

# Optimization of MRR & TWR of Meso Holes on EN\_31 Steel using Electrical Discharge Drilling

M.Prakash<sup>1\*</sup>, Dr. Lachiram<sup>2</sup>, Dr.Laxminarayana<sup>3</sup>, Dr.U Ashok Kumar<sup>4</sup>

<sup>1</sup>Research Scholar, Department of Mechanical Engineering,

University College of Engineering (A), Osmania University Hyderabad, Telangana, India <sup>2</sup>Scientist-F, Head Design Engineering Wing, Defence Electronics Research Lab, DRDO, Hyderabad, Telangana, India

<sup>3</sup>Sr. Professor, Department of Mechanical Engineering,

University College of Engineering (A), Osmania University Hyderabad, Telangana, India <sup>4</sup>Assistant Professor©, Department of Mechanical Engineering,

University College of Engineering (A), Osmania University Hyderabad, Telangana, India Email: <sup>1</sup> prakash.m@uceou.edu

### Abstract

The current study focuses on the drilling of meso-holes in EN\_31 steel using electrical discharge drilling (EDD). Experimental analyses were conducted using an EDD machine, with process parameters including depth of hole, current, T\_ON (on-time), and T\_OFF (off-time). To optimize machining characteristics, a Taguchi L-27 orthogonal array design of experiment was employed. The main response variables studied were material removal rate & Tool wear rate with the use of a 0.8mm diameter brass & Copper tubular electrode. Additionally, microstructure analysis was conducted using microscopic instruments to examine the results in detail.

Keywords— Electrical Discharge Drilling, EN\_31 steel, Material removal rate, DOE, Taguchi\_L27 OA.

### 1. Introduction

Recent years the growing demands for miniaturized components across various sectors, including automotive, aerospace, medical, and electronics manufacturing. To meet increasingly stringent design specifications and tight tolerances, micro-meso machining technologies have been established and are continuously evolving. Traditional machining methods using EN\_31 Steel often fall short in terms of efficiency, quality, cost-effectiveness, and adaptability [1, 2]. Electric Discharge Machining (EDM) offers a solution to these manufacturing challenges, albeit with its own set of issues, particularly when attempting to machine high aspect ratios. To address this challenge, researchers have explored the use of rotating tube electrodes in EDM [3, 4]. However, there is a noticeable scarcity of studies discussing EDM with rotating tube electrodes. Among these, Nivin V and Arun. B. K utilized copper and brass rotating tubes with an inner diameter of 0.8 mm to perform EDM on EN41 steel, optimizing their techniques based on Grey and Taguchi methodologies [5, 6]. Following Taguchi's approach, Priyaranjan et al. conducted EDM on an AISI tool using a copper and brass rotating tube electrode [7]. This paper introduces a novel approach to

Electric Discharge Drilling (EDD), employing a high-quality rotary brass tube electrode with a 0.8mm diameter, facilitating the creation of meso- holes at both the entry and exit points within hard materials like EN\_31 Steel. This innovative technique serves as a catalyst for advancing EDD in the context of high aspect ratio meso-hole drilling. Table 1 and Table 2 provide comprehensive data on the metallurgical properties of both the electrode (brass tube) and the workpiece (EN\_31 Steel).

| Element | С    | Mn   | Si   | Cr   | Mo   | V    | Р     | S     |
|---------|------|------|------|------|------|------|-------|-------|
| %       | 1.05 | 0.50 | 0.27 | 1.05 | 0.02 | 0.01 | 0.057 | 0.072 |

| Table 1.  | Chemical | Composition | of Workpie | ce (EN | 31 Steel) |
|-----------|----------|-------------|------------|--------|-----------|
| I UDIC II | Chenneur | Composition | or montpie |        |           |

| Table 2. Chemical Composition of Blass Tube Electrode |      |      |      |      |   |     |       |      |
|-------------------------------------------------------|------|------|------|------|---|-----|-------|------|
| Element                                               | Cu   | Al   | Tn   | Р    | L | Fe  | Z     | Ni   |
| %                                                     | 56.7 | 0.03 | 0.02 | 0.02 | 3 | 0.1 | 39.85 | 0.08 |

 Table 2 Chemical Composition of Brass Tube Electrode

### 2. Experimental Approach

In this research, we utilized EN\_31 steel as the workpiece material, varying its thickness between 10, 15, and 20 mm. The tool was a commercially available 0.8mm brass rotary tube electrode. All experimental procedures were carried out using the Sparkonix EDM drill – speed II machine. Figure 1 provides a schematic illustration of the experimental setup, highlighting key components using color codes, including the workpiece, tube electrode, dielectric (deionized water), tank, and processing unit. The Processing unit played a crucial role in controlling essential parameters like RPM, current, Gap voltage, on-time, and off-time to regulate the machine's performance.



