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Abstract 

Identifying and quantifying genotoxic impurities (GTIs) in drug substances at trace levels is a difficult 

task that necessitates using sophisticated, hyphenated analytical techniques. This study provides a 

complete overview of the current analytical methodologies used for the detection and measurement of 

GTIs in pharmacological compounds. It focuses on risk assessment and the many analytical 

approaches used by regulatory agencies and researchers. This review outlines the numerous sources of 

GTIs while also digging into the industrial processes that lead to their development. A comprehensive 

range of analytical techniques, including both chromatographic and non-chromatographic approaches, 

is thoroughly described. Popular analytical techniques such as high-performance liquid 

chromatography (HPLC), gas chromatography (GC), mass spectrometry single quad LCMS, GCMS, 

and triple quad approaches have distinct applications, strengths, and limitations. Capillary 

electrophoresis (CE), LC-MS/MS, GC-MS/MS, LC-HRMS/MS, and Microbial reverse mutation assay 

(Ames)s for analyzing genotoxic impurities, as well as other hyphenated techniques, were discussed. 

In addition, The review addresses the issues encountered in GTI analysis, including setting acceptance 

criteria, defining appropriate reference standards, and validating analytical methodologies. Regulatory 

rules and requirements established by governing organizations are also investigated. Furthermore, 

emerging trends and breakthroughs in the field, such as in-silico prediction tools, novel sample 

preparation processes, and rapid screening approaches, are highlighted. The use of quality-by-design 

(QbD) principles and automated technologies to improve efficiency is also highlighted. This 

evaluation is a significant resource for researchers, regulatory bodies, and pharmaceutical companies.  

Keywords 

Genotoxic impurities (GTIs), Regulatory guidelines, Drug substances, Analytical techniques, Safety, 

and quality assurance,  

 
*Corresponding Authors Dr. Ramesha Andagar Ramakrishna, Flowchem Pharma Pvt Ltd, C41, KHB 

Industrial Area, Yelahanka New Town, Bangalore-560106, E-mail: 

dr.ramesha@flowchempharma.com, Dr. Swagata Halder Department of Chemistry, School of Applied 

Sciences, REVA University, Bangalore, E-mail: swagata.halder@reva.edu.in. 

 

1. Introduction 

Genotoxic impurities (GTIs) in drug substances have garnered significant attention in the 

pharmaceutical industry due to their potential to damage genetic material [1-4]. In addition, pose risks 

to human health. The detection and quantification of these impurities is critical for ensuring the safety 

and quality of the product throughout their development and manufacturing processes meeting cGMP 

compliance [5]. The presence of even trace amounts of genotoxic impurities in drug formulations can 

possess significant risks to human safety and it is a most serious concern leads to product recall [6]. 
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Over the years, significant advancements have been made in analytical techniques aimed at effectively 

detecting and measuring Genotoxic impurities (GTIs) and Potential genotoxic impurities (PGIs) are 

identified by structural alerts relationship, If a structure is not part of the cohort of concern, the 

existence of impurity structural warnings alone is not thought to be sufficient to trigger follow-up 

actions, The results of a bacterial mutagenicity assay should be predicted using (Q)SAR techniques in 

a computational toxicology evaluation, It is best to use two complementary (Q)SAR prediction 

approaches. Two approaches, one based on expert rules and the other on statistics, should be used. The 

Organisation for Economic Cooperation and Development (OECD) has produced wide validation 

requirements for (Q)SAR models utilizing multiple prediction methodologies. 

Some structural groups have been proven to be so strong that intakes even below the TTC could 

theoretically be related to considerable cancer risk. This "cohort of concern" of highly potent 

mutagenesis carcinogens includes aflatoxin-like, N-nitroso, and alkyl-azoxy compounds. 

Table 1: Here are some examples of structural alerts, and Toxic hazard data collected from Toxtree 

software  

Group Structural alert Toxic Hazard 

(Toxtree) 

Aromatic amines: These 

substructures contain an 

amino group attached to 

an aromatic ring. 

