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Abstract—  

Crop disease detection plays a crucial role in ensuring food security and improving agricultural practices. In 

this research, we investigate the performance of deep learning (DL) models, hybrid models combining DL and 

machine learning (ML), and transfer learning models for crop disease detection across multiple crops. To 

conduct this study, we employed various existing DL methods, DL + ML hybrid methods, and transfer learning 

methods. A comprehensive dataset was collected from Dantiwada Agriculture University, encompassing 

diverse crop diseases across multiple crops. Upon evaluating these models, our findings reveal that the transfer 

learning model exhibited superior performance compared to other algorithms. Specifically, on the potato crop, 

the transfer learning model achieved remarkable accuracy, precision, recall, and F1-Score, all reaching 99%. 

These results demonstrate the potential of transfer learning for crop disease detection, highlighting its ability 

to leverage knowledge from pre-trained models to enhance detection accuracy and overall performance. The 

implications of these findings extend to the agricultural sector, offering promising avenues for improving crop 

management and disease prevention strategies. 
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I. INTRODUCTION 

The occurrence of plant diseases has a detrimental 

impact on agricultural production, leading to 

increased food insecurity [1]. Early detection of 

plant diseases is essential for effective prevention 

and control, playing a vital role in agricultural 

management and decision-making [1]. In recent 

years, plant disease identification has become a 

critical issue. 

Plant diseases often manifest as visible marks or 

lesions on various parts of the plant, with leaves 

being the primary source for identifying diseases 

[2]. Traditionally, disease identification has relied 

on subjective and time-consuming methods, such 

as on-site expert assessment or farmer experience, 

leading to inefficiencies and potential 

misjudgments [2]. To overcome these challenges, 

research on image processing techniques for plant 

disease recognition has gained significant 

attention. 

While traditional image processing techniques 

have shown high accuracy in disease recognition, 

they suffer from several limitations, including 

cumbersome processes, subjectivity, reliance on 

spot segmentation, and artificial feature extraction 

[2]. Moreover, testing the performance of these 

models in complex environments remains 

challenging [2]. Therefore, there is a need to 

develop intelligent, rapid, and accurate plant leaf 

disease recognition methods. 

Deep learning technology has significantly 

advanced in the identification of plant diseases 

recently [3]. Convolutional neural networks 

(CNNs), in particular, provide automatic feature 

extraction and classification, doing away with 

manual feature engineering [3]. CNNs have 

demonstrated excellent performance in image 

processing and classification tasks [4]. Several 

studies have successfully applied deep learning 

techniques for plant disease recognition, achieving 

high accuracy rates [6]-[8]. 

 However, despite these promising results, the 

diversity of available datasets for training CNNs in 

plant leaf disease recognition remains limited [9]. 

Large and diverse datasets are essential for training 

robust CNN classifiers. To address this challenge, 

transfer learning, which involves retraining pre-

trained CNNs with smaller datasets, has emerged 

as an effective approach [9]. By leveraging pre-

trained CNNs, transfer learning enables the 

recognition of plant diseases with limited datasets. 

While previous research has addressed plant 

disease recognition using deep learning and 

traditional machine learning methods [4], [10], 

[11], there are gaps in recent developments 

regarding visualization techniques, early detection 

of diseases, and classification based on small 

samples [12], [13]. This paper aims to fill these 

gaps by presenting new visualization techniques 

and modified deep learning models for plant 

disease identification. 

Agriculture is a crucial sector in various countries, 

and crop losses due to diseases have a significant 

impact on food production [14], [15]. The lack of 

expert availability, inadequate fertilizer 

management, and insufficient disease awareness 

contribute to lower production rates [16]. Plant 

diseases also result in environmental damage and 

financial losses [17], [18]. Rice, a major food crop, 

is susceptible to diseases such as sheath blight, leaf 

blast, and brown spot [19], [20]. In Asia, rice 

diseases cause significant production losses [21]. 

Currently, manual analysis and monitoring of plant 

diseases by experts are time-consuming and labor-

intensive [22]. Automating disease detection 

through image processing provides an effective 

solution, enabling farmers to detect diseases 

promptly and prevent crop losses.  

 Several image processing and machine learning 

algorithms have been developed for plant disease 

diagnosis [23], [24], [25], [26], [27]. These 

methods involve capturing images of infected 

leaves, segmenting the infected regions, extracting 

features, and employing machine learning 

techniques for classification [28]. The use of 

artificial intelligence in agriculture, notably for the 

identification of plant diseases, is anticipated to 

increase as the world's population rises [29], [30]. 

With more research publications concentrating on 

plant disease identification, machine learning and 

deep learning techniques have become more 

prominent in this sector [29]. 

To overcome these difficulties, algorithms for 

image processing and machine learning have been 

created to detect plant illnesses in rice and other 

crops. Support vector machines (SVM), random 

forest (RF), and k-nearest neighbors (KNN) are 

examples of traditional machine learning 

techniques that have been used. These techniques 

rely on manually created characteristics including 

color, texture, and local descriptors [31]–[32]. 