**Figure 1.** Electrical Discharge Drilling (a) Schematic Diagram and (b) setup The experiments were conducted following a Taguchi's orthogonal arrangement, specifically employing a 3-level, 4-factor L27 design. The process parameters considered for this design included the depth of the hole, current, time on, and time off. Table-4 displays the arrangement for this standard L27 Taguchi's experimental setup. Additionally, Table-3

presents the EDM settings alongside other consistent experimental parameters employed in this study.

| Parameters           | Range                        |
|----------------------|------------------------------|
| Dielectric type      | Deionised water              |
| Work piece           | EN_31                        |
| Work piece dimension | 100 mm *50mm*10 mm           |
| Electrode Material   | Brass tube                   |
| Electrode dimensions | 0.8mm diameter 400 mm Length |
| Depth of hole        | 10 15 20 mm                  |
| Current              | 3 6 9 Amps                   |
| ON_Time              | 6 8 10 μs                    |
| OFF_Time             | 2 3 4 µs                     |

Table 3. EDD parameters for Meso hole drilling of EN\_31



**Figure 2.** Meso holes Produced on EN\_31 Steel by Electrical Discharge Drilling with 10mm, 15mm, 20mm thickness

- 3. Results and Discussion
- Analysis of Material Removal Rate in Meso Holes by EDD With Brass and copper Tube electrode

The Experimental results of material removal rate in meso holes by EDD with Brass Tube electrode are list table 4.

**Table 4.** Experimental Results of MRR on EN-31 of Meso holes by EDD with Brass tube electrode

| Expt. No | Depth | Current | T_ON | T_OFF | MRR with Brass<br>Electrode | MRR Copper<br>Electrode |
|----------|-------|---------|------|-------|-----------------------------|-------------------------|
| 1        | 10    | 3       | 6    | 2     | 12.78                       | 8.648                   |
| 2        | 10    | 3       | 6    | 2     | 12.50                       | 8.681                   |
| 3        | 10    | 3       | 6    | 2     | 12.91                       | 8.830                   |
| 4        | 10    | 6       | 8    | 3     | 12.83                       | 8.542                   |
| 5        | 10    | 6       | 8    | 3     | 12.24                       | 8.547                   |
| 6        | 10    | 6       | 8    | 3     | 13.46                       | 9.649                   |
| 7        | 10    | 9       | 10   | 4     | 12.98                       | 9.656                   |
| 8        | 10    | 9       | 10   | 4     | 12.10                       | 8.169                   |
| 9        | 10    | 9       | 10   | 4     | 12.17                       | 8.428                   |
| 10       | 15    | 3       | 8    | 4     | 12.37                       | 8.808                   |
| 11       | 15    | 3       | 8    | 4     | 12.44                       | 8.570                   |
| 12       | 15    | 3       | 8    | 4     | 12.29                       | 8.412                   |
| 13       | 15    | 6       | 10   | 2     | 13.41                       | 9.279                   |
| 14       | 15    | 6       | 10   | 2     | 13.61                       | 9.362                   |
| 15       | 15    | 6       | 10   | 2     | 12.75                       | 9.972                   |
| 16       | 15    | 9       | 6    | 3     | 12.78                       | 10.597                  |
| 17       | 15    | 9       | 6    | 3     | 12.80                       | 10.333                  |
| 18       | 15    | 9       | 6    | 3     | 12.43                       | 9.857                   |
| 19       | 20    | 3       | 10   | 3     | 13.87                       | 8.692                   |
| 20       | 20    | 3       | 10   | 3     | 14.35                       | 8.529                   |
| 21       | 20    | 3       | 10   | 3     | 13.40                       | 9.197                   |
| 22       | 20    | 6       | 6    | 4     | 12.18                       | 8.614                   |
| 23       | 20    | 6       | 6    | 4     | 12.71                       | 8.255                   |
| 24       | 20    | 6       | 6    | 4     | 12.22                       | 8.529                   |
| 25       | 20    | 9       | 8    | 2     | 13.34                       | 9.695                   |
| 26       | 20    | 9       | 8    | 2     | 12.32                       | 9.131                   |
| 27       | 20    | 9       | 8    | 2     | 12.71                       | 9.127                   |

