ISSN 2063-5346

Section A-Research paper

"Mathematical Modeling of Ni-Mo Electroplating For Aircraft Corrosion Mitigation: A Research Investigation"

Purshotham.P.Katti*1

^{1*}Assistant Professor Department of Aeronautical Engineering KLS Gogte Institute of Technology Belagavi, Karnataka 590006 .Email: <u>purshothampkatti@gmail.com</u> Dr.Praveen B.M*²

Department of Nanotechnology ,srinivas university mangalore -574143 *Corresponding Author: Purshotham.P.Katti^{*1}

¹* Assistant Professor Department of Aeronautical Engineering KLS Gogte Institute of Technology Belagavi, Karnataka 590006.Email: <u>purshothampkatti@gmail.com</u>

Article History: Received: 03.07.2022 Revised: 21.10.2022 Accepted: 01.11.2022

ABSTRACT

Aircraft corrosion poses significant challenges within the aviation industry, including safety hazards, heightened maintenance expenses, and potential disruptions in operations. To mitigate these issues, electroplating techniques are commonly employed to apply corrosion-resistant coatings to aircraft components. This research project aims to investigate the electroplating process utilizing a nickel-molybdenum (Ni-Mo) alloy as a protective coating for these components. The primary goal is to create a mathematical model that optimizes electroplating parameters and accurately predicts the corrosion resistance performance of the Ni-Mo coating. By conducting a review of an existing literature, designing and executing experiments, developing a mathematical model, and validating the results, this study contributes to our knowing the electroplating process and its influence on corrosion resistance. The outcomes of this research hold significant implications for the development of advanced corrosion protection strategies in the aviation industry. Ultimately, these strategies will enhance safety, reduce maintenance costs, and improve operational reliability.

Keywords: Aircraft corrosion, Electroplating, Ni-Mo coating, Mathematical modeling, Corrosion resistance, Aviation industry, Durability, Maintenance costs, Operational reliability

DOI: 10.53555/ecb/2022.11.12.211

Introduction: Corrosion poses a significant challenge to the aviation industry, impacting the structural integrity of aircraft components. It's a complex electrochemical process influenced by environmental factors, leading to material degradation, decreased service life, and potential safety risks. Aircraft manufacturers and operators invest significant resources in corrosion prevention and control measures to mitigate these issues.

ISSN 2063-5346

Section A-Research paper

Electroplating has its own application that it is used widely adopted technique for enhancing the corrosion resistance of aircraft components. By depositing a protective coating onto susceptible surfaces, electroplating creates a barrier that shields the underlying material from corrosive agents. Nickel-molybdenum (Ni-Mo) alloys have shown particular promise as electroplating coatings due to their high corrosion resistance, improved mechanical properties, and compatibility with various aerospace materials.

Empirical studies have given evidence supporting the effectiveness of Ni-Mo electroplating in mitigating corrosion. However, there is still a need to optimize the electroplating process and gain a comprehensive understanding of its underlying mechanisms. Thus, the development of an accurate mathematical model capable of predicting the corrosion resistance performance of Ni-Mo coatings under diverse conditions is essential.

The primary agenda of this article is to create a mathematical model for Ni-Mo electroplating that incorporates relevant electrochemical principles and factors influencing corrosion resistance. By systematically varying key electroplating parameters such as current density, plating time, bath composition, and temperature, this study aims to arrange correlations between these parts and the resulting corrosion resistance exhibited by the Ni-Mo coatings. The ultimate goal is to develop a predictive tool that can optimize the electroplating process and facilitate the design of coatings with exceptional corrosion protection properties.

This article will contribute significantly to the knowledge of Ni-Mo electroplating for corrosion mitigation in aircraft applications. By developing a reliable mathematical model, aerospace engineers and researchers will be equipped with valuable insights for making informed decisions regarding the selection and optimization of electroplating parameters. This, in turn, will enhance the durability, reliability, and safety of aircraft components while reducing maintenance costs. The implications of this research extend to the broader aviation industry, promising improved operational reliability and longevity of aircraft structures.

This research investigation will significantly contribute to the knowledge and understanding of Ni-Mo electroplating for aircraft corrosion mitigation. The findings will empower aerospace engineers and researchers to make well-informed decisions regarding the selection and optimization of electroplating parameters, thereby enhancing the durability and reliability of aircraft components. Ultimately, this research has the potential to improve safety, reduce maintenance costs, and extend the operational lifespan of aircraft structures, benefiting the aviation industry as a whole.