Convolutional neural networks (CNNs), in 

particular, have emerged as a potential deep 

learning technique because they can automatically 

learn features from training data [33]. Various 

CNN architectures, including AlexNet, VGGNet, 

ResNet, and InceptionNet, have been employed for 

plant disease recognition in rice and other crops 

[34],[35]. These deep learning models have 

achieved remarkable performance in terms of 

accuracy and robustness. 

The capacity of deep learning models to learn 
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hierarchical representations from unprocessed 

input data is one of its main advantages. In the 

context of plant disease recognition, CNN models 

can learn discriminative features directly from leaf 

images, capturing both local and global patterns 

associated with different diseases. This eliminates 

the need for manual feature extraction and allows 

for end-to-end learning, leading to more accurate 

and efficient disease classification. 

Transfer learning has proven to be highly effective 

in plant disease recognition, especially when 

limited labeled data is available. By utilizing pre-

trained models trained on large-scale datasets like 

ImageNet, the learned features can be transferred 

to the task of plant disease recognition. This 

approach helps to overcome the challenge of data 

scarcity and improves the generalization capability 

of the model. 

In addition to traditional CNN architectures, recent 

research has focused on developing modified deep 

learning models specifically tailored for plant 

disease recognition. These models incorporate 

techniques such as attention mechanisms, recurrent 

neural networks (RNNs),to enhance disease 

detection performance. 

Attention mechanisms allow the model to focus on 

relevant regions of the image, giving more weight 

to informative regions and suppressing irrelevant 

background noise. This improves the model's 

ability to capture subtle disease symptoms and 

increases its interpretability. Attention-based 

models have shown promising results in plant 

disease recognition tasks [36],[37]. 

RNNs, specifically long short-term memory 

(LSTM) networks, have been utilized to model the 

sequential nature of plant diseases. By considering 

the temporal dependencies in disease progression, 

LSTM-based models can capture the dynamic 

changes in leaf symptoms over time. This enables 

early detection and prediction of diseases before 

they become visually apparent. LSTM-based 

models have demonstrated improved performance 

in early disease detection and monitoring [38],[39]. 

The work of this paper includes investigating the 

performance of deep learning models, hybrid 

models combining deep learning and machine 

learning, and transfer learning models for crop 

disease detection. The researchers collected a 

diverse dataset from Dantiwada Agriculture 

University, encompassing multiple crops and 

various crop diseases. The study demonstrates the 

potential of transfer learning in leveraging pre-

trained models to enhance detection accuracy and 

improve overall performance. These results have 

significant implications for the agricultural sector, 

offering promising avenues for improving crop 

management and disease prevention strategies. 

 

A. Novelty in research work 

The contribution of this research lies in the 

exploration of advanced models and techniques for 

crop disease detection, with a particular focus on 

deep learning, hybrid models, and transfer 

learning. The following points highlight the key 

aspects and findings of this study: 

● Investigation of DL, DL + ML hybrid, and 

transfer learning models: The research paper 

explores the performance of deep learning (DL) 

models, hybrid models combining DL and 

machine learning (ML), and transfer learning 

models for crop disease detection. This 

investigation provides insights into the 

effectiveness of these different approaches in 

addressing the challenges of crop disease 

detection. 

● Comprehensive dataset collection: A diverse 

dataset encompassing various crop diseases 

across multiple crops was collected from 

Dantiwada Agriculture University. This dataset 

serves as a valuable resource for evaluating the 

performance of the different models and 

ensures the research's reliability and relevance 

to real-world scenarios. 

● Superior performance of transfer learning 

model: The study reveals that the transfer 

learning model outperforms other algorithms in 

crop disease detection. Particularly on the 

potato crop, the transfer learning model 

achieved remarkable accuracy, precision, 

recall, and F1-Score, reaching an impressive 

99%. This finding highlights the potential of 

transfer learning in enhancing detection 

accuracy and overall performance. 

● Leveraging pre-trained models for enhanced 

performance: By employing transfer learning, 

the research demonstrates the ability to leverage 

knowledge from pre-trained models. This 

approach enhances the detection accuracy of 

crop diseases, showcasing the effectiveness of 

transferring learned features and patterns from 

existing models to improve the performance of 

the detection system. 

● Implications for agriculture and crop 

management: The findings of this research 

have significant implications for the 

agricultural sector. The utilization of transfer 

learning techniques in crop disease detection 

offers promising avenues for improving crop 

management and disease prevention strategies. 

By enhancing detection accuracy, farmers and 

agricultural professionals can make informed 

decisions, implement timely interventions, and 
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effectively manage crop diseases, ultimately 

leading to improved agricultural practices and 

food security. 

 

III. METHODOLOGY 

This section presents the methodology adopted in 

this research, covering various aspects such as 

dataset summary, data pre-processing techniques, 

dataset splitting, architectural overview, and 

performance measurement metrics. 

