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Abstract 

Background/objectives: The position must be predicted before any analysis can be done. One of the analyses 

used to process geographic information is location analysis (GI).  

 

Methodology: The Global Positioning System (GPS) on a user's device, for instance, can be used to add 

latitude and longitude to posts or tweets on social media. Regrettably, not every user or content producer 

includes latitude and longitude in their tweets. Using the user's text posts is one method for determining where 

they are in the world. This method takes the user's text post and retrieves the location entity from it. The 

predicted location candidate is the extracted location entity. With the use of user data, we hope to include 

another strategy in this study.  

 

Findings: The user who tweeted the tweet then adds more details to the classification of the retrieved location 

entities. Later, this classification will determine if a user's post is relevant or not. For the model being utilised, 

deep learning would be combined.  

 

Novelty/improvements: The pre-trained BERT model is used with the extracted location entities. Using 

BiLSTM-CNN, the final classifications will determine how to forecast a position. Since the research is still in 

its early stages, this paper cannot yet reveal the precise findings and evaluation.  
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1. Introduction 

Location analysis keeps growing as many 

applications using and producing location 

information. The analysis is not only used in the 

public sector but also used in the private sector. 

Location analysis is important for the public sector 

to solve the public’s problems, for example 

analysis early warning system for disaster 

[[1],[2],[3]], surveillance [4], event detection 

[[5],[6]], and traffic analysis [[7],[8]]. In the private 

sector, they need to know where to place facilities 

that would be successful to sustain their business, 

such as (1) targeted advertising, (2) market 

segmentation [9], and (3) sentiment analysis 

[[10],[11],[12],[13]].  

 

Social media data provide both clear and implied 

location information. Some platforms included 

check-in features to display the specific user's 

location at that moment. The linked text, image, or 

video contains the location that is associated with 

the coordination of latitude and longitude. The 

latitude and longitude are not, however, provided 

by all users or content producers. The motives 

could range from discomfort to concerns about 

privacy [14]. Since social media data may be used 

to predict location, numerous studies have done so 

[[15], [16], [17], [18], [19], [20], [21], [22], [23], 

[24]]. 

 

There is any approach to exploit the location in 

social media data. (1) User text post[[25],[26]], (2) 

User Information[[27],[28]]. User text post is the 

text content that has been sent to social media. It’s 

including posting/tweet text, time of posting, and 

related tag of user. The text content is going to 

analyze to extract the location entity. One of the 

methods to extract is Name Entity Recognition 

(NER). User information is the corelated 

information of the user in social media. It’s 

including user profile and user correlation, such as 

user following and user followers. Trajectory is the 

positioning history of the users. It related with user 

check-in position. Usually, this approach to get the 

next location user based on the history pattern.  

 

In this study, we combine two approaches to predict 

location using user text posts and user information. 

User text post is used to get location extraction. If 

any location entity is found in the user text post, it 

will be a candidate for classification whether the 

location is related to the user's posting location or 

not. There are any researchers which already used 

the combination method to solve location 

prediction[[29],[30]]. Some of them reported 

improved performance in their research. 

 

For the model used will perform some combination 

of deep learning. For the approach using user text 

post will use location extraction technique. Deep 

learning is used using the Bidirectional Encoder 

from Transformers (BERT) model. Meanwhile, to 

get the relationship between the user's post location 

or not, it will combine the two neural networks 

Convolutional Neural Network (CNN) and 

Bidirectional Long Short-Term Memory 

(BiLSTM). The combination of these two 

techniques is used to take advantage of the 

architectural advantages of these two deep learning 

techniques. CNN is used to extract high-level 

features in text and absorb complex nonlinear 

mapping relationships from text [3]. Meanwhile, 

BiLSTM helps extract word semantics in the 

context of before and after information. The 

advantage of BiLSTM will be to use forward and 

backward learning. The proposed combinations 

allow extracting deeper and maximum information 

from the user's post data whether it is related to the 

user's location or not. Putra et al [31] in his research 

carried out location extraction using the Named 

Entity Recognition (NER) method by adopting the 

Neuro NER method with BiLSTM and Conditional 

Random Field (CRF). 

 

The format of this paper is as follows. Following 

the introduction in section 1, section 2 explains the 

research methodology, section 3 is about results 

and discussion, and section 4 discusses its 

conclusions. In this paper we are still using one 

model i.e., BERT to solve NER problem. 

