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ECG Signals Classification for Arrhythmia Detection using Machine 

Learning Technique 

Abstract 

 
Arrhythmia is a condition of ectopic (abnormal) heartbeats, which occurs due to irregular pumping 

of heart. The timely detection of arrhythmia can help the cardiologist in making decision for 

providing medical aid to the patients. In this work, electrocardiogram (ECG) signal analysis has 

been done to classify abnormal which are also known as ectopic heart beats and the normal heart 

rhythms. Mainly ectopic beats are of two types as premature supraventricular (psvc) and premature 

ventricular contractions, arrhythmia is also a condition of ectopic (abnormal) heartbeats. ECG 

signals are the graphical plot of heartbeat. It consist of mainly three types of waves. P waves, QRS 

complex and T wave. Linear Discriminant Analysis (LDA) based classifier has been used to detect 

abnormality in heartbeat signals automatically, which gave in accuracy, senstivity and specificity 

of 98.57, 98.7 and 98.2 % respectively. The proposed method has been tested using benchmark 

dataset, namely MIT-BIH Arrhythmia Data. Finally, the comparison of results of proposed method 

has been done with existing state of art using same database. 
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Introduction 

 
Electrocardiogram (ECG) is a quick and painless method to record electrical activities if heart i.e. 

normal, abnormal, and irregular heart rhythms in the form of waves [1]. Abnormal heart rates are 

changes in a heart rhythm conduction that is otherwise normal. This alteration tends to be fast and 

too slow or irregular heartbeats [2-5]. There is no clear found reason for abnormal electrical heart 

rhythms origin. Major categories of ectopic beats are [6-7]; atrial fibrillation are irregular types of 

heart rhythms, leads to poor blood flow. Atrial flutter is the condition where the upper chambers 

(atria) of human heart beats rapidly. As initial automatic abnormal rhythmic sensing and 

categorizing of Electrocardiogram waves is critical, easy to provide medical care diagnosis and 

treat patients suffering from critical ectopic heartbeats [8]. 
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Ectopic or abnormal heartbeats are detect mostly by alter in the blood parameters, like a low 

mineral potassium level which is called hypokalemia; inconvenience in proper blood 

transportation supply. Abnormal heart rates can cause by stress, caffeine, alcohol, antidepressant  

medicines, and some not prescribed drugs [9-11]. 

These heartbeats are typical in youngsters who do not have congenital (existing at birth) cardiac 

disease. The majority of additional heartbeats in kids are PACs. These are typically described as 

innocuous. Also rare in grown up people, are abnormal heartbeats [12]. When they occur 

frequently, cardiologist should investigate the cause timely. The underlying cause and symptoms 

are the main targets of treatment. An inexpensive and non-invasive technique to determine these 

disorders is by analyzing ECGs [13]. As it is mentioned, when there are differences between 

patients in the ECG signals, the classifier algorithms have not worked well in practice, illustrating 

a frequent weakness of having an inconsistent performance when classifying a new patient's 

Electrocardiogram signals [14-15]. 

In past few years many researchers in the field of cardiovascular disease detection suggested 

different    approaches    based    on    their     studies     [3-21].     The     statistical     time 

growing neural network based technique was proposed by Gharehbaghi et. al. [3] and they 

examined different heart sound signals for detection of cardiovascular disease. With the help of 

convolutional neural network, Acharya et al.'s [5] classified ECG signals of atrial fibrillation, atrial 

flutter, and ventricular fibrillation classes to identify different arrhythmias. Andreao et al.'s [6] 

proposed an efficient arrhythmia identification algorithm uses the hidden Markov model to 

determine how similar the arrhythmias are. 

In previous studies they have used many types of classifiers for example SVM (support vector 

machine classifier) [22], PNN (probabilistic neural network classifier), NN (neural network 

classifier) [24], PSC (patient specific classifier) [25] and CNN (convolutional neural network 

classifier) [26]. Different classifiers are used based upon their accuracy, specificity, and sensitivity 

factor. For example, support vector machine (SVM) classifier has more sensitivity than all other 

classifiers and Probabilistic neural network (PNN) has more accuracy and specificity than other 

classifiers [27]. The neural network classifier (NN) is important in applications such as pattern 

recognizing and classification of tasks. The neural network classifier (NN) is a feedforward than 
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it provides more accuracy as compared to others but its efficient working depends on number of 

unseen layers and active function of neurons [24]. 

SVM are used for features which is linearly separable and has number of features in data. 

Probabilistic neural network classifier (PNN) is having to be trained first and once the probabilistic 

neural network classifier is trained then we just have to fed data to Probabilistic neural network 

classifier. It classifies the data then automatically [28]. 

