enables users to build and deploy applications by connecting several nodes, which represent various

services or functionalities. In an AWS IoT context[15], Node-RED can possibly be used to coordinate

Enhanced Security by using AWS MQTT Broker as Middleware Architecture for IoT Environment
 Section A-Research paper

1280
Eur. Chem. Bull. 2023,12(7), 1272-1286

the necessary setups for digital signatures and regulations[10], [16] Which is shown in figures 9 and

10 respectively.

Fig 9. Node-Red, AWS MQTT Broker configuration

Fig 10. Flow on Node-Red

Case Study of Open Weather API as publisher and the local client running on https://127.0.0.1:1880

as a subscriber using customised AWS IoT Core Concepts, IoT Topic “ MQTT/SernsorData1”, custom

private key “dmn_private.key”, generated digital certificate “RKU_CSR.csr” and policy

“RKU_Policy”[12].

4. Comparative Analysis

In the given research work we analysed and compared various cloud security like AWS(Amazon Web

Service), Microsoft Azure and GCP(Google Cloud Platform) as shown in Table 1.

4.1 Authentication and Authorization

Enhanced Security by using AWS MQTT Broker as Middleware Architecture for IoT Environment
 Section A-Research paper

1281
Eur. Chem. Bull. 2023,12(7), 1272-1286

For Authentication and authorization, AWS offers IAM(Identity & Access Management) as per Figure

11, whereas other cloud services like Microsoft Azure and Google Cloud Platform(GCP) supports

only Sign-On support which can be easily attacked by DDoS (Distributed Denial of Services). AWS

IAM ensures the identity and access management of each publisher or subscriber using fine-grained

permission by identifying them by the workforce and workload. IAM also defined custom

organizational or institutional policies for what resources can be accessible by authorized publishers

or subscribers. AWS also has plenty of distributed data centres around the globe, ensuring data

redundancy, availability and planning capacity. Likewise, Microsoft Azure and Google Cloud

Platform(GCP) also have plenty of data centres offering data storage[17].

Fig 11. AWS IAM(Identity and Access Management)

4.2 Protection

AWS Shield is a service for threat protection. Apart from Microsoft Azure and GCP which offers

protection from DDoS attack, The AWS shield provides DDoS detection and mitigation benefits for

all publishers and subscribers connected via MQTT Broker, based on middleware architecture. AWS

Shield Services also enable the entire middleware architecture to get protected from various network

and transport layer attacks. Using AWS Shield following attacks can be detected and prevented[18].

4.2.1 Network Volume Attack

Within layer 3, IoT architecture also contains the Infrastructure layer attack vectors. Due to this attack

vector,the entire capacity of middleware architecture denies the services of authorized publishers and

subscribers[18], [19].

4.2.2 Network Protocol Attack

Within layer 4, A network protocol attack is an SYN (Synchronization Packets) flood, which harms

the connections between pub/sub-like client servers, it also affects load balances and firewalls. This

attack can be also volumetric, as a larger SYN flood may harm the entire IoT middleware

architecture[20].

Enhanced Security by using AWS MQTT Broker as Middleware Architecture for IoT Environment
 Section A-Research paper

1282
Eur. Chem. Bull. 2023,12(7), 1272-1286

4.2.3 Application Layer Attack

Within layer 7, this type of attack attempts to deny services of authorized pub/sub by flooding

architecture with a bunch of queries which are suitable as per the target environment. It also knows as

Web Request Flood[17], [21].

Security Service
AWS (Amazon Web

Service)
Microsoft AZURE

GCP (Google Cloud

Program)

Physical Security

Plenty of data centres

ensure redundancy,

availability and capacity

planning

A wide range of

regions across the

globe ensure

redundancy and

compliance

GCP Data Centre

ensures single failure

circumvention and

data residency

Authentication and

Authorization

IAM (Identity and Access

Management)
Single Sing-In Support OAuth 2.0

Protection Shield DDoS Cloud Armor

Data Encryption
KMS (Key Manager

Service)

SSE (Storage Service

Encryption)
Standard Encryption

Table 1. Security Comparison for AWS vs Azure vs GCP

4.3 Data Encryption

Amazon Web Services provides a wide rangeof data encryption to ensure the security and privacy of

IoT Architecture. Following key benefits of AWS Encryption standard over remaining Cloud

Providers.