Aromatic amines are 

known to be mutagenic 

and can cause cancer 

[7,8]. Examples of 

compounds that contain 

aromatic amines include 

aniline, benzidine, and 4-

aminobiphenyl. 

 

 
Aniline 

 
Benzidine 

 

 
4-aminobiphenyl 

 

 

 

Low 

 

 

 

 

 

 

High 

 

 

 

 

 

 

High 
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Epoxides are cyclic 

chemical compounds 

with a three-membered 

ring comprising two 

carbons and one oxygen. 

Epoxides have been 

shown to be genotoxic, 

causing DNA damage 

[9,10]. Epoxide-

containing substances 

include ethylene oxide 

and propylene oxide. 

 

 
ethylene oxide 

 
propylene oxide 

 

 

 

 

High 

 

 

 

 

High 

 

Quinones: These 

aromatic compounds 

contain a double bond 

with an oxygen atom. 

Quinones are known to 

be toxic and can cause 

oxidative stress, [11,12]. 

Examples of compounds 

that contain quinones 

include naphthoquinone 

and anthraquinone. 

 

 
Naphthoquinone 

 
anthraquinone 

 

 

 

 

Low 

 

 

 

 

High 

Nitro groups: These 

substructures contain a 

nitrogen atom attached to 

two oxygen atoms. 

Nitrogen groups have 

been shown to be 

harmful [13,14]. This can 

result in 

methemoglobinemia, a 

condition in which the 

blood cannot carry 

oxygen. [15,16]. 

Examples of compounds 

that contain nitro groups 

include nitroglycerin and 

dinitrotoluene. 

 

 
nitroglycerin 

 
dinitrotoluene 

 

 

 

 

 

High 

 

 

 

 

 

 

 

High 
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Halogenated compounds: 

These compounds 

contain one or more 

halogen atoms (e.g., 

fluorine, chlorine, 

bromine, or iodine). 

Compounds with 

halogens [17]. Are toxic 

and can induce a variety 

of negative effects, 

including organ damage 

and cancer. Examples of 

compounds that contain 

halogenated groups 

include chloroform, 

fluoroacetate, and 

bromobenzene. 

 

 
Chloroform 

 

 
Fluoroacetate 

 

 
bromobenzene 

 

 

 

High 

 

 

 

 

High 

 

 

 

 

High 

 

 

 

 

 

Following the examination of structure with in-silico tools, the next stage is the quantification of 

possible genotoxic contaminants, for which regulatory bodies and researchers, employing a suitable 

analytical technique, create numerous analytical methods. 

According to the FDA's CGMP rules for nitrosamines [18]. To meet the low AIs advised for 

nitrosamines, sensitive techniques with limits of quantification (LOQ) in the parts-per-billion (ppb) 

range are frequently required. Nitrosamines with LOQs of less than 0.03 ppm. The detection and 

quantification limits, however, are determined by the analytical technique and detector response in 

relation to the analyte concentration. 

Table 2: Limit of detection (LOD) and Limit of quantification (LOQ) for USFDA and ANSM 

methods 

Analytical 

Technique 

LOD for 

the method 

LOQ  for 

method 

Genotoxic 

impurity 

Method Reference  

HPLC-UV  0.1ppm 0.3 ppm NDMA in 

Valsartan 

ANSM Method reference 

no 18A0399-02 [19]. 

LC-MS/MS  0.01ppm 0.033 – 3.33 

ppm 

 

NDMA in 

Ranitidine 

method 

US Food and Drug 

Administration (2019). LC-

MS/MS method for 

determining NDMA in 

ranitidine drug substance 

and drug product [20]. 

LC-HRMS  0.01ppm 0.03 to 

0.1ppm 

 

NDMA in ARB 

Drugs 

US FDA. - LC-HRMS 

NDMA detection method 

in metformin drug material 

and drug product. (2020). 

[21]. 

