STRONG PERFECT NONBONDAGE NUMBER OF SOME GRAPHS

Govindalakshmi T. $\mathbf{S}^{\mathbf{1 *}}$, Meena $\mathbf{N}^{\mathbf{2}}$

Abstract

Let G be a simple graph. A subset $\mathrm{S} \subseteq \mathrm{V}(\mathrm{G})$ is called a strong (weak) perfect dominating set of G if $\mid \mathrm{N}_{\mathrm{s}}(\mathrm{u}) \cap$ $\mathrm{S} \mid=1\left(\left|\mathrm{~N}_{\mathrm{w}}(\mathrm{u}) \cap \mathrm{S}\right|=1\right)$ for every $\mathrm{u} \in \mathrm{V}(\mathrm{G})-\mathrm{S}$ where $\mathrm{N}_{\mathrm{s}}(\mathrm{u})=\{\mathrm{v} \in \mathrm{V}(\mathrm{G}) / \mathrm{uv} \in E(G), \operatorname{deg} \mathrm{v} \geq \operatorname{deg} \mathrm{u}\}\left(\mathrm{N}_{\mathrm{w}}(\mathrm{u})=\{\mathrm{v}\right.$ $\in \mathrm{V}(\mathrm{G}) / \mathrm{uv} \in E(G), \operatorname{deg} \mathrm{v} \leq \operatorname{deg} \mathrm{u}\}$. The minimum cardinality of a strong (weak) perfect dominating set of G is called the strong (weak) perfect domination number of G and is denoted by $\gamma_{\mathrm{sp}}(G)\left(\gamma_{\mathrm{wp}}(\mathrm{G})\right.$). The strong perfect non bondage number $b_{\text {spn }}(G)$ of a nonempty graph G is defined as the maximum cardinality among all sets of edges $\mathrm{X} \subseteq \mathrm{E}(\mathrm{G})$ for which $\gamma_{\mathrm{sp}}(\mathrm{G}-\mathrm{X})=\gamma_{\mathrm{sp}}(\mathrm{G})$. If $\mathrm{b}_{\mathrm{spn}}(\mathrm{G})$ does not exist, then $\mathrm{b}_{\mathrm{spn}}(\mathrm{G})$ is defined as zero. In this paper strong perfect nonbondage number of some standard graphs are determined.

Keywords: Strong perfect dominating set, strong perfect domination number and strong perfect nonbondage number.
${ }^{1 *}$ Research Scholar, Reg. No. 12566, P.G. \& Research Department of Mathematics, The M.D.T. Hindu College, Tirunelveli -10 \& Assistant professor of Mathematics, Manonmaniam Sundaranar University College, Puliangudi-627855. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli -627 012, TamilNadu, India. Email: laxmigopal2005@gmail.com
${ }^{2}$ Assistant professor of Mathematics, P.G. \& Research Department of Mathematics, The M.D.T. Hindu College, Tirunelveli-10, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India. Email: meena@mdthinducollege.org
*Corresponding Author: Govindalakshmi T.S
*Research Scholar, Reg. No. 12566, P.G. \& Research Department of Mathematics, The M.D.T. Hindu College, Tirunelveli -10 \& Assistant professor of Mathematics, Manonmaniam Sundaranar University College, Puliangudi-627855. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli -627 012, TamilNadu, India. Email: laxmigopal2005@gmail.com