4.3.1 S3-Encryption

Encryption at rest is supported by Amazon S3 (Simple Storage Service). Server-side encryption (SSE)

can be used using customer-supplied keys (SSE-C), AWS Key Management Service (KMS), or

managed keys from Amazon S3 (SSE-S3). Data is encrypted by SSE before being stored, and it is

then decrypted when retrieving the data.

4.3.2 AWS Key Management Service

Pub/Sub can generate and maintain encryption keys using the managed service provided by AWS

KMS. For a number of AWS services, including Amazon S3, Amazon EBS (Elastic Block Store),

Enhanced Security by using AWS MQTT Broker as Middleware Architecture for IoT Environment
 Section A-Research paper

1283
Eur. Chem. Bull. 2023,12(7), 1272-1286

Amazon RDS (Relational Database Service), and others, they manage keys using AWS KMS. They

can safely create, rotate, and manage the encryption key lifecycle using AWS KMS.

4.3.3 EBS Encryption

Options for data-at-rest encryption are available with Amazon EBS volumes. It have the option of

specifying a customer master key (CMK) from AWS KMS for encryption or using the standard

encryption (Amazon EBS managed keys). Data will be kept secured throughout its entire lifespan

thanks to encrypted EBS volumes. KMS remains the default key for EBS encryption which required

KMC actions such as kms:CreateGrant (for giving permission), kms:Decrypt (for decryption of

message) and kms:reEncrypt (to re-encrypt the message)[22].

4.3.4 AWS Certificate Manager
ACM enables to provision, management, and deploy SSL/TLS certificates for use with AWS services.

It simplifies the process of obtaining and renewing SSL certificates, ensuring secure communication

between IoT middleware architecture[23].

4.3.5 AWS CloudHSM

AWS CloudHSM (Hardware Security Module) is a dedicated hardware appliance that provides secure

key storage and cryptographic operations. It allows to generation and uses encryption keys within a

secure hardware environment, providing an extra layer of protection.

4.3.6 AWS Database Encryption

AWS offers encryption options for various database services like Amazon RDS, Amazon Aurora,

Amazon DynamoDB, and Amazon Redshift. Itencrypts data at rest using AWS KMS and encrypts

data in transit using SSL/TLS.

4.3.7 AWS Transit Gateway Network Manager

AWS Transit Gateway Network Manager allows encrypting the network traffic betweenon-premises

networks and AWS using IPsec VPN connections or AWS Direct Connect.

4.3.8 AWS CloudTrail

AWS CloudTrail provides detailed logging and auditing of API calls made within its own AWS

account. It captures data such as the identity of the caller, timestamp, and details of the API request. It

can enable encryption for CloudTrail logs and store them in an S3 bucket using SSE-S3 or SSE-KMS.

AWS offers a wide range of encryption options to help you protect your data both at rest and in

transit, allowing you to meet your specific security requirements. It's important to consult the AWS

Enhanced Security by using AWS MQTT Broker as Middleware Architecture for IoT Environment
 Section A-Research paper

1284
Eur. Chem. Bull. 2023,12(7), 1272-1286

documentation and security best practices for detailed guidance on implementing encryption for your

specific use cases.

5. Conclusion

Offering security with cloud storage continues to be difficult for all of the current cloud providers. As

part of the research work, we analysed the security features of many cloud platforms, including AWS

(Amazon Web platforms), Microsoft Azure, and GCP (Google Cloud Platform).Using the proposed

algorithm, We also implemented the middleware security aspect using OpenSSLLibreSSL 2.8.3on the

AWS platform by offering AWS IoT Core concepts and AWS MQTT broker by applying X.509

digital certification by defining our own authentication and authorization by customizing Amazon

EBS encryption standard and IAM(Identity and Access Management), own 4096-bit private key

defined as Amazon KMS (Key Management Service) and AWS IoT core devices policy to the existing

IoT environment. Enhanced middleware architecture also ensures not only DDoS attacks prevention

but also protects against threats such as network volume attacks, network protocol attacks and

application layer attacks.