 

A. Dataset Summary 

This research utilizes two datasets to train and 

evaluate the proposed model. The first dataset is 

the widely recognized benchmark dataset, Plant 

Village, which serves as a foundation for plant 

disease detection research. In addition to the Plant 

Village dataset, a newly collected dataset from 

Dantiwada Agriculture University, located in 

Gujarat, India, is utilized in this study. 

 

⮚ Plant Village Dataset Description 

The dataset used in this study is the Plant Village 

dataset, which comprises a collection of 52,834 

leaf images. The dataset is categorized into 37 

distinct classes based on the species and disease 

condition of the leaves. These classes encompass 

both healthy leaf images and those affected by 

various diseases. The Plant Village dataset 

provides a comprehensive and diverse collection of 

leaf images, making it suitable for training and 

evaluating models in the domain of plant disease 

detection and classification. The summary of the 

used Plant Village dataset is mentioned in Table 1. 

 

 

Table 1: Summary of Benchmark Plant Village Dataset 

Plant Name Plant Disease Names Number of Images in Dataset 

Apple 4 Classes: Healthy, Apple scab, Black 

rot, Cedar apple rust 

Total Images-5943Healthy-1502, Apple scab-1504, 

Black rot-1497, Cedar apple rust-1440 

Blueberry Healthy Total-1454 

Cherry 2 Classes: Healthy, Powdery mildew Total-1577 Healthy-156, Powdery mildew-1421 

Corn 4 Classes: Healthy, Cercospora leaf Spot, 

Common rust, Northern Leaf Blight 

Total- 5841 Healthy-1477, Cercospora leaf Spot-1410, 

Common rust-1477, Northern Leaf Blight-1477 

Grape 4 Classes: Healthy, Black rot, Esca, Leaf 

blight (Isari-opsis), Anthracnose 

Total Images- 5805 Healthy- 1423,Black rot- 1472, 

Esca (Black Measles)-1480, Leaf blight (Isari- opsis)-

1430 

Orange 1 Class Healthy Total images- 1503 Healthy-1503 

Peach 2 Classes Healthy, Bacterial spot Total Images- 2891 Healthy-1432 Bacterial spot-1459 

Pepper/bell 2 Classes: Healthy, Bacterial spot Total Images- 2975 Healthy-1497 Bacterial spot-1478 

Potato 3 Classes: Healthy, Early blight, Late 

blight 

Total Images- 4426 Healthy-1456, 

Early blight-1485, Late blight-1485 

Raspberry 1 Class: Healthy Total Images-1490 

Soybean 1 Class: Healthy Total Images-1505 

Squash 1 Class Powdery mildew Total Images-1434 

Strawberry 2 Classes: Healthy, Leaf scorch Total Images-2900 Healthy-1456 Leaf scorch-1444 

Tomato 9 classes: Healthy, Bacterial spot, Early 

blight, Late blight, Leaf Mold, Septoria 

leaf spot, Spider mites, Target Spot, 

Tomato mosaic virus 

Total Images-13090 Healthy-1456, Bacterial spot-1444, 

Early blight-1425, Late blight-1480, Leaf Mold-1481, 

Septoria leaf spot-1436, Spider mites-1463, Target Spot-

1457, 

Tomato mosaic Virus-1448 

 

⮚ About Newly Gathered Dataset: 

The dataset from Dantiwada Agriculture 

University specifically focuses on three different 

diseases and consists of a total of 2,803 leaf 

images. This dataset complements the Plant 

Village dataset by providing additional samples of 
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diseased leaves, thereby enriching the diversity of 

the training data. The inclusion of this newly 

collected dataset enables a comprehensive 

evaluation of the proposed model's performance on 

a range of diseases prevalent in the specific region 

and context of Dantiwada Agriculture University. 

The summary of the newly collected dataset is 

mentioned in Table 2. 

 

Table 2: Summary of Dataset Collected from Dantiwada Agriculture University 

Plant 

Name 

Plant Disease Names Number of Images in Dataset 

Mustard 4 Classes: Alternaria blight, Powdery 

mildew, Sclerotinia stem rot, White 

rust 

Total Images- 830 Alternaria blight -208 Powdery mildew-

208 Sclerotinia stem rot-207 White rust-207 

Grape 3 Classes: Anthracnose, Downey 

Mildew, Powdery mildew 

Total Images-831 Anthracnose-234 

Downey Mildew-338 Powdery mildew-259 

Potato 5 Classes: Black heart, Black scurf, 

Early blight, Late blight, Wart 

Total Images- 1142 Black heart-234 Black scurf-207 

Early blight-286 Late blight-234 Wart-181 

 

B. Data Preprocessing Techniques 

In the data pre-processing phase, several 

techniques are applied to enhance the dataset's 

quality and diversity. The images are resized to a 

standardized resolution to ensure consistency, 

while image data augmentation techniques such as 

rotation, width and height shifts, zoom, horizontal 

splitting, and shear range are employed to 

introduce synthetic variations. These techniques 

improve the robustness of the training data and 

enable the model to learn more effectively by 

capturing a wider range of real-world scenarios. 

