
 Path Planning for Mobile Robots using MATLAB and QBOT

 1

Prasanthi Rathnala,
2
Srinivasa Rao Sura,

3
M.S.Pradeep Kumar Patnaik,

4
Manapuram Uma Nitish Babu

1,2,3,4
Department of EECE,GITAM School of Technology, GITAM, Visakhapatnam, India.

prathnal@gitam.edu, ssura@gitam.edu, kmanipat@gitam.edu, 121910403027@gitam.in

ABSTRACT:

The main aim of this project is to find the

shortest path for the autonomous vehicle by

using the MATLAB tool which consists of

different libraries and which is classified on

the concept of Motion planning. Motion

planning is like path planning which is to

find a sequence of valid configurations that

moves the object from source to

destination. Path planning algorithms like

RRT,A* algorithms are used for

developing mobile robots, and autonomous

cars in order to find safe, efficient working.

Path planning also provides collision-free

paths, and least cost travel paths from a

source to the destination. Path planning

helps in safe and effective navigation, and

the optimal algorithm depends on the robot

geometry. One such best way for choosing

the best path planning approach to avoid

path planning problems is using a ‘Graph’.

There are two popular approaches for

creating a graph one is “Search based”

algorithm like A* and the other RRT and

RRT* are comes under “sampling based”

algorithms.

Keywords: MATLAB, Autonomous

vehicles, A* algorithm, RRT* algorithm.

INTRODUCTION:

Path planning is a process that involves

generating a collision-free path from a

starting point to a desired destination while

avoiding obstacles along the way. The

objective of path planning is to find the

optimal path, which could be the shortest

path, the safest path, the path with minimal

fuel requirements, or one that maximizes

area coverage and minimizes energy

consumption. Path planning is critical in

various fields, including autonomous

Vehicles, unmanned aerial vehicles, medical

operations, surveillance, and space missions.

To achieve the optimal criteria, path planning

algorithms use different techniques such as Dijkstra

algorithm and Sampling Based Planning (SBP). SBP

has many advantages, including low computational

cost and better success rates for complex problems.

Rapidly-exploring Random Tree (RRT) and Rapidly-

exploring Random Tree Star (RRT*) are some of the

popular SBP algorithms used in path planning.

RRT is a simple algorithm that involves connecting the

closest available nodes with randomly generated

points. It has three steps: selection of a vertex for

expansion, expansion, and terminating condition.

RRT's main objective is to solve path planning issues,

and it generates irregular paths that are solved by

RRT*. RRT* is implemented to increase the speed of

the algorithm, and it also supports non-holonomic

constraints and dynamic environments.

As the RRT algorithm keeps searching for the closest

available nodes, the optimal path cost increases

depending on the number of vertices generated.

Despite this, the algorithm is still fast compared to

other path planning algorithms.

RRT *:

RRT* is an enhanced version of RRT that is more

effective than its predecessor. As the number of nodes

increases, RRT* can find the shortest optimal path to

the goal while avoiding obstacles. The primary

objective of RRT* is to find the shortest path.

Although the principles of RRT and RRT* are similar,

the key differences lie in their results. RRT* records

the distance travelled from each vertex to its parent

vertex, which is known as the cost of the vertex.

When searching for the closest node in the graph,

RRT* calculates a neighbourhood of vertices in a fixed

radius from the new node. However, RRT*

performance decreases when the images are not clear.

The algorithm takes longer to complete a single path

on average than the default version after observing
16954

Eur. Chem. Bull. 2023, 12 (Special Issue 4), 16954-16959

mailto:prathnal@gitam.edu
mailto:ssura@gitam.edu
mailto:kmanipat@gitam.edu
mailto:121910403027@gitam.in

neighbouring nodes and rewiring the graph.

In this process, the major computing effort

comes from obstacle avoidance. As long as a

node can reach its neighbour node, it is kept

on rewiring with the other nodes to find the

optimal path between the source and

destination.