AMS subject classification: 05C69

DOI: 10.48047/ecb/2023.12.si10.00310

1.INTRODUTION

By a graph, it is meant that a finite, undirected graph without loops and multiple edges. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The neighbourhood of v, written as $\mathrm{N}(\mathrm{v})$ is defined by $\mathrm{N}(\mathrm{v})=\{\mathrm{u} \in \mathrm{V}(\mathrm{G}) / \mathrm{u}$ is adjacent to v$\}$. The degree of any vertex u in G is the number of edges incident with u and is denoted by deg u. The minimum and maximum degrees of vertices in G are denoted by $\delta(\mathrm{G})$ and $\Delta(\mathrm{G})$ respectively. A dominating set D of G is a subset of $V(G)$ such that every vertex in V -D is adjacent to at least one vertex in D . A dominating set of $\mathrm{G}[9,10$] of minimum cardinality is a minimum dominating set of G and cardinality is the domination number of G. It is denoted by $\gamma(\mathrm{G})$. A set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is a strong dominating set of G [8] if every vertex in $\mathrm{V}-\mathrm{D}$ is strongly dominated by at least one vertex in D. Similarly, D is a weak dominating set if every vertex in $\mathrm{V}-\mathrm{D}$ is weakly dominated by at least one vertex in D . The strong (weak) domination number $\gamma_{s}(G)\left(\gamma_{\mathrm{w}}(\mathrm{G})\right)$ is the minimum cardinality of a strong (weak) dominating set of G. A dominating set S is a perfect dominating set of $G[1,2]$ if $|N(v) \cap S|=1$ for each $\mathrm{v} \in \mathrm{V}-\mathrm{S}$. Minimum cardinality of the perfect dominating set of G is the perfect domination number of G [7] and it is denoted by $\gamma_{p}(G)$. Motivated by these definitions, the strong perfect domination in graph was introduced by T.S. Govindalakshmi and N. Meena [4]. In [6], Kulli and Janakiram introduced the concept of nonbondage number as follows. The nonbondage number $b_{n}(G)$ of a nonempty graph G is the maximum cardinality among all sets of edges $\mathrm{X} \subseteq$ $\mathrm{E}(\mathrm{G})$ for which $\gamma_{\mathrm{sp}}(\mathrm{G}-\mathrm{X})=\gamma_{\mathrm{sp}}(\mathrm{G})$ for an edge set X . X is called the nonbondage set and the maximum one is the maximum nonbondage set. In this paper strong perfect nonbondage number of a graph is defined and strong perfect nonbondage number of standard graphs are determined. For all graph theoretic terminologies and notations Harary [5] is followed.

Definition 2.1[4] Let G be a simple graph. A subset $\mathrm{S} \subseteq \mathrm{V}(\mathrm{G})$ is called a strong (weak) perfect dominating set of G if $\left|N_{s}(u) \cap S\right|=1\left(\left|N_{w}(u) \cap S\right|=\right.$ 1) for every $u \in V(G)-S$ where $N_{s}(u)=\{v \in$ $\mathrm{V}(\mathrm{G}) / \mathrm{uv} \in E(G)$, $\operatorname{deg} \mathrm{v} \geq \operatorname{deg} \mathrm{u}\} \quad\left(\mathrm{N}_{\mathrm{w}}(\mathrm{u})=\{\mathrm{v}\right.$ $\in \mathrm{V}(\mathrm{G}) / \mathrm{uv} \in E(G), \operatorname{deg} \mathrm{v} \leq \operatorname{deg} \mathrm{u}\}$.

Remark 2.2.[4] The minimum cardinality of a strong (weak) perfect dominating set of G is called the strong (weak) perfect domination number of G and is denoted by $\gamma_{\mathrm{sp}}(\mathrm{G})\left(\gamma_{\mathrm{wp}}(\mathrm{G})\right)$.

Definition 2.3. Bi star is the graph obtained by joining the apex vertices of two copies of star $K_{1, n}$.

Definition 2.4. The corona $G_{1} \odot G_{2}$ of two graphs G_{1} and G_{2} (where G_{i} has p_{i} points and q_{i} lines) is defined as the graph G obtained by taking one copy of G_{1} and p_{1} copies of G_{2}, and then joining by a line the $i^{\text {th }}$ point of G_{1} to every point in the $i^{\text {th }}$ copy of G_{2}.

Definition 2.5. The wheel W_{n} is defined to be the graph $\mathrm{C}_{\mathrm{n}-1}+\mathrm{K}_{1}, \mathrm{n} \geq 4$.

Definition 2.6. The helm H_{n} is the graph obtained from the wheel W_{n} with n spokes by adding n pendant edges at each vertex on the wheel's rim.

Theorem 2.7. [4] For any path P_{m},
Then $\gamma_{\mathrm{sp}}\left(\mathrm{P}_{\mathrm{m}}\right)=\left\{\begin{array}{c}n \text { if } m=3 n, n \in N \\ n+1 \text { if } m=3 n+1, n \in N \\ n+2 \text { if } m=3 n+2, n \in N\end{array}\right.$
Theorem 2.8. [4] For any cycle C_{m},
Then $\gamma_{\mathrm{sp}}\left(\mathrm{C}_{\mathrm{m}}\right)=\left\{\begin{aligned} n \text { if } m & =3 n, n \epsilon N \\ n+1 \text { if } m & =3 n+1, n \in N \\ n+2 \text { if } m & =3 n+2, n \in N\end{aligned}\right.$
Theorem 2.9. [4] Let G be a connected graph with $|\mathrm{V}(\mathrm{G})|=\mathrm{n}$. Then $\gamma_{\mathrm{sp}}\left(\mathrm{G} \odot \mathrm{K}_{1}\right)=\mathrm{n}$.

