

EFFECTS OF DIFFERENT REACTION CONDITIONS ON THE SYNTHESIS OF BENZYL ACETATE

Lu Hongjie^[a] and Linda Zhang^[b]

Keywords: Effect; reaction condition; benzyl acetate; synthesis

Effects of different reaction conditions such as different water carrying agents, the amount of water carrying agent, the calcination temperature, the calcination time and the amount of catalysts, the reaction time, the molar ratio of acetic acid to benzyl alcohol, the reaction temperature, the amount and type of catalyst (tris(trimethylsilylmethyl)tin chloride, S₂O₈²-Fe₂O₃-CoO, N-methylpyrrolidone hydrosulfate, FeCl₃(46 %)/carbon, SO₄²-ZrO₂-Nd₂O₃, strong acid cation exchange resin loaded Fe³⁺ and the catalyst drying temperature) on the synthesis of benzyl acetate from benzyl alcohol and acetic acid are discussed.

* Corresponding Author

Fax: 86-24-56860869

E-Mail: lindazhang362@hotmail.com

[a] Liaoning Shihua University, Fushun, Liaoning, P.R. China.

[b] SAIT Polytechnic, Calgary AB, Canada.

INTRODUCTION

Benzyl acetate is a colourless oily liquid. It is naturally found in many flowers such as jasmine, ylang-ylang and tobira. Its molecular formula, melting point, boiling point, relative density (16 °C), refractive index n_D^{20} and flash point are $C_9H_{10}O_2$, 50 °C, 213 °C, 1.057, 1.5232 and 102 °C, respectively. Benzyl acetate is hard to dissolve in water, but it is completely miscible in organic solvents. ¹

Due to floral fragrance and low price, it is widely used in different areas such as soap class essence and other industrial essence, etc. ² Benzyl alcohol with concentrated sulphuric acid as a catalyst reacts with acetic acid to synthesise benzyl acetate. Concentrated sulphuric acid has a lot of disadvantages also except several advantages, such as long reaction time, low yield and purity of benzyl acetate.

Large amount of waste water is discharged to cause the problem of environmental pollution and equipments are seriously corroded at the same time. ³

The overview of its synthetic methods has just been reviewed. 4 In the present paper, usability of different catalysts such as tris(trimethylsilylmethyl) tin chloride, $S_2O_8^{2-}$ - Fe_2O_3- CoO, N-methylpyrrolidone hydrosulfate, 46% FeCl $_3$ /carbon, SO_4^{2-} -ZrO $_2$ -Nd $_2O_3$ and strong acid cation exchange resin loaded Fe^{3+} have been discussed. The effects of different reaction conditions, such as different water carrying agents, the amount of water carrying agent, the calcination temperature, the calcination time, the amount of catalysts, the reaction time, the molar ratio of acetic acid to benzyl alcohol, the reaction temperature, the amount of Fe^{3+} loaded and the catalyst drying temperature have also been reviewed.

DISCUSSION

Effect of different water carrying agents on the yield of benzyl acetate by addition of tris(trimethylsilylmethyl)tin chloride as the catalyst.

Fushan⁵ described the synthesis tris(trimethylsilyl methyl) tin chloride and benzyl acetate and studied the effects of different reaction conditions on the yield of benzyl acetate using tris(trimethylsilylmethyl) tin chloride as the catalyst. The molar ratio of acetic acid and benzyl alcohol (2.0: 1.0) and the weight ratio of tris(trimethylsilylmethyl) tin chloride to benzyl alcohol (1.0 %) and the reaction time (2.5 hr) were kept constants while studying the effects of different water carrying agents on the yield of benzyl acetate. Table 1 showed that toluene was one of the best water carrying agents. The reaction time decreased and the yield of benzyl acetate improved because the esterification reaction was a reversible reaction and reactive balance was beneficial to the esterification reaction with addition of water carrying agents. Furthermore, the boiling point of toluene (110 °C) was more than that of water (100 °C), so it effectively improved the yield of benzyl acetate.

Table 1. Effects of different water carrying agents on the yield of benzyl acetate

Water carrying	Cyclohexane	Benzene	Toluene
agents			
Yield of	75.3	81.6	87.8
BzOAc, %			

Effect of the amount of water carrying agents on the yield of benzyl acetate by addition of tris(trimethylsilylmethyl) tin chloride as the catalyst

Chen Fushan⁵ described effects of the amount of water carrying agents (toluene) on the yield of benzyl acetate under the condition. When the molar ratio of acetic acid and benzyl alcohol (2.0 : 1.0) and the weight ratio of tris(trimethylsilyl methyl) tin chloride to benzyl alcohol (1.0 %) and the reaction time (2.5 hr) were kept constants. The experimental results presented in Table 2 show that

the yield of benzyl acetate first increased and then decreased with an increase in the amount of toluene. It was noticed that the maximum yield of benzyl acetate 87.8 % was attained when the amount of toluene was 80 % of benzyl alcohol weight.