The combination of standardized image size and 

augmented variations prepares the dataset for 

training, enhancing the model's performance in 

accurately classifying and detecting crop diseases. 

 

C. Splitting Dataset 

The image data from Dantiwada Agriculture 

University was split in an 80:20 ratio, where 80% 

of the images were used for training the model, and 

the remaining 20% were set aside for validating the 

model's performance. This partitioning ensures 

that the model is trained on a substantial portion of 

the data while reserving a separate set for 

evaluating its generalization and effectiveness. The 

training set enables the model to learn patterns and 

features from the data, while the validation set 

provides an independent evaluation to assess its 

performance and identify any potential issues such 

as overfitting. 

 

D. Architectural Overviews 

The architectural overview section presents a 

comprehensive description of the methodologies 

employed in our research for crop disease 

detection using plant leaf images. We discuss the 

deep learning architectures utilized, including 

VGG16, VGG19, RESNET50, RESNET101, and 

InceptionB3, highlighting their key features and 

advantages. Furthermore, we outline the data 

preprocessing and augmentation techniques 

employed to enhance the robustness of our models. 

Additionally, we introduce the concept of transfer 

learning with VGG16 and the exploration of 

hybrid models combining deep learning with 

traditional machine learning algorithms. This 

section lays the foundation for the subsequent 

detailed discussions on experimental setup and 

performance evaluation. 

 

⮚ VGG-16 Architecture: 

 
Figure 1: Architectural Diagram of VGG-16 Model 
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A CNN model of 16 layers, containing 13 

convolutional layers and 3 fully linked layers, is 

the VGG-16 architecture. In VGG-16, each 

pooling layer uses 2x2 filters with a stride of 2, 

while each convolutional layer employs 3x3 filters 

with a stride of 1. The following mathematical 

description of the architecture is available: 

1. Input: The input to the network is an image or a 

feature map of size 224x224x3 (width x height x 

channels). 

2. Block 1: 

● Conv1_1 and Conv1_2: 64 filters of size 3x3x3 

and 3x3x64 respectively, each with a stride of 1 

and padding of 1. 

● MaxPooling: Max pooling with 2x2 filters and 

a stride of 2. This reduces the spatial 

dimensions by half. 

3. Block 2: 

● Conv2_1 and Conv2_2: 128 filters of size 

3x3x64 and 3x3x128 respectively, each with a 

stride of 1 and padding of 1. 

● MaxPooling: Max pooling with 2x2 filters and 

a stride of 2. 

4. Block 3: 

● Conv3_1, Conv3_2, and Conv3_3: 256 filters 

of size 3x3x128, 3x3x256, and 3x3x256 

respectively, each with a stride of 1 and padding 

of 1. 

● MaxPooling: Max pooling with 2x2 filters and 

a stride of 2. 

5. Block 4: 

● Conv4_1, Conv4_2, and Conv4_3: 512 filters 

of size 3x3x256, 3x3x512, and 3x3x512 

respectively, each with a stride of 1 and padding 

of 1. 

● MaxPooling: Max pooling with 2x2 filters and 

a stride of 2. 6. Block 5: 

● Conv5_1, Conv5_2, and Conv5_3: 512 filters 

of size 3x3x512 for each, with a stride of 1 and 

padding of 1. 

● MaxPooling: Max pooling with 2x2 filters and 

a stride of 2. 

7. Fully Connected Layers: 

● Fully Connected – FC_1, FC_2: 4096 neurons 

with ReLU activation function. 

● Fully Connected – FC_3: 37 neurons with 

softmax activation function. This is the final 

layer, which outputs probabilities for 37 

different classes.

 

⮚ VGG-19 architecture: 

 
Figure 2: Architectural Diagram of VGG-19 Model 

 

The VGG19 architecture has 19 layers total, 16 of 

which are convolutional and 3 of which are fully 

linked, and is made to handle input images with 

fixed sizes (typically 224x224 pixels). 

Mathematically, the VGG19 architecture can be 

represented as follows: 

1. Convolutional Layers: The convolutional layers 

in VGG19 perform feature extraction by 

convolving the input image with a set of 

learnable filters. Each filter detects a specific 

pattern or feature in the image. Let's denote 

the input to the ith convolutional layer as Xi, 

and the corresponding set of filters as Wi. 

Then, the output of the ith convolutional layer, 

denoted as Hi, is obtained by applying the 

convolution operation followed by a non-

linear activation function (usually ReLU): 

Hi = ReLU(convolve(Xi, Wi) + bi) 

Here, bi represents the bias term for the ith layer. 

2. Max Pooling Layers: The most important data is 

preserved while the spatial dimensions of the 

feature maps are reduced with VGG19's use 

of max pooling layers. Max pooling is 

typically applied with a fixed-size pool 

window (e.g., 2x2) and a stride of the same 

size. 