Remark 2.10. [4]
(i) $\gamma_{\mathrm{sp}}\left(\mathrm{D}_{\mathrm{r}, \mathrm{s}}\right)=2 . \mathrm{r}, \mathrm{s} \in \mathrm{N}$
(ii) $\gamma_{\mathrm{sp}}\left(\mathrm{K}_{\mathrm{n}}\right)=1$.
(iii) $\gamma_{\mathrm{sp}}\left(\mathrm{K}_{1, \mathrm{n}}\right)=1$.
(iv) $\gamma_{\mathrm{sp}}\left(\mathrm{W}_{\mathrm{n}}\right)=1$.
(v) $\quad \gamma_{\mathrm{sp}}\left(\mathrm{H}_{\mathrm{n}}\right)=\mathrm{n} . \mathrm{n} \geq 5$ and $\gamma_{\mathrm{sp}}\left(\mathrm{H}_{4}\right)=3$.

3. MAIN RESULTS

Definition3.1: The strong perfect nonbondage number of G denoted $b_{\text {spn }}(G)$, is defined as the maximum cardinality among all sets of edges $\mathrm{X} \subseteq \mathrm{E}(\mathrm{G})$ forwhich $\gamma_{\mathrm{sp}}(\mathrm{G}-\mathrm{X})=\gamma_{\mathrm{sp}}(\mathrm{G})$. If $\mathrm{b}_{\mathrm{spn}}(\mathrm{G})$ does not exist, then $\mathrm{b}_{\mathrm{spn}}(\mathrm{G})$ is defined as zero.

Example 3.2: Consider the graph $\mathrm{G}=\mathrm{C}_{6} \odot \mathrm{~K}_{1}$ in figure $1, \gamma_{\mathrm{sp}}(\mathrm{G})=6$.

Figure 1, Graph $\mathrm{C}_{6} \odot \mathrm{~K}_{1}$

If anyone edge of the cycle is removed from G then the new graph G^{\prime} is $\mathrm{P}_{6} \odot \mathrm{~K}_{1}$. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=6=$ $\gamma_{\mathrm{sp}}(\mathrm{G})$. If anyone edge $\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}, 1 \leq i \leq 6$ is removed then $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=6=\gamma_{\mathrm{sp}}(\mathrm{G})$. If any two edges of the cycle are removed from G then G^{\prime} is $\mathrm{P}_{2} \cup\left(\mathrm{P}_{5} \odot \mathrm{~K}_{1}\right)$ or $2\left(\mathrm{P}_{3} \odot \mathrm{~K}_{1}\right)$ or $\left(\mathrm{P}_{2} \odot \mathrm{~K}_{1}\right) \cup\left(\mathrm{P}_{4} \odot \mathrm{~K}_{1}\right)$. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=6=\gamma_{\mathrm{sp}}(\mathrm{G})$. If any two edges $\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}, 1 \leq i \leq$ 6 , are removed from G then also $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=6=$ $\gamma_{\mathrm{sp}}(\mathrm{G})$. If one edge $\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}, 1 \leq i \leq 6$ and one edge from the cycle are removed from G then $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=6=$ $\gamma_{\mathrm{sp}}(\mathrm{G})$. Let $\mathrm{X}=\left\{\mathrm{v}_{1} \mathrm{v}_{2}, \mathrm{v}_{4} \mathrm{v}_{5}, \mathrm{v}_{3} \mathrm{u}_{3}\right\} . \mathrm{G}-\mathrm{X}=\left(\mathrm{P}_{3} \odot \mathrm{~K}_{1}\right)$ $\cup \mathrm{P}_{5} \cup \mathrm{P}_{1}$. Therefore $\gamma_{\mathrm{sp}}(\mathrm{G}-\mathrm{X})=7>6=\gamma_{\mathrm{sp}}(\mathrm{G})$. Hence $\mathrm{b}_{\mathrm{spn}}(\mathrm{G})=2$.

Observation 3.3: Let G be a graph with unique full degree vertex $v . \gamma_{\mathrm{sp}}(G)=1$. If any edge incident with v is removed then strong perfect domination number of the resulting graph G^{\prime} is greater than or equal to 2 . Hence $b_{\text {spn }}(G)=0$.