Table 2. The relationship between the amount of toluene and the yield of benzyl acetate

Weight ratio of toluene	40	60	80	100	120
to benzyl alcohol, %					
Yield of BzOAc, %	65.7	73.5	87.8	85.1	81.9

Effect of the calcination temperature on the yield of benzyl acetate by addition of $S_2O_8^{2-}$ - Fe_2O_3 - CoO as the catalyst

Zhang Yingjun⁶ used S₂O₈²⁻ - Fe₂O₃ - CoO as the catalyst while the molar ratio of acetic acid: benzyl alcohol: water carrying (cyclohexane) (2.0: 3.0: 0.093) and the reaction time (2.5 hr) were kept constants. Effects of the calcination temperature, Table 3, indicated that the yield of benzyl acetate first increased and then decreased with an increase in the calcination temperature. When the calcination temperature was lower than 500 °C, it was not enough to get rid of water and (NH₄)₂S₂O₈ from this reaction system, so S₂O₈²- on the surface of the catalyst did not combine with metallic oxides to become a strong acid centre. On the other hand, when the calcination temperature was higher than 500 °C, (NH₄)₂S₂O₈ decomposed to release SO₂. The catalytic activity decreased due to loss of S₂O₈²- from the surface of the catalyst and the specific surface area decreased. It was observed that the maximum yield of benzyl acetate reached 94.1 % when the calcination temperature was 500 °C.

Table 3. Effects of the calcination temperature on the yield of benzyl acetate.

Calcination temp., °C	300	400	500	600
Yield of BzOAc, %	76.8	88.9	94.1	89.0

Effect of the calcination time on the yield of benzyl acetate by addition of $S_2O_8^2$ -Fe₂O₃-CoO as the catalyst

Zhang Yingjun⁶ also studied the effects of the calcination time on the yield of benzyl acetate by keeping the molar ratio of acetic acid to benzyl alcohol to water carrying (cyclohexane) at 2.0:3.0:0.093 and the reaction time, 2.5 hr, constant. The experimental results, Table 4, show that the yield of benzyl acetate first increased and then decreased with an increase in the calcination time. The reason is that when the calcination time was less than 2.5 hr, the catalyst had no time to become the superacid. On the other hand, when the calcination time was more than 2.5 hr, its catalyst construction may have collapsed and its specific surface area had decreased. It was noticed that the maximum yield of benzyl acetate was 95.7 % when the calcination time was 2.5 hr.

Table 4. The effect of the calcination time on the yield of benzyl acetate

Calcination time, h	1.0	1.5	2.0	2.5	3.0
Yield of BzOAc, %	70.1	78.9	87.9	95.7	94.3

Effect of the added amount of N-methylpyrrolidone hydrosulfate as the catalyst on the yield of benzyl acetate

Zhou Beilei 7 replaced concentrated sulfuric acid with ionic liquids (N-methylpyrrolidone hydrosulfate) as catalysts to synthesise benzyl acetate. The reaction time (1 hr), the reaction temperature (110 °C) and the molar ratio of acetic acid to benzyl alcohol (1.4 : 1.0) were kept constants. The results, Table 5, show that the yield of benzyl acetate increased with increasing amount of N-methylpyrrolidone hydrosulfate. When the amount of N-methylpyrrolidone hydrosulfate was 5.0 % of benzyl alcohol molar, the yield of benzyl acetate was maximum at 63.8 %.

Table 5. The effect of the amount of N-methylpyrrolidone hydrosulfate on the yield of benzyl acetate

Molar ratio of N-methylpyrrolidone	Yields of BzOAc
hydrosulfate to benzyl alcohol (%)	(%)
0.1	53.2
0.5	60.5
1.0	62.8
1.5	63.0
2.0	63.3
2.5	63.5
5.0	63.8

Effect of the reaction time on the yield of benzyl acetate by addition of the weight ratio of FeCl₃ to carbon (46 %) as the catalyst

Yu Junfeng⁸ described the synthesis of benzyl acetate and studied the effects of different reaction conditions on the yield of benzyl acetate using FeCl₃/carbon as the catalyst. The molar ratio of acetic acid and benzyl alcohol (1.0:1.8) and the weight ratio of FeCl₃/carbon to benzyl alcohol (10.29 %) and the reaction time (2.0 hr) were kept constants while studying the effects of the reaction time on the yield of benzyl acetate. Table 6 showed that the yield of benzyl acetate first increased and then decreased with an increase in the reaction time. It was observed that the maximum yield of benzyl acetate 87.8 % was attained when the reaction time was 2 hr.