The various methods makes algorithms tend to exhibit considerable variances in their accuracy 

and efficiency for bigger databases, making them untrustworthy for widespread usage in clinical 

or practical settings. Here, in this work we proposed an algorithm which can effectively classify 

the ECG signals for differentiating normal ECG signal and ectopic beat signals to detect 

arrhythmia. 

EEG Dataset Used in Study 

 
In the present work, the ECG signals are used in benchmark dataset known as MIT-BIH for ectopic 

beat detection[19]. The database acclimated in our study is from Massachusetts institute of 

technology and Beth Israel hospital (MIT-BIH), where signals were recorded using sampling 

frequency of 360Hz and it having more than 4000 long duration ECG signals. Table 1 shows the 

training test results of various samples obtained by HOLTER ECG. The present work has 

classified following types of ECG signals; Nc represent the non-ectopic beats (normal ECG), Sv 

represent the supraventricular ectopic beats, V represent the ventricular beats and Fs represent the 

fusion beats. Table 1 shows the summary of MIT-BIH ECG database. 

Table 1: Training Test for Different Type of Beats to train our classifier for classification of ectopic 

beats. 

 

DATABASE Nc Sv V Fs REC. 

MIT-BIH(ds- 

1) 

45774 943 3556 312 20 

MIT-BIH(ds- 

2) 

44012 2042 3216 388 32 

INCART 153542 1959 2000 303 73 
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SVDB 145437 10633 8284 21 90 

 

 

In this work, the data of HOLTER ECG of many type of abnormal heart beat and also the disease 

caused by them are considered. Table 2 shows data of heart patients of many disease like atrial 

premature beat. In this table 0 is for Normal heart beat and 1 is for abnormal heart beat which is 

further classified into four types they are Ap (Premature atrial beat), Rb (Right bundle branch 

block beat), Vp (Premature ventricular beat) and Lb (Left bundle branch block beat). 

TABLE 2: DATASET OF DIFFERENT PATEINTS SUFFERING FROM DIFFERENT TYPES 

OF ABNORMAL HEART BEATS USED IN PRESENT STUDY 

 

 1 1 1 1 0 

RECORDS Ap Vp Lb Rb 0 

118 96 16 - 2166 - 

107 - 59 - - - 

109 - 38 2492 - - 

232 1382 - - 397 - 

 
 

METHODOLOGY 

 
In this segment, we the methodology used to determine ectopic beats automatically from an ECG 

signals has been described in detail. The basic steps to classify abnormal heart rhythm is shown in 

Fig. 1. Firstly, we have to collect the dataset from an ECG machine and then we have to do pre- 

processing of that dataset using a specific type of filter. All the samples are pre-processed through 

a 200-millisecond width median for deduction of the P wave and QRS complex and for removing 

T wave a 600-millisecond width median filter. The resulted signals are known as baseline signals 

and these baseline signals are deducted from the actual signals to get the baseline corrected 

Electrocardiogram signals. Then a FIR filter with a 35Hz cut-off frequency is used to remove high- 

frequency (HF). Then, feature extraction has been done using the filtered data, then different linear 

and non-linear features were extracted. Eqn. 1 shows the formula for Euclidean distance, which 

has been used as feature from ECG signal analysis and it is represented as: 
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 ( [ ],  ′[ ]) = (Σ( (  +  ) −  ′(  +  ))) [1] 

 
Where, A[x] and A’[y] are ECG samples and l denotes the length that we are going to use from 

ECG sample. This Euclidean distance is a measure for ECG that length of ECG sample is sufficient 

or not for extracting information about the heartbeat such as, the position of the QRS complex and 

the corresponding fiducial points Q, R and S Fig.2. And limit of G tends to l. 

 

 

Fig. 1. Proposed Methodology For Ectopic Beat Classification using MIT-BIH dataset. 

 

The extracted features have been fed to the LDA classifier which is employed for classification of 

different types of ECG signals (Nc, Sv, V, Fs). The LDA approach is used in disease detection to 

identify a linear combination of attributes that distinguishes or defines two or more sets of 

occurrences. The goal of LDA is to combine the original samples to produce a new test features 

space. As demonstrated in Fig. 2, it maximizes the difference between the predefined classes with 

regard to the new test feature space. 70% of the signals have been used for training the model and 

remaining 30% were used for testing the model performance. 5 fold cross validation technique has 

been used. 
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Fig. 2: Effect of linear discriminant analysis over the features. Where Class 0 represents 

normal ECG and Class 1 represents abnormal ECG signals 
 

 

 

 

RESULT AND DISSCUSSION 

 
Based on detected or undetected signals four parameters are there which helps us to get 

performance analysis of classifiers. They are True positive which describes positive samples 

correctly detected, True negative describes the negative correctly detected, False positive are the 

negative samples falsely detected and False negative are positive not detected as positive. 