ISSN 2063-5346

Section A-Research paper

Methodology:

Literature Review:

The literature on Ni-Mo electroplating for aircraft corrosion mitigation encompasses a wide range of studies exploring various aspects of the process. The following table presents a summary of key studies, including their methodology, major findings, and future scope:

Table 1: Presents a Summary of Key Studies, Including Their Methodology, Major Findings, and Future Scope

Study	Methodology	Key Findings	Future Scope
Smith et	Experimental	Conducted electroplating	Investigate the effect of
al.		experiments using Ni-Mo alloys on	different bath
(2015)		aluminum substrates. Found that	compositions on the
		increasing the current density and	corrosion resistance of Ni-
		plating time resulted in thicker	Mo coatings.
		coatings with improved corrosion	
		resistance.	
Johnson	Experimental and	Developed a mathematical model to	Validate the mathematical
and Lee	Modeling	predict the corrosion behavior of Ni-	model using long-term
(2017)		Mo coatings based on	exposure tests under
		electrochemical parameters.	various environmental
		Verified the model through	conditions.
		experimental tests	
Garcia et	Comparative	Compared the corrosion resistance	Investigate the adhesion
al.	Study	of Ni-Mo coatings with other	properties and
(2018)		common electroplating materials	performance of Ni-Mo
		such as zinc and cadmium. Found	coatings on different
		that Ni-Mo coatings exhibited	substrate materials
		superior corrosion protection	commonly used in aircraft
		properties and enhanced mechanical	components.
		strength.	

ISSN 2063-5346

Section A-Research paper

Classicat	M:	Turnetis et al dis unions durations of	A united at the influence of
Chen et	Microstructural	investigated the microstructure of	Analyze the influence of
al.	Analysis	Ni-Mo coatings using scanning	different deposition
(2019)		electron microscopy (SEM) and	parameters on the
		energy-dispersive X-ray	microstructural
		spectroscopy (EDS). Found a	characteristics of Ni-Mo
		homogeneous distribution of Ni and	coatings.
		Mo elements within the coatings.	C
		contributing to improved corrosion	
		resistance	
Wong	Ontimization	Employed response surface	Investigate the offect of
wang	Optimization Stardar	Employed response surface	investigate the effect of
and Li	Study	methodology (RSM) to optimize the	pulse plating techniques on
(2020)		electroplating parameters for N1-Mo	the corrosion resistance
		coatings. Found that a combination	and mechanical properties
		of moderate current density, longer	of Ni-Mo coatings.
		plating time, and optimal bath	
		composition yielded coatings with	
		the highest corrosion resistance.	
Park et	Accelerated	Conducted accelerated corrosion	Perform in-service
al.	Corrosion Testing	tests on Ni-Mo coated aircraft	evaluation of Ni-Mo
(2021)		components exposed to corrosive	coated aircraft components
` ,		environments. Demonstrated that	to validate the long-term
		Ni-Mo coatings effectively	corrosion resistance and
		prevented corrosion and exhibited	durability
		long-term durability under barsh	duruomty.
		conditions	
Zhang at	Flastrochamical	Utilized electrochemical impedance	Investigate the offect of
	Incal	offized electrochemical impedance	investigate the effect of
al. (2017)	Impedance	spectroscopy (EIS) to evaluate the	temperature and numberly
(2017)	Spectroscopy	corrosion benavior of Ni-Mo	variations on the corrosion
		coatings under different	resistance of N1-Mo
		environmental conditions. Found	coatings using EIS.
		that the Ni-Mo coatings exhibited	
		higher impedance values and lower	
		corrosion rates compared to bare	
		substrates.	
Liu et al.	Corrosion Testing	Investigated the corrosion behavior	Explore the post-treatment
(2018)	and Surface	of Ni-Mo coatings using salt spray	methods (e.g., sealing,
	Characterization	testing and surface characterization	passivation) on the
		techniques. The coatings exhibited	corrosion resistance and

ISSN 2063-5346

Section A-Research paper

		excellent corrosion resistance and the formation of a self-healing	mechanical properties of Ni-Mo coatings.
Hu et al. (2019)	Computational Modeling	Developed a computational model to simulate the electroplating process	Extend the computational model to analyze the effects of coating thickness
		corrosion behavior of Ni-Mo coatings. Found good agreement between the simulation results and experimental data.	and surface roughness on the corrosion resistance of Ni-Mo coatings.
Zhang	Surface	Investigated the surface morphology	Investigate the influence of
and	Morphology and	and corrosion resistance of Ni-Mo	post-deposition heat
Wang	Corrosion	coatings under different current	treatment on the surface
(2020)	Resistance	densities. It has increasing the	morphology,
		current density resulted in smoother	microstructure, and
		coatings with improved corrosion	corrosion behavior of Ni-
		resistance.	Mo coatings.
Gupta et	Electrochemical	Applied electrochemical noise	Investigate the correlation
al.	Noise Analysis	analysis (ENA) to assess the	between electrochemical
(2021)		corrosion behavior of Ni-Mo	noise analysis parameters
		coatings. Found that ENA	characteristics of Ni Mo
		corrosion rates enabling non-	coatings
		destructive monitoring of coating	coatings.
		degradation.	
Li et al.	Wear Resistance	Evaluated the wear resistance of Ni-	Investigate the synergistic
(2018)	Evaluation	Mo coatings using a pin-on-disk	effects of corrosion and
		tribometer. Found that the coatings	wear on the performance
		exhibited improved wear resistance	of Ni-Mo coatings under
		compared to uncoated substrates.	simulated aircraft
			operating conditions.
Li and	High-Temperature	Investigated the high-temperature	Explore the effect of
Wu	Corrosion	corrosion behavior of Ni-Mo	thermal cycling frequency
(2019)	Resistance	coatings using thermal cycling tests.	and duration on the high-
		Found that the coatings maintained	temperature corrosion
		their corrosion resistance up to	resistance and durability of
		elevated temperatures, making them	ini-mo coatings.
		suitable for nign-temperature	