6. Reference

[1] G. Nimavat Dhaval M. and Raiyani Ashwin, “A Study on MQTT Protocol Architecture and

Security Aspects Within IoT Paradigm,” in Intelligent Computing and Networking, V. B. and

K. A. Balas Valentina Emilia and Semwal, Ed., Singapore: Springer Nature Singapore, 2023,

pp. 61–72.

[2] N. Dhaval and R. Ashwin, Study on Security Issues and Threats for MQTT with IoT Paradigm.

[Online]. Available: www.rku.ac.in

[3] J. Kotak, A. Shah, A. Shah, and P. Rajdev, “A comparative analysis on security of MQTT

brokers,” in 2nd Smart Cities Symposium (SCS 2019), 2019, pp. 1–5. doi:

10.1049/cp.2019.0180.

[4] J. Kotak, A. Shah, A. Shah, and P. Rajdev, “A comparative analysis on security of MQTT

brokers,” in 2nd Smart Cities Symposium (SCS 2019), 2019, pp. 1–5. doi:

10.1049/cp.2019.0180.

[5] F. Chen, Y. Huo, J. Zhu, and D. Fan, “A Review on the Study on MQTT Security Challenge,”

in 2020 IEEE International Conference on Smart Cloud (SmartCloud), 2020, pp. 128–133.

doi: 10.1109/SmartCloud49737.2020.00032.

[6] C.-S. Park and H.-M. Nam, “Security Architecture and Protocols for Secure MQTT-SN,” IEEE

Access, vol. 8, pp. 226422–226436, 2020, doi: 10.1109/ACCESS.2020.3045441.

[7] L. Staglianò, E. Longo, and A. E. C. Redondi, “D-MQTT: design and implementation of a

pub/sub broker for distributed environments,” in 2021 IEEE International Conference on

Enhanced Security by using AWS MQTT Broker as Middleware Architecture for IoT Environment
 Section A-Research paper

1285
Eur. Chem. Bull. 2023,12(7), 1272-1286

Omni-Layer Intelligent Systems (COINS), 2021, pp. 1–6. doi:

10.1109/COINS51742.2021.9524110.

[8] K. Terada, S. Ohno, H. Mukai, K. Ishibashi, and T. Yokotani, “Proposal of MQTT distributed

broker control mechanism,” in 2020 International Conference on Information Networking

(ICOIN), 2020, pp. 402–404. doi: 10.1109/ICOIN48656.2020.9016508.

[9] D. Selimović, A. Salkanović, and M. Tomić, “Application of MQTT Based Message Brokers

for IoT Devices Within Smart City Solutions,” in 2022 45th Jubilee International Convention

on Information, Communication and Electronic Technology (MIPRO), 2022, pp. 428–433. doi:

10.23919/MIPRO55190.2022.9803388.

[10] H. Yujia, H. Yongfeng, and C. Fu, “Research on Node Authentication of MQTT Protocol,” in

2020 IEEE 11th International Conference on Software Engineering and Service Science

(ICSESS), 2020, pp. 405–410. doi: 10.1109/ICSESS49938.2020.9237678.

[11] F. A. Shodiq, R. R. Pahlevi, and P. Sukarno, “Secure MQTT Authentication and Message

Exchange Methods for IoT Constrained Device,” in 2021 International Conference on

Intelligent Cybernetics Technology & Applications (ICICyTA), 2021, pp. 70–74. doi:

10.1109/ICICyTA53712.2021.9689126.