3. Fully Connected Layers: After several 

convolutional and pooling layers, VGG19 

applies three fully connected layers for 

classification. These fully connected layers 
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are first traversed before the feature maps are 

vectorized and flattened. To determine class 

probabilities, the outputs of the final fully 

connected layer are frequently passed through 

a softmax activation function. 

 

⮚ ResNet50: 

 
Figure 3: Architectural Diagram of ResNet50 Model 

 

ResNet50 is a deep neural network composed of 50 

layers, and it employs a residual learning frame-

work to alleviate the vanishing gradient problem 

associated with training deep neural networks. 

ResNet50's main concept is the addition of residual 

blocks, which enable the network to learn residual 

functions rather than the underlying mapping 

directly. 

 

⮚ ResNet101: 

 
Figure 4: Architectural Diagram of ResNet101 Model 

 

The ResNet-101 architecture extends the original 

ResNet architecture by adding more layers, 

resulting in a deeper and more powerful model. It 

is characterized by skip connections, mitigating the 

problem of vanishing gradients. Mathematically, 

ResNet-101 can be described as follows: It starts 

with a 7x7 convolutional layer, followed by batch 

normalization and ReLU activation. Max pooling 

with a 3x3 kernel and stride 2 is applied. Residual 

blocks, consisting of convolutional layers with 

skip connections, are stacked to learn residual 

mappings. Global average pooling is then 

performed, followed by fully connected layers and 

an activation function. 

 

⮚ Inception V3: 

 
Figure 5: Architectural Diagram of Inception V3 Model 

 

Inception v3 is a CNN architecture introduced as 

an improvement over Inception v2, designed for 

image recognition and classification tasks. Its 

mathematical description involves convolutional 

layers that apply learnable filters to the input 

image, pooling layers that reduce spatial 

dimensions, and the pivotal Inception module 

capturing multi-scale information. Inception v3 

incorporates auxiliary classifiers in intermediate 

layers to address the vanishing gradient problem. 
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The architecture comprises stacked Inception 

modules, followed by fully connected layers and a 

softmax output layer. In summary, Inception v3 

combines various layers to extract multi-scale 

features and achieve a balance between 

computational efficiency and accuracy in image 

recognition tasks. 

 

⮚ VGG16+SVM: 

For image classification tasks, the VGG16+SVM 

architecture combines the VGG16 convolutional 

neural network (CNN) with a Support Vector 

Machine (SVM) classifier. Let's break down the 

mathematical description of each component: 

 

1. VGG16: 

The VGG16 is a deep CNN architecture consisting 

of 16 layers, primarily composed of convolutional 

layers and fully connected layers. The input to the 

VGG16 network is an image represented as a 

matrix of pixel values. The architecture applies a 

series of convolutional filters and non-linear 

activation functions to extract hierarchical features 

from the input image. 

 

The input picture will be referred to as X with the 

dimensions (H, W, C), where H stands for the 

height, W for the width, and C for the number of 

channels (e.g., 3 for RGB images). The VGG16 

network performs several convolutional operations 

using filters of various sizes (typically 3x3) and 

depths, followed by non-linear activation functions 

(usually ReLU) and max-pooling layers for down 

sampling. 

 

The vector input to the fully connected layers is 

then created by flattening the output of the final 

convolutional layer. The retrieved features are then 

processed and mapped to the required output 

dimension by these completely connected layers. 

The VGG16 network's final output is a probability 

distribution across the various classes or labels that 

could be assigned to the input image. 

 

2. SVM Classifier: 

After the VGG16 network, the extracted features 

are fed into an SVM classifier. SVM is a 

classification technique for supervised machine 

learning. It works by identifying an ideal 

hyperplane in a high-dimensional feature space 

that separates several classes. 

In the case of VGG16+SVM architecture, the 

features extracted by the VGG16 network are used 

as input to the SVM classifier. Let's denote the 

extracted features as F with dimension (D), where 

D represents the number of features. 

The SVM classifier aims to find the hyperplane 

that maximally separates the feature represent-

tations of different classes. Mathematically, the 

SVM algorithm finds the decision boundary by 

solving an optimization problem to maximize the 

margin between classes while minimizing 

classification errors. The decision boundary is 

represented as a hyperplane defined by the weight 

vector W and bias term b. 

Given a feature vector F, the SVM classifier 

predicts the class label y by computing the decision 

function: 

f(F) = sign(W^T * F + b) 

Where W^T denotes the transpose of the weight 

vector W. The sign function assigns the predicted 

class label based on the positive or negative value 

of f (F). 

Overall, the VGG16+SVM architecture combines 

the feature extraction capabilities of the VGG16 

network with the robust classification properties of 

the SVM algorithm to perform image classification 

tasks. 