Table 6. The effect of the reaction time on the yield of BzOAc

Reaction time, h	0.5	1.0	1.5	2.0	2.5
Yield of	68.3	77.4	84.2	89.1	88.6
BzOAc, %					

DOI: 10.17628/ECB.2013.2.348

Effect of the molar ratio of acetic acid to benzyl alcohol on the yield of benzyl acetate by addition of SO_4^2 -ZrO₂-Nd₂O₃ as the catalyst

Yang Yiwen⁹ described the effects of the molar ratio of acetic acid to benzyl alcohol on the yield of benzyl acetate under the condition when the reaction temperature (120 °C) and the weight ratio of $SO_4^{2^-}$ - ZrO_2 - Nd_2O_3 to benzyl alcohol (1.0 %) and the reaction time (5.0 hr) were kept constants. The experimental results presented in Table 7 show that the yield of benzyl acetate first increased and then decreased with an increase in the molar ratio of acetic acid to benzyl alcohol. It was noticed that the maximum yield of benzyl acetate 92.0 % was attained when the molar ratio of acetic acid to benzyl alcohol was 5.0 : 1.0.

Table 7. The relationship between the molar ratio of acetic acid to benzyl alcohol and the yield of benzyl acetate

AcOH/BzOH	1.0	2.	3	4	50	6
molar ratio						
Yield of	68.9	86.7	87.2	90.1	92.0	90.1
BzOAc, %						

Effects of the reaction temperature on the yield of benzyl acetate by addition of SO_4^{2-} - ZrO_2 - Nd_2O_3 as the catalyst

Yang Yiwen⁹ used SO_4^{2-} - ZrO_2 - Nd_2O_3 as a catalyst while the molar ratio of acetic acid to benzyl alcohol (5.0:1.0), the reaction time (5 hr) and the weight ratio of SO_4^{2-} - ZrO_2 - Nd_2O_3 to benzyl alcohol (6 %) were kept constants. Effects of the reaction temperature on the yields of benzyl acetate, Table 8, indicated that the yield of benzyl acetate first increased and then decreased with an increase in the reaction temperature. It was observed that the maximum yield of benzyl acetate reached 86.7 % when the reaction temperature was 120 °C.

Table 8. The effects of the reaction temperature on the yield of benzyl acetate

T, °C	100	110	120	130	140	150
Yield of	71.5	83.8	86.7	81.5	86.0	82.8
BzOAc, %						

Effect of the amount of Fe^{3+} loaded on the yield of benzyl acetate by addition of strong acid cation exchange resin loaded Fe^{3+} as the catalyst

Jiang Hongzhi¹⁰ studied effects of the amount of Fe³⁺ loaded on the yield of benzyl acetate by keeping the molar ratio of acetic acid to benzyl alcohol (1.0 : 1.0), the reaction time (3.3 hr), the reaction temperature (80 °C) and the weight ratio of strong acid cation exchange resin loaded Fe³⁺ to benzyl alcohol constant (10.0 %). The experimental results, Table 9, show that the yield of benzyl acetate first increased and then decreased with an increase in the amount of Fe³⁺ loaded. It was observed

that the maximum yield of benzyl acetate 52.52 % was attained when the amount of Fe³⁺ loaded was 0.3656.

Table 9. The effect of the amount of Fe^{3+} loaded on the yield of benzyl acetate

Fe ³⁺ amount before load-	Loading time, h	The amount of Fe ³⁺ load-	Yields of BzOAc, %
ing mmol L ⁻¹		ed, mmol L ⁻¹	
13.44	0.083	0.2222	50.57
22.30	0.083	0.3656	52.52
23.61	0.083	0.4233	51.70
52.73	0.083	0.7198	47.55
78.13	0.083	0.8344	43.53
150.08	0.083	1.006	43.36

Effects of the catalyst drying temperature on the yield of benzyl acetate by addition of strong acid cation exchange resin loaded Fe³⁺ as the catalyst

Jiang Hongzhi¹⁰ also studied the effects of the catalyst drying temperature on the yield of benzyl acetate while the molar ratio of acetic acid to benzyl alcohol (1.0:1.0), the reaction time (3.3 hr), the reaction temperature (80 °C) and the weight ratio of strong acid cation exchange resins loaded Fe³⁺ to benzyl alcohol (10.0 %) were kept constants. Effects of the catalyst drying temperature on the yields of benzyl acetate, Table 10, indicated that the yield of benzyl acetate first increased and then decreased with an increase in the catalyst drying temperature. It was observed that the maximum yield of benzyl acetate 58.37 % was attained when the catalyst drying temperature was 55 °C.