Observation 3.4: $\mathrm{b}_{\mathrm{spn}}\left(\mathrm{K}_{1, \mathrm{n}}\right)=0, n \geq 1$.
Theorem 3.5: For any path P_{m} on m vertices, $\mathrm{b}_{\text {spn }}\left(\mathrm{P}_{\mathrm{m}}\right)=0, \mathrm{~m} \geq 2$ and $\mathrm{m} \neq 4$.
Proof: Let $G=P_{m}, m \geq 2$. Let $V(G)=\left\{v_{i} / 1 \leq i \leq m\right\}$
Case (1): Let $m=3 n, n \geq 1$. Let $X=\left\{v_{1} v_{2}\right\}$ or $\left\{v_{n-}\right.$ $\left.{ }_{1} \mathrm{~V}_{\mathrm{n}}\right\} . \mathrm{G}-\mathrm{X}=\mathrm{P}_{1} \cup \mathrm{P}_{3 \mathrm{n}-1}=\mathrm{P}_{1} \cup \mathrm{P}_{3(\mathrm{n}-1)+2}$. Therefore $\gamma_{\mathrm{sp}}(\mathrm{G}-\mathrm{X})=\mathrm{n}+2>\gamma_{\mathrm{sp}}(\mathrm{G})$. Hence $\mathrm{b}_{\mathrm{spn}}(\mathrm{G})=0$.
Case (2): Let $m=3 n+1, n \geq 2$. Let $X=\left\{v_{2} v_{3}\right\}$. $G-$ $\mathrm{X}=\mathrm{P}_{2} \cup \mathrm{P}_{3 \mathrm{n}-1}=\mathrm{P}_{2} \cup \mathrm{P}_{3(\mathrm{n}-1)+2}$. Therefore $\gamma_{\mathrm{sp}}(\mathrm{G}-$ $\mathrm{X})=\mathrm{n}+2>\gamma_{\mathrm{sp}}(\mathrm{G})$. Hence $\mathrm{b}_{\text {spn }}(\mathrm{G})=0$.
Case (3): Let $m=3 n+2, n \geq 1$. Let $X=\left\{v_{2} v_{3}\right\}$. $G-$ $\mathrm{X}=\mathrm{P}_{2} \cup \mathrm{P}_{3 \mathrm{n}}$. Therefore $\gamma_{\mathrm{sp}}(\mathrm{G}-\mathrm{X})=\mathrm{n}+1<\gamma_{\mathrm{sp}}(\mathrm{G})$. Hence $\mathrm{b}_{\mathrm{spn}}(\mathrm{G})=0$.

Remark 3.6: Let $m=4$. $X=\left\{\mathrm{v}_{1} \mathrm{v}_{2}\right\}$ or $\left\{\mathrm{v}_{2} \mathrm{v}_{3}\right\}$ or $\left\{\mathrm{v}_{3} \mathrm{~V}_{4}\right\} . \mathrm{G}-\mathrm{X}=\mathrm{P}_{1} \cup \mathrm{P}_{3}$ or $2 \mathrm{P}_{2}$. Therefore $\gamma_{\mathrm{sp}}(\mathrm{G}-$ $\mathrm{X})=2=\gamma_{\mathrm{sp}}(\mathrm{G})$. Remove any two edges. Then the resulting graph G^{\prime} is $2 \mathrm{P}_{1} \cup \mathrm{P}_{2}$. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=$ $3>\gamma_{\mathrm{sp}}(\mathrm{G})$. Hence $\mathrm{b}_{\mathrm{spn}}\left(\mathrm{P}_{4}\right)=1$.

Theorem3.7: For any cycle C_{m} on m vertices, $\mathrm{b}_{\text {spn }}\left(\mathrm{C}_{\mathrm{m}}\right)=1, \mathrm{~m} \geq 3$ and $\mathrm{m} \neq 4$.