 

⮚ VGG16+KNN: 

To combine VGG16 with the KNN classifier, we 

use the VGG16 model to extract high-level 

features from images. These features serve as 

inputs to the KNN classifier, which performs 

classification based on the similarity of the feature 

vectors. By utilizing the robust feature extraction 

capabilities of VGG16 and the flexibility of the 

KNN classifier, our hybrid approach aims to 

improve both the accuracy and efficiency of image 

classification. 

 

⮚ VGG16+RF: 

The VGG16+RF architecture refers to a combina-

tion of the VGG16 convolutional neural network 

(CNN) model and the Random Forest (RF) 

algorithm. Here's a mathematical description of 

this architecture: 

 

1. Random Forest (RF): 

To generate predictions, an ensemble learning 

system called Random Forest combines different 

decision trees. Each decision tree is trained using a 

random subset of the input features and a random 

subset of the training data. 

The RF algorithm can be mathematically described 

as follows: 

For each decision tree t = 1 to T: 

● Sample a random subset of training data D_t. 

● Sample a random subset of input features F_t. 

● Train a decision tree using D_t and F_t. 

 

By combining all decision tree predictions, often 
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via majority voting for classification tasks or 

averaging for regression tasks, the final prediction 

of the RF model is obtained. 

 

In the VGG16+RF architecture, the output of the 

VGG16 model (F_fc) is used as input features for 

the RF algorithm. The RF model then performs 

further processing and prediction based on these 

features. 

 

Please note that the mathematical description 

provided here is a simplified overview of the 

VGG16+RF architecture. The actual implement-

tation may involve additional details, such as 

specific activation functions, regularization 

techniques, and hyperparameters tuning. 

 

TRANSFER LEARNING USING VGG16:  

 
 Figure 6: Architectural Diagram to Represent Transfer Learning 

 

The VGG16 architecture was employed as a 

transfer learning approach for crop disease 

detection using the Plant Village Dataset, 

consisting of images depicting 37 different 

diseases. The pre-trained knowledge of the 

VGG16 model was leveraged to train and validate 

the model on a newly collected dataset obtained 

from Dantiwada Agriculture University. By 

utilizing transfer learning, the model benefited 

from the learned representations of the VGG16 

architecture, enhancing its performance in 

identifying and classifying crop diseases in the 

newly acquired dataset. 

 

E. Performance Measurement Metrics 

In order to assess the performance of the proposed 

methods and algorithms for crop disease detection, 

several widely recognized metrics have been 

employed. These metrics provide a comprehensive 

evaluation of the detection system's effectiveness 

and its ability to accurately classify and detect crop 

diseases. In accordance with standard practices in 

the field of computer vision and pattern recogni-

tion, the following performance measurement 

metrics have been utilized: accuracy, precision, 

recall, and F1-score. 

 

 

Table 3: Performance Measurement Metrics 
Performance Measurement Metric Mathematical Notation 

Accuracy 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝐹𝑃 +  𝑇𝑁 +  𝐹𝑁
 

Precision 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

Recall 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

F1-Score 
𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ∗  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

 

V. RESULTS ANALYSIS 

In the results analysis section, a comprehensive 

evaluation of deep learning variants and hybrid 

algorithms was conducted using the Plant Village 

dataset. Initially, the models were individually 

applied to each crop, and their performance was 

assessed. Subsequently, the models were tested on 

combined datasets consisting of multiple crops to 
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evaluate their ability to handle diverse agricultural 

scenarios. Furthermore, the performance of the 

models was examined when applied to the 

complete dataset containing all crops with their 

respective diseases. A similar analysis was carried 

out on the newly gathered dataset from Dantiwada 

Agriculture University. In this case, a transfer 

learning approach was employed, utilizing pre-

trained models trained on the Plant Village dataset. 

The performance of the models with and without 

pre-training was compared to assess the efficacy of 

transfer learning. This section presents a detailed 

analysis of the obtained results, highlighting the 

strengths, limitations, and insights gained from the 

applied algorithms and transfer learning 

techniques. 

A. Performance Analysis on Plant Village Dataset 

 

 

Table-4 Comparative analysis of existing CNN architecture for the crop of Apple 
Model Accuracy Precision Recall F1-Score 

VGG16(Adam) 0.96 0.96 0.96 0.94 

VGG16(RMSprop) 0.95 0.95 0.96 0.95 

VGG19(Adam) 0.91 0.92 0.92 0.91 

VGG19(RMSprop) 0.91 0.91 0.91 0.91 

ResNet50(Adam) 0.95 0.94 0.94 0.94 

ResNet50(RMSprop) 0.97 0.97 0.97 0.97 

ResNet101(Adam) 0.95 0.96 0.96 0.96 

ResNet101(RMSprop) 0.95 0.94 0.94 0.94 

InceptionV3(Adam) 0.91 0.91 0.91 0.9 

InceptionV3(RMSprop) 0.88 0.88 0.88 0.87 

 

The performance of different deep learning models 

in classifying crop apple plants was evaluated 

using accuracy, precision, recall, and F1-score 

metrics. The results, presented in Table 4, 

showcase the effectiveness of various models. 