A* ALGORITHM:

A* is a popular graph traversal and path

search algorithm that is widely used in

computer science due to its completeness and

optimal efficiency. However, one of its main

practical drawbacks is its high space

complexity, as it stores all generated nodes in

memory. While there are techniques to pre-

process the graph to improve performance

and memory usage, A* is still the best

solution in many cases.

Developed in 1968 by Peter Hart, Nils

Nilsson, and Bertram Raphael at the Stanford

Research Institute (now SRI International),

A* is an extension of Dijkstra's algorithm

that only finds the shortest path from a

source to the goal. Despite its age, A*

remains a valuable tool for path planning in

many applications such as autonomous

vehicles, medical procedures, surveillance

operations, and space missions. While A*

may have more lines of code and take longer

to execute compared to newer algorithms, it

is still a reliable and effective solution for

many path planning problems.

PRINCIPLE OF OPERATION:

In Fig.1, the detailed block diagram of path

planning for mobile robots using

MATLAB &QBOT presented. The

methodology of path planning constitutes

two phases and they are as follows:
● Start QBOT
➢ Starting the QBOT and making

connectivity.
● Generate occupancy map using QBOT
➢ Generating occupancy map by

simulating in Simulink tool.

To generate this occupancy map and to

operate we required MATLAB Simulink.

These two phases can again be divided into

six steps namely:

● Connectivity

● QBOT Placing

● Simulink

● Interface

● Mapping keyboard

● Deploy & Start

The Phase 1 involves Connectivity, which

is shown in Fig.2.To connect the QBOT

Plug in the power adapter supplied with the

wireless router. Switch on the wireless

router. Connect the PC to any of the

ethernet/LAN ports on the router ports with

the provided ethernet cable. Using the

Windows Network system icon in the

taskbar, Open the Network & Internet

Setting and Click on Change adapter

options. As shown in the Fig.2.Ping the

router by typing ping 192.168.223.2 in the

Run box

Fig. 1: Block diagram of Planning for mobile robots using MATLAB & QBOT

Sssaaa

16955
Eur. Chem. Bull. 2023, 12 (Special Issue 4), 16954-16959

Fig. 2: Examining the Connectivity

The QBOT placing is placing the QBOT 2e in

a clear space of at least 2m x 2m with several

obstacles strategically placed around the

robot. Open Simulink model file. As shown in

the Fig.3.

Fig.3: Simulink model file:Quick_Start_QBOT2e.mdl.

The next step is interface. Set the IP. Then

Click on the Build model button in the

Simulink toolbar. After 5 seconds enable the

model using the manual switch highlighted in

blue. The robot will begin to rotate slowly.

After a complete rotation the robot will move

forward 0.5m, make 180 degrees turn, and

then return to a starting point. Then Click on

the stop button in the Simulink toolbar to stop

the model.

Fig. 4: QBOT 2e

The Phase 2 includes generating Occupancy

map using QBOT 2e as shown in Fig.5.

Presently Open QBot

2e_2D_Mapping_Keyboard.mdl Simulink

file. Provide IP address. Deploy and connect

&start the QBOT 2e. A map will be generated

Right click on the map and save it to the

workshop save it as MAP_OBS.As shown in

Fig.6. Now go to the MATLAB workshop,

find the item, right click on it and save it as

Map_obs.mat in some folder.

Fig. 5: QBOT E2e mapping Keyboard and

Occupancy grid 3D view.

16956Eur. Chem. Bull. 2023, 12 (Special Issue 4), 16954-16959

Fig.6: Flow chart for path planning algorithm of

different code blocks.

METHODOLOGY:

Fig.6 represents flow charts for path planning

algorithms of different code blocks. In this we

will be operating with different algorithms

like RRT* and Hybrid A* In order to verify

whether, we obtain optimal path are not.

To obtain an optimal path using these

algorithms, we use different code blocks. The

code blocks used here are namely:

Occupancy grid

● Start and goal Positions

● Boundaries

● Validator

● Algorithm

● Connection distance

● Plot

● Interpolate

● Path

In the first step we need to install the

occupancy grid map in the MATLAB tool.