Proof: Let $\mathrm{G}=\mathrm{C}_{\mathrm{m}}, \mathrm{m} \geq 3$. Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{m}\right\}$. Case (1): Let $m=3 n, n \geq 1$. If anyone edge is removed from the cycle G then the resulting graph G^{\prime} is $\mathrm{P}_{3 \mathrm{n}}$. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=\mathrm{n}=\gamma_{\mathrm{sp}}(\mathrm{G})$. Remove two edges from G such that the resulting graph G^{\prime} is $\mathrm{P}_{2} \cup \mathrm{P}_{3 \mathrm{n}-2}$. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=\gamma_{\mathrm{sp}}\left(\mathrm{P}_{2}\right)+\gamma_{\mathrm{sp}}\left(\mathrm{P}_{3(\mathrm{n}-}\right.$ $\left.{ }_{1)}+1\right)=\mathrm{n}+1>\gamma_{\mathrm{sp}}(\mathrm{G})$. Hence $\mathrm{b}_{\mathrm{spn}}(\mathrm{G})=1$.

Case (2): Let $m=3 n+1, n \geq 2$. If anyone edge is removed from the cycle G then the resulting graph G^{\prime} is $\mathrm{P}_{3 \mathrm{n}+1}$. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=\mathrm{n}+1=\gamma_{\mathrm{sp}}(\mathrm{G})$. Remove two edges from G such that the resulting graph G^{\prime} is $\mathrm{P}_{2} \cup \mathrm{P}_{3 \mathrm{n}-1}$. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=\gamma_{\mathrm{sp}}\left(\mathrm{P}_{2}\right)+$ $\gamma_{\mathrm{sp}}\left(\mathrm{P}_{3(\mathrm{n}-1)+2}\right)=\mathrm{n}+2>\gamma_{\mathrm{sp}}(\mathrm{G})$. Hence $\mathrm{b}_{\mathrm{spn}}(\mathrm{G})=1$.

Case (3): Let $m=3 n+2, n \geq 1$. If anyone edge is removed from the cycle G then the resulting graph G^{\prime} is $\mathrm{P}_{3 \mathrm{n}}+2$. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=\mathrm{n}+2=\gamma_{\mathrm{sp}}(\mathrm{G})$. Remove two edges from G such that the resulting graph G^{\prime} is $\mathrm{P}_{2} \cup \mathrm{P}_{3 \mathrm{n}}$. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=\gamma_{\mathrm{sp}}\left(\mathrm{P}_{2}\right)+$ $\gamma_{\mathrm{sp}}\left(\mathrm{P}_{3 \mathrm{n}}\right)=\mathrm{n}+1<\gamma_{\mathrm{sp}}(\mathrm{G})$. Hence $\mathrm{b}_{\mathrm{spn}}(\mathrm{G})=1$.

Remark 3.8: Let $m=4$. If anyone edge is removed from the cycle C_{4} then the resulting graph G^{\prime} is P_{4}. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=2=\gamma_{\mathrm{sp}}(\mathrm{G})$. If any two edges are removed from the cycle C_{4} then the resulting graph G^{\prime} is $P_{1} \cup P_{3}$ or $2 P_{2}$. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=2=\gamma_{\mathrm{sp}}(\mathrm{G})$. If any three edges are removed from the cycle C_{4} then the resulting graph G^{\prime} is $2 \mathrm{P}_{1} \cup \mathrm{P}_{2}$. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=3>\gamma_{\mathrm{sp}}(\mathrm{G})$. Hence $\mathrm{b}_{\mathrm{spn}}(\mathrm{G})=2$.

Theorem 3.9: For any complete graph K_{n} on n vertices,

$$
\mathrm{b}_{\mathrm{spn}}\left(\mathrm{~K}_{\mathrm{n}}\right)
$$

$=$ $\left\{\begin{array}{c}\frac{n}{2}-1 \text { if } n \text { is even and } n \geq 2 \\ \frac{n-1}{2} \text { if } n \text { is odd and } n \geq 3\end{array}\right.$

Proof: Let $\mathrm{G}=\mathrm{K}_{\mathrm{n}}, \mathrm{n} \geq 3$ and $\mathrm{n} \neq 4$. $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} /\right.$ $1 \leq \mathrm{i} \leq \mathrm{n}\} . \gamma_{\mathrm{sp}}\left(\mathrm{K}_{\mathrm{n}}\right)=1$. All the vertices of K_{n} are full degree vertices. To increase the strong perfect
domination number of G, degree of each vertex must be reduced by at least one.