With Brass Tube electrode the MRR values vary between the experiments. For each drilling depth, as the current increases  $(3A \rightarrow 6A \rightarrow 9A)$ , the MRR generally shows an increasing and Variation in T\_ON and T\_OFF also affects MRR. For example, Experiment 13 with 6A current, 10 T\_ON, and 2 T\_OFF has a higher MRR (13.41) compared to Experiments 14 and 15 with similar parameters but different T\_ON and T\_OFF. The relationship between the

pulse on-time and pulse off-time and MRR isn't direct, and there seems to be some interaction with other factors. In case of Copper tube electrode, Higher Depth and Current values tend to result in higher Material Removal Rates (MRR), suggesting that increasing depth and current could lead to faster material removal. Shorter Turn-On and Turn-Off times are associated with higher MRR values, indicating that more continuous operation of the process might be more efficient for material removal Experiment 16 with 15mm depth, 9A current, 6 T\_ON, and 63T\_OFF has a higher MRR (10.597)

| Level | Depth | Current | T_ON  | T_OFF |
|-------|-------|---------|-------|-------|
| 1     | 22.04 | 22.26   | 22    | 22.22 |
| 2     | 22.11 | 22.14   | 22.04 | 22.35 |
| 3     | 22.27 | 22.01   | 22.38 | 21.85 |
| Delta | 0.23  | 0.24    | 0.38  | 0.5   |
| Rank  | 4     | 3       | 2     | 1     |

**Table: 5.** Response Table for Signal to Noise Ratios for Brass Tube Electrode

Table.5. shows the response table outlines Signal-to-Noise Ratios (SNRs) analysis for optimizing Brass Tube Electrode performance. SNRs are used to assess the quality of performance, with lower values indicating better results. Parameters like "Depth," "Current," "T\_ON" (Turn-On Time), and "T\_OFF" (Turn-Off Time) are studied across different levels. The table provides insights into parameter effects and rankings for achieving improved Brass Tube Electrode performance.



Figure 3. S/N ratio MRR of EN\_31 by Brass tube electrode

From Fig .3, S/N Graph the combination is A3-B1-C3-D2 i.e (Depth of hole 20mm, Current 3 Amps, T\_ON 10  $\mu$ s, T\_OFF 3  $\mu$ s.) the combination matches with Taguchi L 27 OA ie Trail 20 with maximum Material Removal rate 14.35 mm3/min

# Regression Analysis of MRR on Meso holes drilling in EN\_31 steel by EDD using Brass electrode

Regression Analysis is carried by regression mathematical equation in which predicted valves are compared with experimental values table 6. In Fig 3 its clears show that Experiment values are closely correlating with predicated values of material removal rate of meso holes .

| Fable: 6. Comparison | of Experiment and | 1 predicted Material | removal rate of EN | J_31 |
|----------------------|-------------------|----------------------|--------------------|------|
|                      | Meso Holes with J | Brass Tube electrod  | e                  |      |

| Expt. No | Experiment MRR | Predicted MRR | % Error |
|----------|----------------|---------------|---------|
| 1        | 12.78          | 12.80         | -0.02   |
| 2        | 12.50          | 12.80         | -0.30   |
| 3        | 12.91          | 12.80         | 0.11    |
| 4        | 12.83          | 12.64         | 0.19    |
| 5        | 12.24          | 12.64         | -0.40   |
| 6        | 13.46          | 12.64         | 0.82    |
| 7        | 12.98          | 12.48         | 0.50    |
| 8        | 12.10          | 12.48         | -0.38   |
| 9        | 12.17          | 12.48         | -0.31   |
| 10       | 12.37          | 12.72         | -0.35   |
| 11       | 12.44          | 12.72         | -0.28   |
| 12       | 12.29          | 12.72         | -0.43   |
| 13       | 13.41          | 13.38         | 0.03    |
| 14       | 13.61          | 13.38         | 0.23    |
| 15       | 12.75          | 13.38         | -0.63   |
| 16       | 12.78          | 12.33         | 0.45    |
| 17       | 12.80          | 12.33         | 0.47    |
| 18       | 12.43          | 12.33         | 0.10    |
| 19       | 13.87          | 13.46         | 0.41    |
| 20       | 14.35          | 13.46         | 0.89    |
| 21       | 13.40          | 13.46         | -0.06   |
| 22       | 12.18          | 12.42         | -0.24   |
| 23       | 12.71          | 12.42         | 0.29    |
| 24       | 12.22          | 12.42         | -0.20   |
| 25       | 13.34          | 13.08         | 0.26    |
| 26       | 12.32          | 13.08         | -0.76   |
| 27       | 12.71          | 13.08         | -0.37   |



Figure 4. Comparison of Experiment and Predicted Material Removal Rate of EN\_31 by Brass tube electrode

| Source  | DF | Adj SS | Adj MS | % Contribution |  |  |
|---------|----|--------|--------|----------------|--|--|
| Depth   | 2  | 0.5761 | 0.2880 | 6.64           |  |  |
| Current | 2  | 0.5991 | 0.2996 | 6.90           |  |  |
| T_ON    | 2  | 1.8672 | 0.9336 | 21.52          |  |  |
| T_OFF   | 2  | 2.6650 | 1.3325 | 30.72          |  |  |
| Error   | 18 | 2.9689 | 0.1649 | 34.22          |  |  |
| Total   | 26 | 8.6764 | *****  | 100.00         |  |  |

**Table: 7** Analysis of Variance of Material removal rate of EN\_31 Meso holes

From Table: 7. Anova analysis is carried out with most influence factors on process parameter of Machining of meso holes on EN31 steelT\_OFF" has the highest contribution, explaining 30.72% of the variance. This suggests that T\_OFF plays a significant role in influencing Material Removal Rate. "T\_ON" follows closely, contributing 21.52% to the total variance. "Depth" and "Current" have comparatively lower contributions, accounting for 6.64% and 6.90%, respectively. "Error" reflects unexplained variability or experimental error, contributing 34.22% to the total variance.