 

LC-ESI-HRMS 0.005ppm 0.01 to 

0.1ppm 

NDMA in 

Metformin 

US FDA. LC-ESI-HRMS 

method for the 

determination of 
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Nitrosoamines impurities in 

metformin drug substance 

and drug product." (2020). 

[22]. 

GC-MS/MS 0.005ppm 

 

 

0.008ppm 

 

 

NDMA in 

Valsartan 

 

US FDA method for 

Impurity Assay by GC-

MS/MS of Direct Injection 

N-Nitrosodimethylamine 

(NDMA), N-

Nitrosodiethylamine 

(NDEA), N-

Nitrosoethylisopropylamine 

(NEIPA), N-

Nitrosodiisopropylamine 

(NDIPA), and N-

Nitrosodibutylamine 

(NDBA), (2019). [23]. 

 

GC-MS-HS 0.05ppm 0.3ppm NDMA in 

Valsartan 

US FDA. GC/MS 

Headspace Method for 

NDMA Detection in 

Valsartan Drug Substances 

and Drug Products. [24]. 

 

The LOD and LOQ values in the graph are derived from regulatory agencies' (USFDA and ANSM) 

published methods of analysis for the identification and quantification of NDMA impurity in drug 

substances. 

 

 

Figure 1: Analytical Methods for NDMA impurity with LOD and LOQ  

The LOQ 0.03ppm sensitive methods are most suited for NDMA impurity analysis, according to FDA 

CGMP requirements.  
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The best analytical procedures for genotoxic impurities like NDMA, as shown in Table 2 and the LOD 

and LOQ graph above, are GC-MS/MS, LC-ESI-HRMS, LC-HRMS, and LC-MS/MS.  

 Several researchers, in addition to regulatory bodies, offered analytical methods for genotoxic 

impurities. Chittireddy et al established a GC-MS/MS approach for the detection of alkyl halides' 

probable genotoxic impurities in posaconazole [25-30]. Matveeva et al [31] emphasize the importance 

of sensitive and specialized analytical procedures for detecting genotoxic substances in pharmaceutical 

goods at very low levels. Al Azzam KM et al examined methods for detecting genotoxic impurities in 

pharmaceuticals using HPLC, CE, and GC [32]. Other complementary approaches for small molecules 

are being researched and implemented [33-36]. 

This paper provides an overview of the current analytical techniques used for identifying and 

quantifying GTIs in drug substances, as well as an examination of the sources of GTIs, such as 

process-related impurities and degradation products, as well as the manufacturing procedures that can 

lead to their formation. Understanding the sources of GTIs is crucial for developing effective control 

strategies and reducing their presence in psychoactive substances. The review emphasizes 

chromatography and non-chromatography methods, which are the most often utilised approaches in 

GTI analysis.  For the separation and detection of GTIs, hyphenating techniques such as the combining 

of Chromatography with mass spectroscopy techniques such as liquid chromatography-mass 

spectroscopy (LC-MS) and gas chromatography-mass spectroscopy (GC-MS) GTI separation and 

detection requires great sensitivity and selectivity. Non-chromatographic technologies, like as capillary 

electrophoresis (CE) and the Microbial reverse mutation assay (Ames), provide alternate GTI analysis 

procedures with distinct advantages in particular contexts. 

To establish a comprehensive understanding of the strengths and limitations of each technique, this 

review thoroughly examines the specific applications of HPLC, GC, LC-MS, GC-MS, LC-MS/MS, 

GC-MS/MS, ICP-MS, CE, and other non-chromatographic techniques like Microbial reverse mutation 

assay (Ames) in genotoxic impurity analysis. It discusses the parameters and considerations involved 

in selecting the appropriate technique for a given analytical challenge; however, analyzing GTIs poses 

several challenges including the availability of genotoxic impurity standards, and analytical 

challenges, Liu, David Q, et al.reported Analytical challenges in genotoxic impurity stability testing 