Case (1): Suppose n is even and $\mathrm{n} \geq 2$. Let $\mathrm{X}=$ $\left\{\mathrm{v}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right.$ and i is odd $\}$. $|\mathrm{X}|=\frac{n}{2}$. $\operatorname{deg} \mathrm{v}_{\mathrm{i}}=$ $\mathrm{n}-2,1 \leq \mathrm{i} \leq \mathrm{n} .\left\{\mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ is the unique strong perfect dominating set of $\mathrm{G}-\mathrm{X}$. Hence $\gamma_{\mathrm{sp}}(\mathrm{G}-\mathrm{X})$ $=\mathrm{n}>\gamma_{\mathrm{sp}}(\mathrm{G})$. Remove $\frac{n}{2}-1$ edges from G such that atleast one full degree vertex exist in $\mathrm{G}-\mathrm{X}$. Also, removal of no set of less than $\frac{n}{2}-1$ edges increase the strong perfect domination number of the resulting graph. Hence $\mathrm{b}_{\mathrm{spn}}(\mathrm{G})=\frac{n}{2}-1$.

Case (2): Suppose n is odd and $n \geq 3$. As in case (1), if the degree of each vertex is reduced by at least one then strong perfect domination number of the resulting graph increases. Remove at least $\frac{n+1}{2}$ edges so that the resulting graph G^{\prime} has no full degree vertex. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)>\gamma_{\mathrm{sp}}(\mathrm{G})$. Hence remove $\frac{n+1}{2}-1=\frac{n-1}{2}$ edges from G such that atleast one full degree vertex exist in $\mathrm{G}-\mathrm{X}$. Also, removal of no set of less than $\frac{n-1}{2}$ edges increase the strong perfect domination number of the resulting graph. Hence $\mathrm{b}_{\text {spn }}(\mathrm{G})=\frac{n-1}{2}$.

Theorem 3.10: For any complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ on $\mathrm{m}+\mathrm{n}$ vertices,

$$
\mathrm{b}_{\mathrm{spn}}\left(\mathrm{~K}_{\mathrm{m},} \quad \mathrm{n}\right) \quad=
$$

$\left\{\begin{array}{c}n-1 \text { if } m=n \\ m n-n-m^{2}+m-1 \text { if } n>m\end{array}\right.$
Proof: Let $G=K_{m, n}, m, n \geq 1 . V(G)=\left\{v_{i}, u_{j} / 1 \leq i\right.$ $\leq m, 1 \leq j \leq n\}$ and $E(G)=\left\{v_{i} u_{j} / 1 \leq i \leq m, 1 \leq j \leq n\right\} . \gamma_{\mathrm{sp}}(K$ $\mathrm{m}, \mathrm{n})=2$ if $\mathrm{m}=\mathrm{n}$ and $\mathrm{m}+\mathrm{n}$ if $\mathrm{m} \neq \mathrm{n}$.

Case (1): Let $m=n . \operatorname{deg} v_{i}=\operatorname{deg} u_{i}=n, 1 \leq i \leq n$. Removal of no set of less than n edges increase the strong perfect domination number of the resulting graph. Let $\mathrm{X}=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{j}} / 1 \leq \mathrm{j} \leq \mathrm{n}\right\}$ for some $\mathrm{i}=1$ to $\mathrm{n} . \mathrm{G}$ $-\mathrm{X}=\mathrm{K}_{\mathrm{n}-1, \mathrm{n}} \cup \mathrm{K}_{1} . \quad \gamma_{\mathrm{sp}}(\mathrm{G}-\mathrm{X})=2 \mathrm{n}>2=\gamma_{\mathrm{sp}}(\mathrm{G})$. Hence $\mathrm{b}_{\text {spn }}(\mathrm{G})=\mathrm{n}-1$.

Case (2): Let $n>m$. Remove $(m-1)(n-m)$ edges from G such that $\operatorname{deg} v_{i}=n$, for any $i=1$ to n, deg $\mathrm{u}_{\mathrm{j}}=\mathrm{m}, \operatorname{deg} \mathrm{v}_{\mathrm{t}}=\mathrm{m}, 1 \leq \mathrm{t} \leq \mathrm{n}, \mathrm{t} \neq \mathrm{i}$ and $\operatorname{deg} \mathrm{u}_{\mathrm{k}}<\mathrm{n}, 1 \leq$ $\mathrm{k} \leq \mathrm{n}, \mathrm{k} \neq j .\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right\}$ is the unique strong perfect dominating set of the resulting graph $\mathrm{G}^{\prime} . \gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=2$ $<\gamma_{\text {sp }}(\mathrm{G})$. Hence $\mathrm{b}_{\text {spn }}(\mathrm{G}) \leq m n-n-m^{2}+m-1$. Removal of no set of greater than $(\mathrm{n}-\mathrm{m})(\mathrm{m}-1)$ edges decreases the strong perfect domination number of the resulting graph. Hence $b_{\text {spn }}(G)=m n$ $-n-m^{2}+m-1$.