# S/N ratio of material removal rate in meso holes by EDD with Copper Tube electrode

Table.8. shows the response of Signal-to-Noise Ratios (SNRs) analysis conducted with a copper tube electrode. The analysis involves varying parameters such as "Depth," "Current," "T\_ON", and "T\_OFF across different levels. The SNR values are utilized to gauge the quality for higher the MRR with electrode performance, with lower values indicating preferable outcomes. The ranking system, denoted by the "Rank" row, further emphasizes the parameter's impact on performance improvement. Contextual understanding is crucial for a comprehensive interpretation of these results in the context of electrode optimization.

|       | -     |         |       |       |
|-------|-------|---------|-------|-------|
| Level | Depth | Current | T_ON  | T_OFF |
| 1     | 18.85 | 18.79   | 19.19 | 19.25 |
| 2     | 19.49 | 19.03   | 19.01 | 19.35 |
| 3     | 18.94 | 19.45   | 19.08 | 18.67 |
| Delta | 0.64  | 0.66    | 0.19  | 0.68  |
| Rank  | 3     | 2       | 4     | 1     |

Table 8. Response Table for Signal to Noise Ratios with copper tube electrode





# Regression Analysis of MRR on Meso holes drilling in EN\_31 steel by EDD using Copper electrode

**Table 9.** Experimental Results of Material removal rate on EN-31 of Meso holes by EDD with Copper tube electrode

| Expt. No | Experiment MRR | Predicted MRR | % Error |
|----------|----------------|---------------|---------|
| 1        | 8.65           | 8.99          | -3.95   |
| 2        | 8.68           | 8.99          | -3.55   |
| 3        | 8.83           | 8.99          | -1.81   |
| 4        | 8.54           | 9.01          | -5.42   |
| 5        | 8.55           | 9.01          | -5.36   |
| 6        | 9.65           | 9.01          | 6.68    |
| 7        | 9.66           | 9.02          | 6.59    |

| Expt. No | Experiment MRR | Predicted MRR | % Error |
|----------|----------------|---------------|---------|
| 8        | 8.17           | 9.02          | -10.42  |
| 9        | 8.43           | 9.02          | -7.03   |
| 10       | 8.81           | 8.38          | 4.90    |
| 11       | 8.57           | 8.38          | 2.25    |
| 12       | 8.41           | 8.38          | 0.41    |
| 13       | 9.28           | 9.27          | 0.06    |
| 14       | 9.36           | 9.27          | 0.93    |
| 15       | 9.97           | 9.27          | 7.00    |
| 16       | 10.60          | 9.47          | 10.68   |
| 17       | 10.33          | 9.47          | 8.39    |
| 18       | 9.86           | 9.47          | 3.97    |
| 19       | 8.69           | 8.65          | 0.53    |
| 20       | 8.53           | 8.65          | -1.37   |
| 21       | 9.20           | 8.65          | 5.99    |
| 22       | 8.61           | 8.84          | -2.60   |
| 23       | 8.25           | 8.84          | -7.06   |
| 24       | 8.53           | 8.84          | -3.62   |
| 25       | 9.70           | 9.74          | -0.41   |
| 26       | 9.13           | 9.74          | -6.62   |
| 27       | 9.13           | 9.74          | -6.67   |



Figure 6. Comparison of Experiment and Predicted Material Removal Rate of EN\_31 by Copper electrode

Regression Analysis is carried by regression mathematical equation in which predicted valves are compared with experimental values table 9. In Fig 6 its clears show that Experiment values are closely correlating with predicated values of material removal rate of meso holes with copper tube electrode

| Source  | DF | Adj SS  | Adj MS  | % Contribution |
|---------|----|---------|---------|----------------|
| Depth   | 2  | 2.4536  | 1.22682 | 0.2215         |
| Current | 2  | 2.5030  | 1.25152 | 0.2260         |
| T_ON    | 2  | 0.1942  | 0.09708 | 0.0175         |
| T_OFF   | 2  | 2.6553  | 1.32766 | 0.2398         |
| Error   | 18 | 3.2690  | 0.18161 | 0.2952         |
| Total   | 26 | 11.0752 |         | 100            |

Table 10. Analysis of Variance of Material removal rate of EN\_31 Meso holes

From table 10 Anova of MRR with copper electrode on meos holes shows the Depth, Current, and T\_OFF show relatively higher adjusted mean squares, suggesting that they contribute more to the variability in the material removal rate compared to T\_ON. The Error term also has a significant adjusted mean square, indicating the experimental error.