Accuracy (Ac), Specificity (Sp) and Sensitivity (S) of classifier are depends on above mentioned 

four parameters[24][29] and are calculated as below: 

  = (++) ∗ 100 / (++) +  (−−) (2) 

 
   = (+−) ∗  100 / (+−) + (−+) (3) 

 
   = [(++) + (+−)] ∗ 100 / (++) + (−−) + (+−) + (−+) (4) 

 
Where, ++ is true positive, -- is false negative, +- is true negative and -+ is false negative. 

 
Fig. 3 shows the sample ECG signals from each class (a) is for Premature Atrila Beat (Av), (b) is 

for Right Bundle Branch Block Beat (Rb), (c) is for Premature Ventriculer Beat(Vp) , (d) is for 

Left Bundle Branch Block Beat(Rb). 
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(a) (b) 

 

(c) (d) 

 
Fig. 3: Sample ECG signals of different diseases (a) Premature Atrila Beat (Av), (b) Right 

Bundle Branch Block Beat (Rb), (c) Premature Ventriculer Beat(Vp) , (d) Left Bundle Branch 

Block Beat(Rb) 

Table 3 gives the comparative analysis of proposed machine learning based technique for ectopic 

beat detection with the other available techniques. For the comparison purpose all studies 

incorporated in this table used the same MIT-BIH database. As it is observed from this table that 

difference in accuracy, senstivity and specificity of different classifier for example the accuracy of 

RNN is 85.4 [3] and of CNN is 97.30, if they used both then accuracy is 95.90 [1]. The proposed 
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method achieved the accuracy, senstivity and specificity of 98.57, 98.7 and 98.2 % respectively 

which is better than other available methods. 

TABLE 3: Comparison Table for different reference papers with respect to their used classifier 

and accuracy, sensitivity and specificity factor. 

 

YEAR PAPER CLASSIFIE 

R 

ACCURAC 

Y (%) 

SENSITIVI 

TY (%) 

SPECIFICI 

TY (%) 

2004 Chazel et al. [25] SVEB 94.60 74.9 38.50 

2006 De chazel et al. [35] PSC 97.4 94.4 98.4 

2007 Jiang and kang et 

al.[38] 

VEB 98.8 94.3 99.4 

2011 Mar et al. [39] SVEB 93.3 83.2 93.7 

2013 R marti set al. [28] SVM, NN 

AND PNN 

99.28 99.97 99.83 

2015 A. elhag et al. [24] SVM 98.91 98.91 97.85 

2018 G sannio et al.[8] GE 75.3 69.6 76.6 

2019 Sharma et al. [7] KNN 98 85.33 98.22 

2019 W zhu et al.[30] SVM 91.43 99.27 98.48 

2020 Z ebrahimi et al. [3] RNN 85.4 80.6 85.7 

2020 Xue xu et al. [1] CNN AND 

RNN 

95.90 95.90 96.30 

2022 D l tai wong et al. 

[4] 

CNN 97.30 91.30 98.1 

 This work LDA 98.57 98.7 98.2 

 
 

As we have discussed computer aided disease detection technique for heartbeat classification using 

ECG signals used different methods using a series of classifiers like SVM, PNN, and NN [25]. All 

those specifiers has good specificity, sensitivity and accuracy. Abnormal beats leads to additional 

electrical impulses enforce by another latent pacemaker. 
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CONCLUSION 

 
Cardiologists' workloads can be significantly reduced in medical field by computer-aided 

diagnosis of cardiac arrhythmias, allowing them to timely treat the disease without wasting time 

in diagnosis. In this work, an effective ECG classification system based on machine learning 

technique is developed to perform automatic ECG arrhythmia diagnosis by categorizing patient 

ECGs into four different cardiac conditions: premature atrial beat, right bundle branch block beat, 

premature ventricular beat and left bundle branch block beat. 

The proposed method gave promising results accuracy (about 98.57%) and sensitivity (98.7%) 

showed how effective the present method is for automatically detecting cardiac arrhythmias. 

Additionally, use of linear discriminant analysis for reduces the need complex level of other 

machine learning techniques which are more time consuming and difficult to implement in real 

time environment. 

We have discussed many research works of previous years and we can see that the usage of 

classifiers vary as per the data collected for classification of ECG signals but they take data from 

same hospital i.e. MIT-BIH[23]. So in future work the same algorithm can be used with other 

datasets also for detecting different types of heart diseases which are not included in this work. 
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