Theorem 3.11: For any bistar $D_{r, ~}$ on $r+s+2$ vertices, $\mathrm{b}_{\mathrm{spn}}\left(\mathrm{D}_{\mathrm{r}, \mathrm{s}}\right)=0, \mathrm{r} \geq \mathrm{s}, \mathrm{r}, \mathrm{s} \geq 1$.

Proof: Let $G=D_{r, s}, r, s \geq 1$. Let $V(G)=\left\{u, v, u_{i}\right.$, $\left.\mathrm{v}_{\mathrm{j}} / 1 \leq \mathrm{i} \leq \mathrm{r}, 1 \leq \mathrm{j} \leq \mathrm{s}\right\} . \gamma_{\mathrm{sp}}(\mathrm{G})=2$. Let $\mathrm{r} \geq \mathrm{s}, \mathrm{r}, \mathrm{s} \geq 1$. Let e $=$ uv. $\mathrm{G}-\mathrm{e}=\mathrm{K}_{1, \mathrm{r}} \mathrm{UK}_{1, \mathrm{~s}}$. Therefore $\gamma_{\mathrm{sp}}(\mathrm{G}-\mathrm{e})=2=$ $\gamma_{\mathrm{sp}}(\mathrm{G})$. Let $\mathrm{e}=\mathrm{uu}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{r}$ or $\mathrm{vv}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \mathrm{s}$. $\mathrm{G}-\mathrm{e}=$ $\mathrm{K}_{1} \cup \mathrm{D}_{\mathrm{r}-1, \mathrm{~s}}$ or $\mathrm{K}_{1} \cup \mathrm{D}_{\mathrm{r}, \mathrm{s}-1}$ Therefore $\gamma_{\mathrm{sp}}(\mathrm{G}-\mathrm{e})=3>$ $\gamma_{\mathrm{sp}}(\mathrm{G})$. Hence $\mathrm{b}_{\mathrm{spn}}(\mathrm{G})=0$.

Theorem 3.12: For any helm $\mathrm{H}_{\mathrm{n}}, \mathrm{n} \geq 4$,

$$
\mathrm{b}_{\mathrm{spn}}\left(\mathrm{H}_{\mathrm{n}}\right)=\left\{\begin{array}{l}
2 \text { if } n=4 \\
0 \text { if } n=5 \\
1 \text { if } n \geq 6
\end{array}\right.
$$

Proof: Let $G=H_{n}, n \geq 4$. V(G) $=\left\{v, v_{i}, u_{i} / 1 \leq i \leq n-\right.$ $1\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{vv}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} / 1 \leq i \leq\right.$ $n-2\} \cup\left\{\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{1}\right\} . \gamma_{\mathrm{sp}}(\mathrm{G})=\mathrm{n}, \mathrm{n} \geq 5 . \operatorname{deg} \mathrm{v}_{\mathrm{i}}=4$, deg $\mathrm{u}_{\mathrm{i}}=1,1 \leq \mathrm{i} \leq \mathrm{n}-1, \operatorname{deg} \mathrm{v}=\mathrm{n}-1 . \gamma_{\mathrm{sp}}(\mathrm{G})=3$ when $\mathrm{n}=$ 4.

Case (1): Let $\mathrm{n}=4$. If any edge is removed from G, obviously $\gamma_{\mathrm{sp}}(\mathrm{G})=3$. Hence $\mathrm{b}_{\mathrm{spn}}(\mathrm{G}) \geq 1$. Removal of any two edges from G does not affect the strong perfect domination number of the resulting graph. Let $\mathrm{X}=\left\{\mathrm{v}_{1} \mathrm{v}_{2}, \mathrm{v}_{2} \mathrm{v}_{3}, \mathrm{v}_{3} \mathrm{v}_{1}\right\} .\left\{\mathrm{v}, \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right\}$ is the unique strong perfect dominating set of $\mathrm{G}-\mathrm{X}$. Therefore $\gamma_{\mathrm{sp}}(\mathrm{G}-\mathrm{X})=4>\gamma_{\mathrm{sp}}(\mathrm{G})$. Hence $\mathrm{b}_{\mathrm{spn}}(\mathrm{G})=$ 2.