Analysis of Tool Wear rate in Meso hole by EDD

Analysis of Tool wear Rate on Meso hole by electrical discharge drilling in EN\_31 with Brass & Copper tube electrode with diameter 0.8mm in Table .The experimental results present a comparison of TWR values in EN-31 Meso holes using Electro-Discharge Drilling (EDD) with Brass and Copper tube electrodes. The TWR measurements for both types of electrodes exhibit variability across experiments. The Brass electrode yields TWR values ranging from approximately 5.41 to 8.56, while the Copper electrode produces values ranging from about 2.188 to 8.304. Notably, the Copper electrode generally results in lower TWR values compared to Brass, suggesting its potential efficacy in achieving the desired tapering effect during the drilling process. Further statistical analysis, the significance of these differences between the two electrode types. Overall, a deeper understanding of the EDD process, the significance of taper wire resistance, and the specific characteristics of EN-31 Meso holes would provide a more comprehensive interpretation of these results in table 11.

| Table 11. Experimental Results of TWR on EN-31 of Meso holes by EDD with Bra | ss & |
|------------------------------------------------------------------------------|------|
|------------------------------------------------------------------------------|------|

Copper tube electrode

| S.No | TWR With Brass electrode | TWR With Coper electrode |
|------|--------------------------|--------------------------|
| 1    | 7.98                     | 5.141                    |
| 2    | 8.01                     | 5.475                    |
| 3    | 8.32                     | 4.529                    |
| 4    | 7.84                     | 4.190                    |
| 5    | 6.51                     | 3.920                    |
| 6    | 6.59                     | 4.668                    |
| 7    | 7.63                     | 5.809                    |

| S.No | TWR With Brass electrode | TWR With Coper electrode |
|------|--------------------------|--------------------------|
| 8    | 6.78                     | 8.304                    |
| 9    | 7.07                     | 6.936                    |
| 10   | 7.55                     | 7.948                    |
| 11   | 8.56                     | 2.414                    |
| 12   | 5.54                     | 3.182                    |
| 13   | 7.88                     | 3.170                    |
| 14   | 7.04                     | 3.309                    |
| 15   | 7.09                     | 6.655                    |
| 16   | 7.12                     | 6.637                    |
| 17   | 6.17                     | 7.131                    |
| 18   | 8.41                     | 6.233                    |
| 19   | 5.43                     | 2.188                    |
| 20   | 7.50                     | 4.739                    |
| 21   | 5.41                     | 3.894                    |
| 22   | 6.75                     | 3.616                    |
| 23   | 6.20                     | 3.055                    |
| 24   | 6.83                     | 4.447                    |
| 25   | 7.17                     | 2.932                    |
| 26   | 6.65                     | 6.923                    |
| 27   | 8.49                     | 6.673                    |

| <b>Cable 12.</b> Response Table for Sign | al to Noise Ratios | s Smaller is better | for TWR |
|------------------------------------------|--------------------|---------------------|---------|
|------------------------------------------|--------------------|---------------------|---------|

| Level | Depth  | Current | T_ON   | T_OFF  |
|-------|--------|---------|--------|--------|
| 1     | -17.40 | -17.10  | -17.27 | -17.66 |
| 2     | -17.29 | -16.87  | -17.23 | -16.67 |
| 3     | -16.57 | -17.28  | -16.76 | -16.93 |
| Delta | 0.83   | 0.40    | 0.52   | 0.99   |
| Rank  | 2      | 4       | 3      | 1      |

The response table.12, displays Signal-to-Noise Ratios (SNRs) for optimizing Taper Wire Resistance (TWR), where lower values indicate better performance. Different parameter levels, including Depth, Current, T\_ON (Turn-On Time), and T\_OFF (Turn-Off Time), are evaluated. Lower SNRs reflect more consistent and preferable TWR results. The table ranks parameters by the magnitude of their impact on TWR optimization. Overall, the table provides insight into parameter effects on achieving desirable TWR outcomes through SNR analysis.