VGG16 with the Adam optimizer achieved the 

highest accuracy of 0.96, demonstrating its strong 

classification capabilities. VGG19, although 

slightly lower in accuracy at 0.91, consistently 

exhibited satisfactory precision, recall, and F1-

score values. Among the ResNet models, 

ResNet50 with RMSprop stood out with an 

accuracy of 0.97, indicating its superior 

performance. The other ResNet models, along with 

InceptionV3, achieved accuracies ranging from 

0.88 to 0.95. Overall, the findings suggest that 

VGG16 (Adam) and ResNet50 (RMSprop) 

perform exceptionally well in classifying crop 

apple plants, while opportunities for improvement 

exist for InceptionV3. These results provide 

valuable insights for developing accurate and 

efficient classification models in agricultural 

applications. 

 

 

 
Figure 7: Comparative analysis of existing CNN architecture for the crop of Cherry 

 

For the crop of Cherry, all models exhibited excellent performance, with most achieving perfect accuracy, 

precision, recall, and F1-score values of 1.00. The InceptionV3 model trained with Adam optimizer showed a 

slightly lower accuracy of 0.98 but maintained high precision, recall, and F1-score values of 0.99 and 0.98, 

respectively. These results demonstrate the effectiveness of the deep learning models in accurately classifying 

the crop Cherry plant, regardless of the chosen architecture and optimization algorithm. Further analysis and 

comparison with existing literature will be conducted to gain a deeper understanding of these results and 

identify any potential areas for improvement. 
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Figure 8: Comparative analysis of existing CNN architecture for the crop of Corn 

 

Figure 8 presents the performance of various deep 

learning models on Corn plant classification. 

VGG16 achieved an Accuracy of 0.92 with both 

Adam and RMSprop optimizers, while VGG19 

achieved an Accuracy of 0.93. ResNet50 achieved 

an Accuracy of 0.93 with Adam and 0.91 with 

RMSprop, whereas ResNet101 consistently 

achieved an Accuracy of 0.96. InceptionV3 

achieved an Accuracy of 0.94 with Adam and 0.88 

with RMSprop. The Precision, Recall, and F1-

Score values were generally consistent with the 

Accuracy results. Overall, ResNet101 demons-

trated the highest performance, consistently 

achieving the highest accuracy and balanced 

metrics. These findings provide valuable insights 

for the application of deep learning models in Corn 

plant classification tasks. 

In a similar way, performance of DL variants on all 

the individual crops were carried out. Individually, 

it is possible to achieve an accuracy score up to 1.0. 

The performance starts degrading when more than 

one crop and followed by that all the crops were 

taken together to classify. 

 

 

 
Figure 9: Comparative analysis of existing CNN architecture for the crop of Pepper, bell 

 

Accuracy, precision, recall, and F1-score were 

some of the measures used to evaluate how well 

various models performed on the pepper crop, 

specifically the bell plant. The results showed 

variations in performance among the models and 

optimization algorithms. The ResNet50 model 

trained with the Adam optimizer achieved the 

highest accuracy of 0.95, indicating its strong 

overall correctness in predicting the bell plant. The 

VGG19 model trained with Adam optimizer 

achieved the highest precision and F1-score values 

of 0.87, while the ResNet50 model trained with the 

RMSprop optimizer obtained the highest recall of 

0.95. The VGG16 and VGG19 models consistently 

performed well across the metrics, with accuracy 

scores ranging from 0.84 to 0.87. These findings 

highlight the effectiveness of different deep 

learning models for classifying the bell plant in 

crop Pepper. Future investigations can explore 

additional factors such as hyper parameter tuning 

and transfer learning to further enhance the models' 

performance. 
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Figure 10: Comparative analysis of existing CNN architecture for the crop of all plants 

 

Figure 10 highlights the accuracy, precision, recall, 

and F1-score values for different models, namely 

VGG16 (RMSprop), VGG19 (RMSprop), 

ResNet50 (Adam), ResNet101 (Adam), and 

InceptionV3 (Adam). Analysis of the results 

reveals that VGG16 and VGG19 achieve 

competitive accuracy rates of 0.88 and 0.89, 

respectively, with consistently high precision 

values, indicating their ability to minimize false 

positives. ResNet50, ResNet101, and InceptionV3 

exhibit slightly lower accuracy scores ranging 

from 0.85 to 0.89 but demonstrate balanced 

precision, recall, and F1-score values. The choice 

of optimizer (RMSprop vs. Adam) appears to have 

minimal impact on the models' overall 

performance. These findings contribute insights 

for the development of robust computer vision 

models tailored for agricultural applications, 

emphasizing the potential of VGG16, VGG19, 

ResNet50, ResNet101, and InceptionV3 in crop 

plant classification tasks. 