Case (2): Let $\mathrm{n}=5 \cdot \gamma_{\mathrm{sp}}\left(\mathrm{H}_{5}\right)=5$. Let $\mathrm{e}=\mathrm{vv}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq$ $\mathrm{n}-1$. Let $\mathrm{X}=\{\mathrm{e}\}$. Let v_{k} be the vertex not adjacent with $\mathrm{v}_{\mathrm{i}} \cdot \mathrm{S}=\left\{\mathrm{v}_{\mathrm{k}}, \mathrm{u}_{\mathrm{j}}, \mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{j} \leq \mathrm{n}-1, \mathrm{j} \neq \mathrm{i}\right\}$ is the unique strong perfect dominating set of $\mathrm{G}-\mathrm{X} .|\mathrm{S}|=4$. Therefore $\gamma_{\mathrm{sp}}(\mathrm{G}-\mathrm{X})=4<\gamma_{\mathrm{sp}}(\mathrm{G})$. Hence $\mathrm{b}_{\mathrm{spn}}(\mathrm{G})=$ 0 .

Case (3): Let $\mathrm{n} \geq 6$. Suppose any edge $\mathrm{vv}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$ 1 is removed from G. $\left\{v, v_{i}, u_{j} / 1 \leq j \leq n-2, j \neq i\right\}$ is the unique strong perfect dominating set of the resulting graph G^{\prime}. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=n=\gamma_{\mathrm{sp}}(\mathrm{G})$. Suppose any edge $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq i \leq n-2$, or $\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{1}$ or $\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}, 1 \leq i \leq n$ - 1 is removed from G. $\left\{\mathrm{v}, \mathrm{u}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}-\right.$ $1\}$ is the unique strong perfect dominating set of the resulting graph G^{\prime}. Therefore $\gamma_{\mathrm{sp}}\left(\mathrm{G}^{\prime}\right)=n=\gamma_{\mathrm{sp}}(\mathrm{G})$. Hence $\mathrm{b}_{\mathrm{spn}}(\mathrm{G}) \geq 1$. Let $\mathrm{X}=\left\{\mathrm{vv}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right\}, 1 \leq i \leq n-1$. $\left\{\mathrm{v}, \mathrm{v}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}, \mathrm{u}_{\mathrm{i}} / 1 \leq j \leq n-2, \mathrm{i} \neq \mathrm{j}\right\}$ is the unique strong perfect dominating set of $\mathrm{G}-\mathrm{X}$. Therefore $\gamma_{\mathrm{sp}}(\mathrm{G}$ $\mathrm{X})=\mathrm{n}+1>\gamma_{\mathrm{sp}}(\mathrm{G})$. Hence $\mathrm{b}_{\mathrm{spn}}(\mathrm{G}) \leq 1$. Hence $\mathrm{b}_{\text {spn }}(\mathrm{G})=1$.

Observation 3.13: Since $W_{4}=K_{4}, b_{\text {spn }}\left(W_{4}\right)=1$. $W_{n}, n \geq 5$ has unique full degree vertex, $b_{\text {spn }}\left(W_{n}\right)=$ 0.

Reference

1. Chaluvaraju. B, 2010, Perfect k-domination in graphs, Australasian Journal of Combinatorics, Vol. 48, pp 175-184.
2. Changela J.V \& Vala G.J, 2014, Perfect domination and Packing of a graph, International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 12, p61-64.
3. Ebadi. K and PushpaLathaL, 2010, The Strong Nonbondage Number of a Graph, International Mathematical Forum, 5, No.34, 1691-1696.
4. Govindalakshmi T.S \& Meena N, 2018, Strong Perfect Domination in Graphs, International Journal of Mathematics Trends and Technology, Volume 58, Issue 3, p29-33.
5. Harary.F, 1969, Graph Theory, AddisonWesley.
6. Kulli V. R \& Janakiram B, 1996, The Nonbondage number of a graph, Graph Theory Notes of Newyork, New York Academy of Science, XXX 14-16.
7. Livingston .M \& Stout. Q.F, 1990, Perfect dominating sets. Congr.Numer.,79: 187-203.
8. Sampathkumar E \& PushpaLatha L,1996, Strong weak domination and domination balance in a graph, Discrete Math., 161:235242.
9. Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater (Eds), 1998, Domination in graphs: Advanced Topics, Marcel Decker, Inc., New York.
10.Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, 1998, Fundamentals of domination in graphs, Marcel Decker, Inc., New York.