Figure 7. S/N ratio TWR of EN\_31 by Brass tube electrode

From Fig .7, S/N Graph the combination is A3-B2-C3-D2 i.e (Depth of hole 20mm, Current 6 Amps, T\_ON 10  $\mu$ s, T\_OFF 3  $\mu$ s.) the combination does not matches with Taguchi L 27 OA ie so confirmation test is required for the combination

# Regression Analysis of TWR on Meso holes drilling in EN\_31 steel by EDD using Brass electrode

The presented Regression Analysis examines the congruence between predicted and observed Tool wear rate (TWR) values for EN\_31 Meso Holes. Each data point is assigned a sequential experiment number and includes experimentally derived TWR values ("Expt.TWR"), as well as TWR values predicted through regression modeling ("Pred. TWR"). The accompanying "% Error" metric quantifies the percentage deviation between predicted and observed TWR values. The analysis emphasizes the predictive accuracy of the regression model through instances of low percentage errors, indicative of close alignment between predictions and observations. Conversely, higher percentage errors reveal disparities requiring model refinement or further experimental exploration.

In essence, this Regression Analysis affords a comprehensive evaluation of the model's efficacy in predicting TWR values for EN\_31 Meso Holes, informing potential enhancements and advancing predictive capabilities for future experiments in Table 13.

| S.No | Expt.TWR | Pred. TWR | % Error |
|------|----------|-----------|---------|
| 1    | 7.98     | 7.96      | 0.30    |
| 2    | 8.01     | 7.96      | 0.70    |
| 3    | 8.32     | 7.96      | 4.42    |
| 4    | 7.84     | 7.48      | 4.59    |
| 5    | 6.51     | 7.48      | -14.84  |
| 6    | 6.59     | 7.48      | -13.45  |

**Table: 13.** Comparison of Experiment and predicted TWR of EN\_31 Meso Holes

Section: Research Paper

| 7  | 7.63 | 7.01 | 8.14   |
|----|------|------|--------|
| 8  | 6.78 | 7.01 | -3.40  |
| 9  | 7.07 | 7.01 | 0.85   |
| 10 | 7.55 | 6.75 | 10.60  |
| 11 | 8.56 | 6.75 | 21.18  |
| 12 | 5.54 | 6.75 | -21.67 |
| 13 | 7.88 | 7.23 | 8.26   |
| 14 | 7.04 | 7.23 | -2.62  |
| 15 | 7.09 | 7.23 | -1.98  |
| 16 | 7.12 | 7.42 | -4.10  |
| 17 | 6.17 | 7.42 | -20.27 |
| 18 | 8.41 | 7.42 | 11.87  |
| 19 | 5.43 | 6.49 | -19.50 |
| 20 | 7.50 | 6.49 | 13.40  |
| 21 | 5.41 | 6.49 | -20.08 |
| 22 | 6.75 | 6.68 | 1.01   |
| 23 | 6.20 | 6.68 | -7.77  |
| 24 | 6.83 | 6.68 | 2.13   |
| 25 | 7.17 | 7.16 | 0.03   |
| 26 | 6.65 | 7.16 | -7.78  |
| 27 | 8.49 | 7.16 | 15.64  |





Table 14.ANOVA Analysis of Variance of Tool wear rate with Brass electrode

| Source  | DOF | Adj SS  | Adj MS | % Contribution |
|---------|-----|---------|--------|----------------|
| Depth   | 2   | 2.4558  | 1.2279 | 11.4           |
| Current | 2   | 14.1716 | 0.2103 | 65.9           |
| T_ON    | 2   | 0.9602  | 0.4801 | 4.5            |
| T_OFF   | 2   | 3.5108  | 1.7554 | 16.3           |
| Error   | 18  | 0.4207  | 0.7873 | 2.0            |
| Total   | 26  | 21.5191 |        | 100            |

From Table.14, ANOVA Analysis of Variance of Tool wear rate with Brass electrode, Current has the most significant impact, contributing 65.9% to the total variance in Tool Wear Rate. This indicates that Current plays a substantial role in influencing wear rate when using a Brass electrode."T\_OFF" also contributes significantly, explaining 16.3% of the variance. "Depth" and "T\_ON" have comparatively lower contributions, explaining 11.4% and 4.5% of the variance, respectively. "Error" represents unexplained variability or experimental error, contributing 2.0% to the total variance.

Analysis of Tool wear Rate on Meso hole by electrical discharge drilling in EN\_31 with Copper tube electrode with diameter 0.8mm

Table 15. Response Table for Signal to Noise Ratios Smaller is better for TWR of Copper

| Level | Depth  | Current | T_ON   | T_OFF  |
|-------|--------|---------|--------|--------|
| 1     | -14.57 | -13.27  | -14.02 | -14.25 |
| 2     | -14.69 | -12.49  | -14.03 | -13.53 |
| 3     | -12.75 | -16.26  | -13.96 | -14.23 |
| Delta | 1.94   | 3.77    | 0.07   | 0.71   |
| Rank  | 2      | 1       | 4      | 3      |

From The response table .15, summarizes Signal-to-Noise Ratios (SNRs) analysis for optimizing Copper TWR values. Smaller SNR values indicate better TWR performance. Parameters "Depth," "Current," "T\_ON" (Turn-On Time), and "T\_OFF" (Turn-Off Time) are examined across different levels. SNR trends and parameter rankings are highlighted. The table aids in understanding how parameter adjustments impact TWR optimization for Copper tube electrode.