Table 10. The effect of the catalyst drying temperature on the yield of benzyl acetate

Catalyst drying	45	55	65	75	90
temperature, °C					
Yield of	49.36	58.37	51.21	48.12	47.98
BzOAc %					

CONCLUSION

DOI: 10.17628/ECB.2013.2.348

Effects of different reaction conditions such as different water carrying agents, the amount of water carrying agent, the catalyst calcination temperature, the calcination time and the amount of catalysts, the reaction time, the molar ratio of acetic acid to benzyl alcohol, the reaction temperature, the amount of Fe³⁺ loaded and the catalyst drying temperature, tris(trimethylsilylmethyl) tin chloride, S₂O₈²⁻-Fe₂O₃-CoO, N-methylpyrrolidone hydrosulfate, the weight ratio of FeCl₃ to carbon (46 %), SO₄²⁻-ZrO₂-Nd₂O₃ and strong acid cation exchange resin loaded Fe³⁺, on the synthesis of benzyl acetate from benzyl alcohol and acetic acid were studied, and these are summarised as follows:

(1)The maximum yield was 81.6 % by using tris(trimethylsilylmethyl) tin chloride as the catalyst and toluene as the water carrying agent.

- (2) The maximum yield was 87.8 % under the condition of toluene/benzyl alcohol weight ratio (80 %).
- (3) The maximum yield was 94.1 % at 500 °C (the calcination temperature) when $S_2O_8^{2-}$ Fe_2O_3 CoO was used as the catalyst.
- (4) The maximum yield was 95.7 % in 2.5 hr (the calcination time) when $S_2O_8^2$ -Fe $_2O_3$ -CoO was the catalyst.
- (5)The maximum yield was 63.8 % when N-methylpyrrolidone hydrosulfate was the catalyst and the amount of N-methylpyrrolidone hydrosulfate was 5.0 % of molar benzyl alcohol.
- (6)The maximum yield was 87.8 % in 2.0 h when FeCl₃/carbon was the catalyst.
- (7) The maximum yield was 92.0 % when SO_4^{2-} -Zr O_2 Nd_2O_3 was the catalyst and the molar ratio of acetic acid to benzyl alcohol was 5.0:1.0.
- (8) The maximum yield was 86.71 % at 120 °C (the reaction temperature) when SO_4^{2-} -Zr O_2 -Nd $_2O_3$ was the catalyst.
- (9) The maximum yield was 52.52 % when strong acid cation exchange resin loaded Fe³⁺ was the catalyst and the amount of Fe³⁺ loaded was 0.3656.
- (10) The maximum yield was 58.37 % at 55 °C (the catalyst drying temperature) when strong acid cation exchange resins loaded Fe³⁺ was the catalyst.

REFERENCES

DOI: 10.17628/ECB.2013.2.348

- ¹Wang, G. X. Appl. Sci. Technol. 2000, 11, 22.
- ²Li, X. L, and Zhang, K. *J. Changchun Normal Univ.*, **2008**, 27(5), 22.
- ³Sun, D. G. and Wei, M. *Shandong Chem. Ind.*, **2006**, *35*(6), 24-25.
- ⁴Hongjie, L., Zhang, L., Eur. Chem. Bull. 2013, 2(5), 272-274.
- ⁵Chen, F. S., Xu, J. P., Gao, E. L., Zhang, L. M. and Lin, S. Speciality Petrochem., 2011, 28(6), 37-39.
- ⁶Zhang, Y. J., Li, H. P., Cheng, H. J. and Zhang, C. X. *J. Henan Normal Univer.*, **2006**, *34*(2), 89-93.
- ⁷Zhou, B. L., Fang, Y. X., Zhai, Z. C., Deng, Y. Q., Huang, B. H. and Lao, X. L. *Acta Sci. Natural.Univ. Sunyatseni*, **2009**, *48*(*4*), 66-69.
- ⁸Yu, J. F. and Zhu, L., Sci. Technol. Food Ind., 2005, 26(1), 162-163.
- ⁹Yang, Y. W., Li, L. and Chen, H. Z., *Chem. Agents*, **2006**, 28(11), 665-667.
- ¹⁰Jiang, H. Z. and Liao, A. P., Appl. Chem. Ind. 2011, 40(2), 246-251.

Received:22.01.2013.

Accepted:10.02.2013.