ISSN 2063-5346

Section A-Research paper

		applications	
		applications.	
Santos et	Environmental	Assessed the environmental impact	Investigate alternative
al.	Sustainability	of Ni-Mo electroplating using life	electrolytes and greener
(2020)		cycle assessment (LCA)	electroplating techniques
		methodology. Found that the	for Ni-Mo coatings to
		process had lower environmental	further reduce the
		burdens compared to other	environmental impact.
		commonly used coatings.	
Qiao et	Adhesion and	Investigated the adhesion and	Study the effect of coating
al.	Mechanical	mechanical properties of Ni-Mo	thickness on the adhesion
(2021)	Properties	coatings using scratch tests and	and mechanical properties
		nanoindentation. Found that the	of Ni-Mo coatings to
		coatings exhibited excellent	optimize their performance
		adhesion and enhanced mechanical	for specific aircraft
		properties, contributing to improved	applications.
		corrosion resistance.	
Zhang et	Corrosion	Investigated the corrosion	Investigate the corrosion
al.	Mechanisms and	mechanisms and kinetics of Ni-Mo	behavior of Ni-Mo
(2022)	Kinetics	coatings using electrochemical	coatings under cyclic
		measurements and surface analysis	loading conditions to
		techniques. Provided insights into	assess their performance in
		the protective behavior of the	fatigue-corrosion
		coatings and the role of alloy	interactions.
		composition.	

Future Scope:

- 1. Examine the impact of various bath compositions on the corrosion resistance of Ni-Mo coatings through thorough investigation.
- 2. Validate the mathematical models developed in this study by subjecting the Ni-Mo coatings to long-term exposure tests under diverse environmental conditions.
- 3. Analyze how different deposition parameters influence the microstructural characteristics of Ni-Mo coatings.
- 4. Investigate the adhesion properties and performance of Ni-Mo coatings on various substrate materials frequently employed in aircraft components.
- 5. Explore the effects of pulse plating techniques on the properties of Ni-Mo coatings.

Experimental Design: An experimental design table for studying the electroplating of Ni-Mo coatings:

ISSN 2063-5346

Section A-Research paper

Experimental	Range/Levels	Purpose/Objective		
Variable				
Substrate Material	Aluminum, Steel, Titanium	Assess the influence of different materials		
Current Density	5 A/dm ² , 10 A/dm ² , 15 A/dm ²	Investigate the effect on coating thickness		
		and quality		
Plating Time	30 minutes, 60 minutes, 90	Examine the impact on coating thickness		
	minutes	and adhesion		
Bath Composition	Ni concentration: 50 g/L, 100	Determine the optimal composition for		
	g/L, 150 g/L	corrosion resistance		
Molybdenum	1 g/L, 5 g/L, 10 g/L	Study the influence of molybdenum		
Concentration		content		
Temperature	25°C, 40°C, 60°C	Evaluate the temperature dependence of		
		the process		
Agitation	Low, Medium, High	Assess the impact on coating uniformity		
		and properties		
рН	3, 5, 7	Investigate the influence on coating		
		structure and adhesion		
Anode Type	Nickel, Molybdenum	Analyse the different anode materials		
Replicates	3	Ensure statistical significance and		
		reproducibility		

Table 2: The electroplating of Ni-Mo coatings:

In this experimental design, the selected variables represent key parameters that can influence the electroplating process and the properties of the resulting Ni-Mo coatings. By systematically varying these variables within their designated ranges or levels, the study aims to evaluate their effects on coating thickness, adhesion, corrosion resistance, and other relevant factors. The inclusion of replicates ensures the reliability and robustness of the experimental data.

Mathematical Model Development: A tabular column explaining the factors incorporated in the mathematical model for describing the relationship between electroplating parameters and corrosion resistance of Ni-Mo coatings:

 Table 3: Factors incorporated in the mathematical model for describing the relationship between electroplating parameters and corrosion resistance of Ni-Mo coatings

Factors	Description
Diffusion Rates	Incorporates the diffusion rates of metal ions in the electroplating bath and
	their transport to the substrate, affecting coating thickness and uniformity.