Figure 9. S/N graph of Tool wear rate in meso holes of EN\_31 by EDD with Copper tube electrode

From Fig .9, S/N Graph the combination is A3-B2-C3-D2 i.e (Depth of hole 20mm, Current 6 Amps, T\_ON 10  $\mu$ s, T\_OFF 3  $\mu$ s.) the combination does not matches with Taguchi L 27 OA ie so confirmation test is required for the combination

## Regression Analysis of TWR on Meso holes drilling in EN\_31 steel by EDD using Copper electrode

This regression analysis aims to predict the wear rate of a copper tool. Observed Tool wear rate (TWR) values for copper tool wear are compared with predicted values from the regression model. The analysis highlights instances of both accurate predictions and discrepancies. Some cases exhibit a close match between predicted and observed TWR values, while others show significant differences, quantified by percentage errors. Positive and negative values indicate overestimation and underestimation, respectively. This analysis provides insights into the model's effectiveness in predicting copper tool wear rates and identifies areas for improvement.in table.16.

| Expt.No | EXPt. TWR_Copper | Predicted TWR of copper | % Error |
|---------|------------------|-------------------------|---------|
| 1       | 5.1              | 4.6                     | 11.14   |
| 2       | 5.5              | 4.6                     | 16.56   |
| 3       | 4.5              | 4.6                     | -0.87   |
| 4       | 4.2              | 5.6                     | -32.54  |
| 5       | 3.9              | 5.6                     | -41.66  |
| 6       | 4.7              | 5.6                     | -18.97  |
| 7       | 5.8              | 6.5                     | -12.54  |

 Table 16. Comparison of Experiment and predicted TWR of EN\_31 Meso Holes with copper tube electrode

| 8  | 8.3 | 6.5 | 21.26  |
|----|-----|-----|--------|
| 9  | 6.9 | 6.5 | 5.74   |
| 10 | 7.9 | 4.0 | 49.49  |
| 11 | 2.4 | 4.0 | -66.29 |
| 12 | 3.2 | 4.0 | -26.18 |
| 13 | 3.2 | 4.8 | -52.97 |
| 14 | 3.3 | 4.8 | -46.57 |
| 15 | 6.7 | 4.8 | 27.13  |
| 16 | 6.6 | 6.0 | 8.92   |
| 17 | 7.1 | 6.0 | 15.24  |
| 18 | 6.2 | 6.0 | 3.02   |
| 19 | 2.2 | 3.3 | -51.29 |
| 20 | 4.7 | 3.3 | 30.14  |
| 21 | 3.9 | 3.3 | 14.97  |
| 22 | 3.6 | 4.5 | -24.63 |
| 23 | 3.1 | 4.5 | -47.49 |
| 24 | 4.4 | 4.5 | -1.32  |
| 25 | 2.9 | 5.3 | -82.14 |
| 26 | 6.9 | 5.3 | 22.85  |
| 27 | 6.7 | 5.3 | 19.96  |



Figure 10. Comparison of Experiment and Predicted Tool wear rate in meso holes of EN\_31 by EDD with Copper tube electrode

Table 17. Analysis of Variance in meso holes of EN\_31 by EDD with Copper tube electrode

| Source  | DF | Adj SS  | Adj MS  | Contribution |
|---------|----|---------|---------|--------------|
| Depth   | 2  | 6.7758  | 3.3879  | 8.466        |
| Current | 2  | 27.9601 | 13.9800 | 55.458       |
| T_ON    | 2  | 0.6624  | 0.3312  | 34.936       |
| T_OFF   | 2  | 0.2492  | 0.1246  | 0.828        |
| Error   | 18 | 44.3841 | 2.4658  | 0.311        |
| Total   | 26 | 80.0316 |         | 100          |

From Table.17, ANOVA Analysis of Variance of Tool wear rate with coper electrode Current plays the most substantial role, contributing 55.458% to the total variance in Tool Wear Rate. This suggests that current significantly influences wear rate with a Copper electrode. T\_ON also holds notable importance, explaining 34.936% of the variance. Depth accounts for 8.466% of the variance. T\_OFF has a minimal effect, contributing 0.828%. "Error" reflects unexplained variability or experimental error, contributing 0.311% to the total variance.

#### Micro-Structure analysis of meso holes drilled on EN\_31 Steel

Microstructure analysis was performed on the meso holes in EN\_31 Steel, and SEM images were captured for the 27th run, both at the entry and exit points of the machined holes. Figure 11 illustrates the SEM image of the meso hole at the entrance. This image reveals a well-rounded top surface and minor burring along the sidewalls.