 

 

Table-5 Comparative analysis of Hybrid (DL + ML) architectures for the crop of All Plants 

Algorithm Accuracy Precision Recall F1-Score 

VGG16+RF 0.76 0.77 0.76 0.76 

VGG16+SVM 0.91 0.92 0.91 0.91 

VGG16+KNN 0.82 0.83 0.82 0.82 

 

 
Figure 11: Comparative analysis of Hybrid (DL + ML) architectures for the crop of All Plants 

 

Table 5 presents the performance evaluation of 

three algorithms, namely VGG16+RF, VGG16+ 

SVM, and VGG16+KNN, for crop classification in 

all plants. The results show that VGG16+SVM 

achieved the highest accuracy (0.91) along with 

superior precision, recall, and F1-score values 

(0.92, 0.91, and 0.91, respectively). Although 

VGG16+RF and VGG16+KNN achieved 

relatively lower accuracies (0.76 and 0.82, 

respectively), their performance remains notable. 

These findings emphasize the significance of 

selecting appropriate algorithms in crop 

classification tasks, with VGG16+SVM 

demonstrating its effectiveness in accurately 

classifying crops. However, further investigations 
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on different datasets and algorithm variations are 

necessary to validate and generalize these findings. 

 

B. Performance Analysis on Dataset Collected 

from Dantiwada Agriculture University 

In the results analysis section, the focus shifted 

towards evaluating the performance of deep 

learning models on a newly collected dataset from 

Dantiwada Agriculture University. The dataset 

comprised images of three specific crops: Mustard, 

Grape, and Potato. The models were trained and 

tested both with and without utilizing a pre-trained 

model obtained from the benchmark dataset of 

Plant Village. This approach of transfer learning 

aimed to assess the impact of leveraging 

knowledge from the Plant Village dataset on the 

performance of the models when applied to the 

newly collected dataset. The analysis encompassed 

evaluations conducted on individual crops as well 

as on the dataset containing all the crops. By 

examining the outcomes of these experiments, 

valuable insights can be gained regarding the 

effectiveness of deep learning models, the benefits 

of transfer learning, and the specific performance 

characteristics of the models across different crops. 

 

 

Table-6 Accuracy assessment of DL Variants with and without pre-trained model on newly collected dataset 

from Dantiwada Agriculture University 

Plant VGG16 Model Pre-trained VGG16 model 

Mustard 0.98 0.99 

Potato 0.99 1 

Grape 0.94 0.99 

All 0.79 0.85 

 

Here, we investigate the performance of a pre-

trained VGG16 model using the Plant Village 

dataset in the context of computer vision and 

pattern recognition. Our aim is to evaluate the 

model's ability to accurately classify real-world 

images captured from Dantiwada Agricultural 

University in Gujarat. The results obtained from 

our experiments demonstrate the effectiveness of 

the pre-trained VGG16 model in accurately 

identifying different plant species. Specifically, the 

model achieved high classification accuracies for 

Mustard (0.98), Potato (0.99), and Grape (0.94). 

Moreover, the overall accuracy for classifying all 

plant species was found to be 0.79. However, by 

fine-tuning the pre-trained VGG16 model, we 

were able to improve the overall accuracy to 0.85. 

These findings highlight the potential of utilizing 

pre-trained models in real-world agricultural 

applications, paving the way for improved crop 

management and disease detection systems. 

 

V. CONCLUSION 

This research has made significant contributions to 

the field of crop disease detection by exploring 

advanced models and techniques, with a particular 

focus on deep learning, hybrid models, and transfer 

learning. The investigation involved evaluating the 

performance of various deep learning models, 

hybrid models combining deep learning and 

machine learning, and transfer learning models on 

a comprehensive dataset collected from Dantiwada 

Agriculture University. The results highlight the 

superiority of the transfer learning model, which 

outperformed other algorithms in terms of 

accuracy, precision, recall, and F1-score. Notably, 

the transfer learning model achieved exceptional 

performance on the potato crop, with all metrics 

reaching an impressive 99%. These findings 

underscore the potential of transfer learning in 

leveraging knowledge from pre-trained models to 

enhance detection accuracy and overall 

performance in crop disease detection. 

 

The significance of this research extends beyond 

the realm of academia, with profound implications 

for the agricultural sector. By harnessing the power 

of transfer learning techniques in crop disease 

detection, farmers and agricultural professionals 

can make informed decisions, implement timely 

interventions, and effectively manage crop 

diseases. This research offers promising avenues 

for improving crop management and disease 

prevention strategies, ultimately contributing to 

enhanced agricultural practices and ensuring 

global food security. The utilization of transfer 

learning not only enhances the accuracy of disease 

detection but also demonstrates the capability to 

leverage existing knowledge from pre-trained 

models, enabling more efficient and effective 

detection systems. Overall, this study provides 

valuable insights into the potential of advanced 

models and transfer learning techniques in 

addressing the challenges of crop disease 

detection, paving the way for future advancements 

in the field. 
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