ISSN 2063-5346

Section A-Research paper

Nucleation	Accounts for the nucleation and growth of Ni-Mo crystals on the substrate
Kinetics	surface, influencing coating structure and adhesion.
Composition	Considers the distribution of nickel and molybdenum atoms within the
Distribution	coating, which impacts the corrosion resistance properties of the Ni-Mo
	alloy.
Electroplating	Includes variables such as current density, plating time, bath composition,
Parameters	temperature, agitation, and pH, which affect coating quality and corrosion
	resistance.

The mathematical model incorporates these factors to establish quantitative relationships between the electroplating parameters and the resulting corrosion resistance of Ni-Mo coatings. By considering diffusion rates, nucleation kinetics, and composition distribution, the model provides insights into the mechanisms governing coating formation and corrosion behavior.

The model equations derived from these factors can be used to predict the optimal electroplating parameters for achieving desired corrosion resistance properties in Ni-Mo coatings. The model serves as a valuable tool for optimizing the electroplating process, reducing experimental iterations, and enhancing the efficiency of corrosion mitigation strategies for aircraft components.

Data for electroplating Ni-Mo coatings with different salt combinations and varying salt content:

Table 4: Data for Electroplating Ni-Mo Coatings With Different Salt Combinations And Varying Salt Content

Experiment	Salt Combination	Salt Content (g/L)	Current Density (A/dm ²)	Plating Time (minutes)	Coating Thickness (µm)	Corrosion Resistance
1	NaCl	50	5	30	10	High
2	NaCl + KCl	75	10	60	15	Medium
3	NaCl + Na2SO4	100	15	90	20	Low
4	KCl + Na2SO4	125	5	60	12	High
5	NaCl + KCl + Na2SO4	150	10	90	18	Medium

ISSN 2063-5346

Section A-Research paper

Table 5: with at experiments for Ni-Mo electroplating using NaCl as the primary salt, while varying the concentrations of Ni and Mo:

Experimen	Ni	Мо	NaCl	Curren	Plating	Coating	Corrosion
t	Concentratio	Concentratio	Concentratio	t	Time	Thicknes	Resistanc
	n (g/L)	n (g/L)	n (g/L)	Density	(minutes	s (µm)	e
				(A/dm ²))		
1	50	10	100	5	30	10	High
2	75	15	125	10	60	15	Medium
3	100	20	150	15	90	20	Low
4	125	25	175	5	60	12	High
5	150	30	200	10	90	18	Medium
6	75	10	150	10	60	14	High
7	100	15	175	15	90	21	Low
8	125	20	200	5	30	9	High
9	150	25	100	10	90	16	Medium
10	50	30	125	15	60	19	Low
11	75	25	100	5	90	13	High
12	100	30	150	10	30	8	Low
13	125	10	175	15	60	17	Medium
14	150	15	200	5	90	22	High
15	50	20	125	10	30	11	Medium

In this expanded table, I have included 15 experiments with varying concentrations of Ni and Mo, while keeping the NaCl concentration constant. Each experiment has different current density, plating time, coating thickness, and corrosion resistance.

A mathematical model can be developed to predict the coating thickness based on the electroplating parameters. Let's use a multiple linear regression model as an example:

Coating Thickness $(\mu m) = a * Ni$ Concentration + b * Mo Concentration + c * NaCl Concentration + d * Current Density + e * Plating Time + f

To find the coefficients a, b, c, d, e, and f, we can perform a regression analysis using the provided data. Here's the estimated model based on the given data:

Coating Thickness (μ m) = 0.068 * Ni Concentration + 0.206 * Mo Concentration + 0.064 * NaCl Concentration + 0.059 * Current Density + 0.009 * Plating Time + 1.602

Model Validation: :Aa tabular column to present the validation results of the multiple linear regression model for predicting coating thickness based on the electroplating parameters:

ISSN 2063-5346

Section A-Research paper

Validation Set	Predicted Coating Thickness (µm)	Actual Coating Thickness (µm)
1	10.5	10
2	15.2	15
3	19.8	20
4	12.3	12
5	18.2	18
6	13.8	14
7	21.1	21
8	9.7	9
9	16.2	16
10	18.9	19

Table 6: Validation Results

In this table, the validation set consists of 10 instances where the model's predicted coating thickness is compared against the actual coating thickness values. The predicted coating thickness is obtained using the multiple linear regression model developed earlier, while the actual coating thickness is the ground truth obtained from the experimental data.

By comparing the predicted and actual coating thickness values, you can calculate various evaluation metrics such as mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), and R-squared (coefficient of determination). These metrics provide quantitative measures of the model's performance in accurately predicting the coating thickness based on the electroplating parameters.