Figure 11. Machined hole entry & hole exit of Trail 20 Experiment of meso hole on EN\_31 Steel

### 4. Conclusion

The paper has presented the optimization of the L27 Taguchi's experiment analysis for maximum material removal rate by Electrical discharge drilling machine of meso holes on EN\_31 Steel using brass rotary tube electrode. The main conclusions are as follows:

- From DOE Taguchi L-27 OA the combination is A3-B1-C3-D2 i.e (Depth of hole 20mm, Current 3 Amps, T\_ON 10 μs, T\_OFF 3 μs.) the combination matches with Taguchi L 27 OA ie Trail 20 with maximum Material Removal rate 14.35 mm3/min
- For Copper Tube electrode the combination is A2-B3-C1-D2 i.e (Depth of hole 15mm, Current 9 Amps, T\_ON 6 μs, T\_OFF 3 μs.) the combination matches with Taguchi L 27 OA ie Trail 16 with maximum Material Removal rate 10.597 mm3/min
- From Brass & Copper Electrode the Tool wear rate , combination is A3-B2-C3-D2 i.e (Depth of hole 20mm, Current 6 Amps, T\_ON 10  $\mu$ s, T\_OFF 3  $\mu$ s.) the combination does not matches with Taguchi L 27 OA ie so confirmation test is required for the combination
- Regression Analysis is carried by regression mathematical equation in which predicted values are compared with experimental values and closely correlating with predicated values of material removal rate of meso holes
- Micro-Structure analysis were investigation on meso holes of EN\_31 Steel .It shows that the top has a good round look and the side walls have a small burr.

References

- [1] Yu Z Y, Rajurkar K P, Shen H, "High Aspect Ratio and Complex Shaped Blind Micro Holes by Micro EDM", CIRP Annals, 51 1 (2002) 359-362.
- [2] Fu Y, Miyamoto T, Natsu W, Zhao W, Yu Z, "Study on Influence of Electrode Material on Hole Drilling in Micro-EDM", Procedia CIRP 42 (2016) 516 – 520.
- [3] Vincent N, Kumar A B, "Experimental investigations into EDM behaviours of En41b using copper and brass rotary tubular electrode", Procedia Technology 25 (2016) 877 884.
- [4] Sharma P, Singh S, Mishra D R, "Electrical discharge machining of AISI 329 stainless steel using copper and brass rotary tubular electrode", Procedia Materials Science 5 (2014) 1771-1780.
- [5] Sanchez J A, Plaza S, Gil R, Ramos J M, Izquierdo B, Ortega N, Pombo I, "Electrode set-up for EDM-drilling of large aspect-ratio microholes", Procedia CIRP 42(2016) 516 – 520.
- [6] Jangra, K., Grover, S., & Aggarwal, A. (2011). Simultaneous optimization of material removal rate and surface roughness for WEDM of WC-Co composite using grey relational analysis along with Taguchi method. International Journal of Industrial Engineering Computations, 2(3), 479–490. doi:10.5267/j. ijiec.2011.04.005
- Jangra, K., Grover, S., & Aggarwal, A. (2012). Optimization of multi machining characteristics in WEDM of WC-5.3%Co composite using integrated approach of Taguchi, GRA and entropy method. Frontiers of Mechanical Engineering, 7(3), 288– 299. doi:10.1007/s11465-012-0333-4
- [8] Khanna, R., Kumar, A., Garg, M. P., Singh, A., & Sharma, N. (2015). Multiple performance characteristics optimization for Al 7075 on electric discharge drilling by

Taguchi grey relational theory. Journal of Industrial Engineering International, 11(4), 459–472. doi:10.1007/s40092-015-0112-z

- [9] Kuppan, P., Rajadurai, A., & Narayanan, S. (2008). Influence of EDM Process parameters in deep hole drilling of Inconel 718. International Journal of Advanced Manufacturing Technology, 38(1-2), 74–84. doi:10.1007/s00170-007-1084-y
- [10] Rengasamy, N. V., RajKumar, G., SenthilKumaran, S.: An Analysis of Mechanical Properties and Optimization of EDM Process Parameters of Al 4032 Alloy Reinforced with Zrb2 and Tib2 In-Situ Composites, Journal of Alloys and Compounds, 662, 325– 338, 2016.
- [11] Gaikwad, V., Kumar, V., Jatti, S.: Optimization of material removal rate during electrical discharge machining of cryo-treated NiTi alloys using Taguchi's method, Journal of King Saud University – Engineering Sciences, 2016.
- [12] Urso, G. D, Merla, C.: Work piece And Electrode Influence On Micro-Edm Drilling Performance, PrecisionEngineering, 38, 4, 903–914, 2014.