Then set start and goal points and insert

start and goal positions of the robot. Then

identify the grid boundaries using state

space dubins. State space dubins are used

to know the boundaries inside the

occupancy map that need to be sampled.

State validator which helps to examine the

obstacle in the occupancy grid map for

every interval. The next code block is an

algorithm which we used to implement the

algorithms. Maximum Connection

distance will determine how many states

should be sampled. If the maximum

connection distance is less then it results in

more number of states that will be

sampled and connect to each other and

vice versa. Goal Reached Fcn will

determine whether the planner reached the

goal or not. This is an inbuilt parameter

but we can also customize it as per our

requirement. The Plot code block will plot

the entire path in the form search tree.

Then we need to interpolate and Show

start and goal points in the grid map in

order to obtain an optimal path. The code

used here is simple MATLAB code which

specifies the optimal path for any mobile

robot.

16957
Eur. Chem. Bull. 2023, 12 (Special Issue 4), 16954-16959

RESULTS:

Fig.7: Optimal path generated by RRT* algorithm.

Fig.7 is the optimal path generated by

RRT* algorithm from start to goal

points.The RRT*algorithm mainly uses

maximum connection distance to find the

optimal path.In order to differentiate

RRT* and RRT algorithms a table has

been build.Which is shown in Fig.8.

Fig.8: Observations from RRT* & RRT algorithms.

Fig.9: Optimal path generated by hybrid A* algorithm.

Fig.9 is the optimal path generated by hybrid

A* algorithm from start to goal points. The

hybrid A*algorithm mainly uses state

validator to find the optimal

path.Observations table has been bulid using

hybrid A* algorithm.Which is shown in

Fig.10.

16958

Eur. Chem. Bull. 2023, 12 (Special Issue 4), 16954-16959

Fig.10: Observation table for hybrid A* algorithm.

CONCLUSIONS:

This project presented the

implementation of an efficient and

reliable motion planning system, based

on RRT*& hybrid A* algorithms. The

project can be further developed by

testing these algorithms in different

autonomous vehicles by taking different

sensors. Whenever there is absence of

GPS these algorithms will help

autonomous vehicles to find the optimal

path. This project is also used for finding

the optimal path for the mobile robots,

which are present in the inner

environment.

REFERENCES:

1. Lavalle, S. M. (2006). Planning algorithms.

Cambridge University Press.

2. Lan, X., & Di Cairano, S. (2015).

Continuous curvature path planning for

autonomous vehicle maneuvers using

RRT*. In European Control Conference

(ECC).

3. Alejo, J. A. Cobano, G. Heredia, J. R.

Martínez-De Dios, & A. Ollero. (2015).

Efficient trajectory planning for WAN data

collection with multiple UAVs. In

Cooperative robots and sensor networks

(pp. 53-75). Springer International

Publishing.

4. Karaman, S., Walter, M., Perez, A.,

Frazzoli, E., & Teller, S. (2011). Anytime

motion planning using the RRT*. In IEEE

International Conference on Robotics and

Automation (ICRA).

5. Lau, & Liu, H. H. T. (2013). Real-time path

planning algorithm for autonomous border

patrol: Design, simulation, and

experimentation. Journal of Intelligent &

Robotic Systems, 75, 517-539.

6. Kong, X., Duan, X., & Wang, Y. (2015). An

integrated system for planning, navigation

and robotic assistance for mandible

reconstruction surgery. International Journal

of Intelligent Service Robotics, 9, 113-121.

7. Karaman, S., & Frazzoli, E. (2011).

Sampling-based algorithms for optimal

motion planning. International Journal of

Robotics Research, 30, 846-894.

8. Elbanhawy, M., & Simic, M. (2014).

Sampling-based robot motion planning: A

review survey. IEEE Access, 2, 56-77.

16959Eur. Chem. Bull. 2023, 12 (Special Issue 4), 16954-16959