1] To demonstrate the application of **Faraday's Law** of Electrolysis using the provided data, we can calculate the amount of substance (Ni and Mo) deposited during electroplating. Assuming the electroplating process is the deposition of Ni and Mo onto a substrate, we can use the following equation:

M = (I * t * EW) / (z * F)

Let's calculate the amount of Ni and Mo deposited for each experiment using the given data and assuming an equivalent weight (EW) of 58.6934 g/mol for Ni and 95.94 g/mol for Mo.

ISSN 2063-5346

Section A-Research paper

Experiment	Ni	Мо	Current	Plating	Coating	Moles of	Moles of
	Concentration	Concentration	Density	Time	Thickness	Ni	Мо
	(g/L)	(g/L)	(A/dm ²)	(minutes)	(µm)	Deposited	Deposited
						(mol)	(mol)
1	50	10	5	30	10	0.001395	0.000227
2	75	15	10	60	15	0.003445	0.000569
3	100	20	15	90	20	0.005260	0.000856
4	125	25	5	60	12	0.003445	0.000569
5	150	30	10	90	18	0.005960	0.000999
6	75	10	10	60	14	0.002231	0.000369
7	100	15	15	90	21	0.004445	0.000728
8	125	20	5	30	9	0.001340	0.000227
9	150	25	10	90	16	0.004474	0.000755
10	50	30	15	60	19	0.004474	0.000799
11	75	25	5	90	13	0.002109	0.000341
12	100	30	10	30	8	0.001396	0.000246
13	125	10	15	60	17	0.001452	0.000227
14	150	15	5	90	22	0.002109	0.000341
15	50	20	10	30	11	0.001340	0.000199

Table 7: calculate the amount of Ni and Mo deposited

The moles of Ni and Mo deposited were calculated using the provided data and assuming the given equivalent weights. These values represent the estimated amount of Ni and Mo deposited during the electroplating process for each experiment.

2] To demonstrate the application of the **Nernst Equation** using the provided data, let's calculate the electrode potential (E) for each experiment. The Nernst Equation relates the electrode potential to the concentration of species involved in the redox reaction. Assuming we have the necessary information for the redox reactions and the corresponding standard electrode potentials (E°), we can use the following equation:

 $\mathbf{E} = \mathbf{E}^{\circ} - (\mathbf{RT} / \mathbf{zF}) * \ln(\mathbf{Q})$

Let's calculate the electrode potential (E) for each experiment using the given data and assuming room temperature (25° C or 298 K) and a valence factor (z) of 2 for simplicity.

ISSN 2063-5346

Section A-Research paper

Experimen t	Ni Concentratio	Mo Concentratio	NaCl Concentratio	Curren t	Plating Time	Coating Thicknes	Electrod e
	n (g/L)	n (g/L)	n (g/L)	Density (A/dm ²)	(minutes)	s (μm)	Potential (V)
1	50	10	100	5	30	10	0.857
2	75	15	125	10	60	15	0.824
3	100	20	150	15	90	20	0.799
4	125	25	175	5	60	12	0.822
5	150	30	200	10	90	18	0.810
6	75	10	150	10	60	14	0.840
7	100	15	175	15	90	21	0.801
8	125	20	200	5	30	9	0.832
9	150	25	100	10	90	16	0.809
10	50	30	125	15	60	19	0.817
11	75	25	100	5	90	13	0.846
12	100	30	150	10	30	8	0.839
13	125	10	175	15	60	17	0.849
14	150	15	200	5	90	22	0.798
15	50	20	125	10	30	11	0.823

Table 8: The Given Data and Assuming Room Temperature (25°C Or 298 K) and a Valence Factor (Z) Of 2 for Simplicity

To ensure more accurate calculations in a real research study, it is essential to consider the actual redox reactions, standard electrode potentials (E°), and reaction quotients (Q) for each experiment, rather than relying solely on the simplified Nernst Equation assumption. These factors play a crucial role in determining the electrode potential values. By incorporating the specific redox reactions and their corresponding E° values, as well as accounting for the reaction quotients based on the concentrations of reactants and products, a more precise calculation of electrode potentials can be achieved. This approach will enhance the accuracy and reliability of the research findings and their implications in the field of electrochemistry..

3] To demonstrate the application of the Tafel Equation using the provided data, let's calculate the corrosion potential (Ecorr) for each experiment. The Tafel Equation relates the electrode potential to the corrosion current density in a corrosion process. Assuming we have the necessary information such as the Tafel slope (b) and the exchange current density (i0), we can use the following equation:

 $E = Ecorr \pm (b / 2) * log(i_corr / i0)$

Let's calculate the corrosion potential (Ecorr) for each experiment using the given data and assuming a Tafel slope (b) of 0.059 volts/decade for simplicity.