 

2. Methodology 

This study went through numerous stages. Data 

collection and analysis come first, then data 

administration, layer configuration, and training 

stages. This paper will implement the information 

extraction process' training step. The processes of 

developing the classification model and testing 

currently cannot be completed in this study. This is 

depicted in Figure. 1. The majority of the reporting 

in this article is still in the planning stage. One such 

is the yet-to-be-implemented combo of bert and 

bilstm-CNN. 
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Fig 1  Method Research 

 

2.1 Collecting and analysing data 

Twitter is used to crawl for Twitter data. Users can 

crawl based on keywords, user ids, times/dates, 

and/or locations by utilising the Twitter API. Data 

collection was scheduled to take place for one 

month. CSV storage is used to store crawler results. 

Figure 2 displays the data crawling flow on Twitter. 

 

 
Fig 2 Process Crawling 

 

2.2 Pre-processing Data 

Data preparation is done across the system at 

various levels. The following list of pre-processing 

methods is what the system uses: 

❖ Select a Twitter post: The location is already 

present in the Twitter post that was chosen, 

which makes it easier to label the dataset for 

location predictions (see Figure. 3). 

❖ Case folding Lowercase all fonts  

❖ Removed the phrase "RT" from the start of the 

tweet text;  

❖ Removed URLs and mentions; 

❖ Removed substrings from links and mentions in 

tweet data;  

❖ Removed all punctuation, save for the question 

mark “?" point ".," comma ",", and dash "-" 

  

 
Fig 3 Select Twitter Post included location 

 

2.3 Name Entity Recognition (NER) 

NER is used in this study's information extraction 

technique to extract entities. Six entity notation 

labels, such as: divide the different sorts of entities 

employed in this study. PERSON (B-Per, I-Per), 

PLACE (B-Loc, I-Loc), and ORGANIZATION 

(B-Per, I-Per) (B-Org,I-Org). A sufficient amount 

of training data and accurate labelling are necessary 

for the algorithm to extract information correctly. 

The training set that was utilised was the same set 

that was used to manually label the various tweet 

kinds. The IOB or BIO format is used for data 

labelling. Labeled B (Begin) if the word is the 

initial word of the entity, I (Inside) if it isn't, and O 

(Outside / Other) if it doesn't fall into any of the 

entity categories. Table 1 will show the example of 

labelling results for the training and test data sets. 

 

Table 1 Example Dataset 

Tweet Text Token Label 

Carol went to Bengaluru 

 

Carol B-Person 

Went O 

To O 

Bangaluru B-Loc 

 

Collecting Data Analysis Data Preprocessing Data 

Deployment Evaluate Model Create Model 
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3.Discussion and Results 

By evaluating the ratio of the number of entities 

that are correctly identified to the total number of 

entities recognised, precision is employed in this 

process to gauge how well the named entity 

recognition system can identify the type of entity. 

Equation 1 serves as the precision calculation 

formula. TP stands for true positive, FP for false 

positive, where TP is the total number of correctly 

detected entities. FP, on the other hand, is the total 

number of entities in a given entity that are properly 

and wrongly recognised. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 𝑥 100%                       (1) 

 

Measure the system's capacity to identify entities 

that are pertinent to the type of entity. The recall 

formula is applied as in Equation 2, where FN = 

false negative, or the quantity of entity 

identification mistakes that are identified in the 

kind of entity, is used. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 𝑥 100                                   (2) 

 

F-Measure (F) is the harmonic mean of precision 

and recall. The f-measure formula is as in Equation 

3. 

𝐹

= 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 𝑥 100                      (3) 

 

The location entity extraction process uses the bert 

pre-training use case. In this study, training was 

conducted using a dataset from NLU. The results 

show the fine tuning obtained as follows in table 2. 

 

Table 2 Matriks Evaluation 

Precision Recall F1 Accuracy 

73%, 89% 70% 96% 

  

Table 3 shows the results of the NER process result. 

The model consumes the text input. Next, the 

model output text output result with each word to 

classified to each entity. 

 

Table 3 NER Result 

Text Input Text Output 

John comes from Chennai B-Person I-Person comes from B-LOC 

 

4.Conclusion 

Despite the limitation of geographical information 

in social media data. Location Prediction (LP) is 

another solution to get location information. 

Combined multiple approach is one of the solutions 

to improve the accuracy of location prediction. In 

this research, we purpose using more than one 

approach and algorithm. The approach is used are 

using the user post text and user information. The 

algorithm using BERT, BiLSTM and CNN, we 

hope the system capable to predict user post 

location. The process implementing location entity 

recognition before processing classification as the 

main requirement. Based on first process to extract 

location entity, the calculations precision, recall, 

and f-1 measure obtained 71%, 80%, 75%. The 

accuracy is 95% in epoch eight. We plan to 

continue the research to get the location classify. 

Evaluate the whole model and comparing with 

another algorithm is another plan to do in the 

research. Hopefully, the purposing method is 

successful and bring some contributions. 
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