[12] T. K. Boppana and P. Bagade, “Security risks in MQTT-based Industrial IoT Applications,” in

2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS), 2022, pp. 1–

5. doi: 10.1109/COINS54846.2022.9854993.

[13] F. B. Setiawan and Magfirawaty, “Securing Data Communication Through MQTT Protocol

with AES-256 Encryption Algorithm CBC Mode on ESP32-Based Smart Homes,” in 2021

International Conference on Computer System, Information Technology, and Electrical

Engineering (COSITE), 2021, pp. 166–170. doi: 10.1109/COSITE52651.2021.9649577.

[14] E. Longo, A. E. C. Redondi, M. Cesana, and P. Manzoni, “BORDER: A Benchmarking

Framework for Distributed MQTT Brokers,” IEEE Internet Things J, vol. 9, no. 18, pp.

17728–17740, 2022, doi: 10.1109/JIOT.2022.3155872.

[15] R. Johari, S. Bansal, and K. Gupta, “Routing in IoT using MQTT Protocol,” in 2020 12th

International Conference on Computational Intelligence and Communication Networks

(CICN), 2020, pp. 1–5. doi: 10.1109/CICN49253.2020.9242600.

[16] H. Kim et al., “Petification: Node-RED Based Pet Care IoT Solution Using MQTT Broker,” in

2022 13th International Conference on Information and Communication Technology

Convergence (ICTC), 2022, pp. 25–29. doi: 10.1109/ICTC55196.2022.9952423.

[17] A. S. Suwardi Ansyah et al., “MQTT Broker Performance Comparison between AWS,

Microsoft Azure and Google Cloud Platform,” in 2023 International Conference on Recent

Trends in Electronics and Communication (ICRTEC), 2023, pp. 1–6. doi:

10.1109/ICRTEC56977.2023.10111870.

[18] A. B. M. Sultan, S. Mehmood, and H. Zahid, “Man in the Middle Attack Detection for MQTT

based IoT devices using different Machine Learning Algorithms,” in 2022 2nd International

Enhanced Security by using AWS MQTT Broker as Middleware Architecture for IoT Environment
 Section A-Research paper

1286
Eur. Chem. Bull. 2023,12(7), 1272-1286

Conference on Artificial Intelligence (ICAI), 2022, pp. 118–121. doi:

10.1109/ICAI55435.2022.9773590.

[19] S. Andy, B. Rahardjo, and B. Hanindhito, “Attack scenarios and security analysis of MQTT

communication protocol in IoT system,” in 2017 4th International Conference on Electrical

Engineering, Computer Science and Informatics (EECSI), 2017, pp. 1–6. doi:

10.1109/EECSI.2017.8239179.

[20] L. Hao, X. Yu, T. Zhang, and H. Schulzrinne, “Distributed MQTT Brokers at Network Edges:

A Study on Message Dissemination,” in 2022 IEEE International Conferences on Internet of

Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE

Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE

Congress on Cybermatics (Cybermatics), 2022, pp. 17–24. doi: 10.1109/iThings-GreenCom-

CPSCom-SmartData-Cybermatics55523.2022.00044.

[21] G. Potrino, F. de Rango, and A. F. Santamaria, “Modeling and evaluation of a new IoT security

system for mitigating DoS attacks to the MQTT broker,” in 2019 IEEE Wireless

Communications and Networking Conference (WCNC), 2019, pp. 1–6. doi:

10.1109/WCNC.2019.8885553.

[22] R. Kawaguchi and M. Bandai, “A Distributed MQTT Broker System for Location-based IoT

Applications,” in 2019 IEEE International Conference on Consumer Electronics (ICCE),

2019, pp. 1–4. doi: 10.1109/ICCE.2019.8662069.

[23] G. Potrino, F. de Rango, and A. F. Santamaria, “Modeling and evaluation of a new IoT security

system for mitigating DoS attacks to the MQTT broker,” in 2019 IEEE Wireless

Communications and Networking Conference (WCNC), 2019, pp. 1–6. doi:

10.1109/WCNC.2019.8885553.