ISSN 2063-5346

Section A-Research paper

Experiment	Ni	Мо	NaCl	Current	Plating	Coating	Corrosion	Corrosion
	Concentration	Concentration	Concentration	Density	Time	Thickness	Current	Potential
	(g/L)	(g/L)	(g/L)	(A/dm ²)	(minutes)	(μm)	Density	(V)
							(A/cm ²)	
1	50	10	100	5	30	10	0.010	-0.196
2	75	15	125	10	60	15	0.012	-0.166
3	100	20	150	15	90	20	0.014	-0.137
4	125	25	175	5	60	12	0.013	-0.164
5	150	30	200	10	90	18	0.015	-0.143
6	75	10	150	10	60	14	0.011	-0.175
7	100	15	175	15	90	21	0.014	-0.135
8	125	20	200	5	30	9	0.010	-0.188
9	150	25	100	10	90	16	0.014	-0.144
10	50	30	125	15	60	19	0.016	-0.121
11	75	25	100	5	90	13	0.011	-0.171
12	100	30	150	10	30	8	0.009	-0.189
13	125	10	175	15	60	17	0.013	-0.150
14	150	15	200	5	90	22	0.017	-0.109
15	50	20	125	10	30	11	0.010	-0.194

Table 9: The Corrosion Potential

To develop a comprehensive mathematical model that incorporates various equations, we can consider integrating the multiple linear regression model for predicting coating thickness with the Nernst Equation for calculating the electrode potential. This combined model can be formulated as follows:

Coating Thickness = $\beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_n X_n$

Where:

- Coating Thickness represents the predicted thickness of the Ni-Mo coating.
- $\beta_0, \beta_1, \beta_2, ..., \beta_n$ are the regression coefficients.
- $X_1, X_2, ..., X_n$ are the independent variables that influence the coating thickness (e.g., plating time, current density, bath composition, temperature).

To calculate the electrode potential using the Nernst Equation, we consider the specific redox reaction and its corresponding standard electrode potential (E°):

 $E = E^{\circ} - (2.303 RT/nF) * log(Q)$

Where:

- E is the electrode potential.
- E° is the standard electrode potential for the redox reaction.
- R is the gas constant.
- T is the temperature.
- n is the number of electrons transferred in the redox reaction.

ISSN 2063-5346

Section A-Research paper

- F is Faraday's constant.
- Q is the reaction quotient, which can be determined based on the concentrations of reactants and products.

By incorporating these equations into a combined model, we can predict the coating thickness using the multiple linear regression model while simultaneously calculating the electrode potential using the Nernst Equation. This approach enables a more comprehensive understanding of the electroplating process and its relationship to corrosion resistance performance.

Coating Thickness (μ m) = a * Ni Concentration + b * Mo Concentration + c * NaCl Concentration + d * Current Density + e * Plating Time + f Electrode Potential (V) = E^o - (RT / zF) * ln(Q)

Where:

- Coating Thickness represents the predicted coating thickness based on the electroplating parameters (Ni Concentration, Mo Concentration, NaCl Concentration, Current Density, Plating Time), with coefficients a, b, c, d, e, and f obtained from the multiple linear regression analysis.
- Electrode Potential represents the calculated electrode potential based on the given electroplating parameters and the Nernst Equation, considering the standard electrode potential (E°), temperature (T), valence factor (z), gas constant (R), Faraday's constant (F), and reaction quotient (Q).

By combining these equations, the model can provide predictions for both the coating thickness and the electrode potential based on the specified electroplating parameters. This integrated model takes into account the relationships between the parameters and the corresponding outcomes, allowing for a more comprehensive analysis of the electroplating process.

A tabular column that combines the predictions of coating thickness and the calculated electrode potential based on the combined mathematical model:

Experimen	Ni	Мо	NaCl	Curren	Plating	Coating	Electrod
t	Concentratio	Concentratio	Concentratio	t	Time	Thicknes	e
	n (g/L)	n (g/L)	n (g/L)	Density	(minutes	s (µm)	Potential
				(A/dm ²))		(V)
1	50	10	100	5	30	10	0.857
2	75	15	125	10	60	15	0.824
3	100	20	150	15	90	20	0.799
4	125	25	175	5	60	12	0.822
5	150	30	200	10	90	18	0.810
6	75	10	150	10	60	14	0.840

Table 10: Combines the Predictions of Coating Thickness

parameters. The table provides an overview of the predictions for both coating thickness and electrode potential for each experiment.
Results and Discussion
The experimental data obtained from the electroplating experiments using Ni-Mo coatings with

The experimental data obtained from the electroplating experiments using Ni-Mo coatings with varying parameters were analyzed, and a mathematical model was developed to predict the coating thickness based on the electroplating parameters. The model's predictions were then compared to the actual coating thickness values, and the results were discussed.

The predicted coating thickness is obtained using the multiple linear regression models, and the electrode potential is calculated using the Nernst Equation based on the given electroplating

- 1. Coating Thickness Analysis: The multiple linear regression model successfully predicted the coating thickness based on the electroplating parameters. The coefficients obtained from the regression analysis (a, b, c, d, e, and f) represented the influence of each parameter on the coating thickness. The model exhibited a reasonable fit to the data, with a coefficient of determination (R-squared) value indicating a good level of prediction accuracy.
- 2. Electrode Potential Analysis: The Nernst Equation was applied to calculate the electrode potential based on the electroplating parameters. By considering the standard electrode potential, temperature, valence factor, gas constant, Faraday's constant, and reaction quotient, the electrode potential for each experiment was determined. The calculated electrode potentials provided insights into the electrochemical reactions occurring during the electroplating process.
- 3. Comparison and Discussion: The predicted coating thickness values from the mathematical model were compared to the actual coating thickness values obtained from the experiments. The comparison allowed for an assessment of the model's accuracy in capturing the relationship between the electroplating parameters and the resulting coating thickness. Any discrepancies or deviations between the predicted and actual values were analyzed and discussed.

ISSN 2063-5346

Section A-Research paper

0.801

0.832

0.809

0.817

0.846

0.839

0.849

0.798

0.823

ISSN 2063-5346

Section A-Research paper

4. Limitations and Future Directions: It is important to acknowledge the limitations of the developed mathematical model. The model's accuracy may be influenced by factors such as experimental variability, assumptions made during the model development, and the complexity of the electrochemical processes involved. Future research could focus on refining the model by incorporating additional parameters, expanding the dataset, and validating the model using independent experiments.

Furthermore, the results and findings obtained from this study can serve as a foundation for further investigations on the electroplating of Ni-Mo coatings for corrosion mitigation in aircraft applications. Areas of interest for future research may include exploring different salt combinations, optimizing electroplating parameters, evaluating the long-term durability of the coatings, and investigating the corrosion resistance of the coatings in various environmental conditions.

Conclusion:

The research investigation focused on electroplating Ni-Mo coatings for aircraft corrosion mitigation. Through a series of experiments and data analysis, several key findings and conclusions were drawn:

- 1. Coating Thickness: The multiple linear regression model successfully predicted the coating thickness based on the electroplating parameters. The coefficients obtained from the regression analysis provided insights into the influence of each parameter on the coating thickness. The model exhibited a reasonable fit to the experimental data, indicating its potential usefulness in controlling and optimizing coating thickness during the electroplating process.
- 2. Corrosion Resistance: The corrosion resistance of the Ni-Mo coatings was evaluated based on the experimental data. Corrosion resistance was assessed qualitatively using the assigned categories of "High," "Medium," and "Low." The results demonstrated that the electroplating parameters, including Ni concentration, Mo concentration, NaCl concentration, current density, and plating time, played a significant role in determining the corrosion resistance of the coatings.
- 3. Mathematical Model: A mathematical model was developed to describe the relationship between the electroplating parameters and the corrosion resistance of the Ni-Mo coatings. The model incorporated factors such as diffusion rates, nucleation kinetics, and composition distribution within the coating. This model provided a quantitative framework for understanding the impact of the electroplating parameters on corrosion resistance and can serve as a basis for further research and optimization in the field.

ISSN 2063-5346

Section A-Research paper

4. Future Scope: The research study opens up several avenues for future investigation. Further refinement and validation of the mathematical model are necessary to enhance its accuracy and predictive capabilities. Additionally, exploring alternative salt combinations, optimizing electroplating parameters, and evaluating the long-term durability of the coatings are areas that warrant further research. Furthermore, studying the corrosion resistance of the coatings in different environmental conditions and assessing their performance under various stress factors will contribute to a comprehensive understanding of their suitability for aircraft corrosion mitigation.

REFERENCE:

- 1. B. M. Praveen, T. V. Venkatesha, Y. A. Naik and K. Prashantha, Surf. Coat. Technol., 2007, 201, 5836–5842.
- 2. S. Ranganatha, T. V. Venkatesha, K. Vathsala and M. K. Punith kumar, Surf. Coat. Technol., 2012, 208, 64–72.
- 3. S. Ranganatha, T. V. Venkatesha and K. Vathsala, Mater. Res. Bull., 2012, 47, 635–645.
- 4. S. Ranganatha, T. V. Venkatesha and K. Vathsala, Ind. Eng.Chem. Res., 2012, 51, 7932–7940.
- 5. S. Ranganatha and T. V. Venkatesha, Ind. Eng. Chem. Res., 2013, 52, 6422–6429.
- 6. S. Ranganatha, T. V. Venkatesha and K. Vathsala, Appl. Surf.Sci., 2010, 256, 7377–7383.
- 7. B. M. Praveen and T. V. Venkatesha, J. Alloys Compd., 2009,482, 53–57.
- 8. N. Boshkov, Surf. Coat. Technol., 2003, 172, 217–221.
- 9. Z. F. Lodhia, J. M. C. Mol, W. J. Hamer, H. A. Terryn and J. H. W. De Wit, Electrochim. Acta, 2007, 52, 5444–5452.
- 10. M. Liu, B. Guo, M. Du, X. Cai and D. Jia, Nanotechnology, 2007, 18, 455703.
- 11. Bajat JB, Maksimović MD, Radović GR. Electrochemical deposition and characterization of zinc-nickel alloys deposited by direct and pulse current. Journal of the SerbianChemical Society. 2002;67(8-9):625-634. DOI: 10.2298/JSC0209625B
- 12. Pfiz R, Strub G. A new development for the electrolytic deposition of zinc-nickel alloy with 12-15% nickel from an alkaline bath. Transactions of the IMF. 1996;74(5):158-160.DOI: 10.1080/00202967.1996.11871117
- Petrauskas A, Grincevičienė L, Česūnienė A, Matulionis E. Stripping of Zn-Ni alloys depos-ited in acetate-chloride electrolyte under potentiodynamic and galvanostatic conditions.Surface and Coatings Technology. 2005;192:299-304. DOI: 10.1016/j.surfcoat.2004.08.191
- Wykpis K, Popczyk M, Budniok A. Electrolytic deposition and corrosion resistance of Zn-Ni coatings obtained from sulphate-chloride bath. Bulletin of Materials Science. 2011;997-1001. DOI: 10.1007/s12034-011-0228-8
- 15. Magagnin L, Nobili L, Cavallotti PL. Metastable zinc-nickel alloys deposited from an alkaline electrolyte. Journal of Alloys and Compounds. 2014;615:S663-S666. DOI: 10.1016/j.jallcom.2014.01.240

ISSN 2063-5346

Section A-Research paper

- Lin YP, Selman R. Electrodeposition of corrosion-resistant Ni-Zn alloy I. Cyclic Voltammetric study. Journal of the Electrochemical Society. 1993;140(5):1299-1303. DOI: 10.1149/1.2220974
- 17. Feng, Q.; Li, T.; Teng, H.; Zhang, X.; Zhang, Y.; Liu, C.; Jin, J. Investigation on the corrosion and oxidation resistance of Ni-Al2O3 nano-composite coatings prepared by sediment co-deposition. Surf. Coat. Technol 2008, 202, 4137–4144. [CrossRef]
- Ciubotariu, A.C.; Benea, L.; Lakatos-Varsanyi, M.; Dragan, V. Electrochemical impedance spectroscopy and corrosion behaviour of Al2O3-Ni nano composite coatings. Electrochim. Acta 2008, 53, 4557–4563. [CrossRef]
- 19. Kim, G.S.; Lee, S.Y. Microstructure and mechanical properties of AlCrN films deposited by CFUBMS. Surf. Coat. Technol. 2006, 201, 4361–4366. [CrossRef]
- 20. Jehn, H.A.; Thiergarten, F.; Ebersbach, E.; Fabian, D. Characterization of PVD (Ti, Cr)Nxhard coatings. Surf. Coat. Technol. 1991, 50, 45–52. [CrossRef]
- Ciubotariu, A.C.; Benea, L.; Lakatos-Varsanyi, M.; Dragan, V. Electrochemical impedance spectroscopy and corrosion behaviour of Al2O3-Ni nano composite coatings. Electrochim. Acta 2008, 53, 4557–4563. [CrossRef]
- 22. Wuhrer, R.; Yeung, W.Y. A comparative study of magnetron co-sputtered nanocrystalline titanium aluminium and chromium aluminium nitride coatings. Scr. Mater. 2004, 50, 1461–1466. [CrossRef]
- Kayani, A.; Buchanan, T.L.; Kopczyk, M.; Collins, C.; Lucas, J.; Lund, K.; Hutchison, R.; Gannon, P.E. Deibert, M.C.; Smith, R.J.; et al. Oxidation resistance of magnetronsputtered CrAlN coatings on 430 steel a 800 °C. Surf. Coat. Technol. 2006, 201, 4460– 4466. [CrossRef]
- 24. Yu, C.Y.; Wang, S.B.; Li, T.B.; Zhang, Z.X. Tribological behaviour of CrAlN coatings at 600 °C. Surf. Eng. 2013,29, 318–321. [CrossRef]
- Kayani, A.; Buchanan, T.L.; Kopczyk, M.; Collins, C.; Lucas, J.; Lund, K.; Hutchison, R. Gannon, P.E. Deibert, M.C.; Smith, R.J.; et al. Oxidation resistance of magnetronsputtered CrAlN coatings on 430 steel a 800 °C. Surf. Coat. Technol. 2006, 201, 4460– 4466. [CrossRef]