[37]. Analytical challenges include method selection, optimization, Matrix effect, selectivity, 

sensitivity, resolution among impurities, and API’s establishing limit of detection, limit of 

quantification in trace levels, repeatability, and reproducibility. Establishing acceptance criteria for 

GTIs, determining suitable reference standards, and validating analytical methods are critical steps in 

GTI analysis. Regulatory agencies play a vital role in setting guidelines and requirements for GTI 

control in drug substances ICH M7 guideline outlines how to calculate theoretically acceptable 

amounts of human exposure for mutagenic contaminants in the absence of adequate experimental 

carcinogenicity data. The toxicological concern (TTC) level [38-40]. For example, is a commonly used 

permissible consumption level calculated from linear extrapolation of preclinical TD50 [41-45]. This 

review discusses the existing regulatory landscape, providing insights into the expectations and 

guidelines of regulatory authorities. Furthermore, this review highlights the sources of genotoxic 

impurities in drug substances. These impurities can originate from various stages of the drug 

manufacturing process, including starting materials, intermediates, catalysts, reagents, and degradation 

products [46]. Understanding the potential sources of genotoxic impurities is crucial for implementing 

effective control strategies and developing appropriate analytical methods. Emerging trends and 

advancements in the field of genotoxic impurity analysis. In-silico predictive tools [47-49]. Such as 

quantitative structure-activity relationship (QSAR) models and expert systems [50-53]. (QSAR) 

models have gained prominence in predicting and assessing the genotoxic potential of impurities. 
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Novel sample preparation techniques like derivatization methods [54-58]. And non-derivatization 

sample preparation methods [59,60]. Including solid-phase microextraction (SPME) [61,62]. And 

dispersive liquid-liquid microextraction (DLLME) [63]. Offer efficient and rapid sample preparation 

for GTI analysis. Additionally, rapid screening methods, such as immunoassays and biosensors, have 

shown promise in providing quick and cost-effective assessments of GTIs, The integration of quality-

by-design (QbD) principles and the use of automated systems in GTI analysis are also discussed. QbD 

principles enable a systematic and proactive approach to understanding and controlling GTIs during 

the development and manufacturing processes [64]. Automation enhances efficiency, and reduces 

human error, Sun, Mingjiang et al used the Quality by Design (QbD) approach to develop a systematic 

method for analyzing dimethyl sulfate in pazopanib HCl (Votrient) [65]. Székely, Gy, et al [66]. Used 

Design of Experiments (DoE) as a strategy for developing LC-MS/MS methods [67]. Katerina Grigori 

et al. used Chemometrics to develop and validate an LC-MS/MS method [68]. This comprehensive 

review serves as a valuable resource for researchers, regulatory authorities, and pharmaceutical 

manufacturers involved in genotoxic impurity analysis. By providing an in-depth understanding of 

current analytical techniques, challenges, regulatory guidelines, and emerging trends, this review aids 

in the effective management of genotoxic impurities, ensuring the safety and quality of drug products. 

2. Methods 

Systematic and comprehensive review is performed to find the comprehensive grasp of the current and 

emerging analytical techniques used to identify and measure genotoxic impurities as well as the risks 

they present. It also makes an effort to highlight the limitations of the present methods for the 

identification, confirmation, and management of genotoxic impurities in pharmaceutical substances. 

PubMed, ScienceDirect, Scopus, Web of Science, and regulatory guidelines were just a few of the 

scientific databases that were exhaustively searched. The review focuses on analytical methods for the 

identification and quantification of GTI in drug substances and Data were taken from a sizable number 

of research and review journals. Were thoroughly investigated, and relevant information regarding 

analytical methods for GTI analysis was acquired. Key details of each analytical approach under our 

review included data on genotoxic impurities' present and past practices and trends, needs for 

validation, and legal and regulatory requirements, The retrieved data were synthesised to offer an in-

depth overview of existing analytical approaches for GTI identification and quantification in 

pharmacological compounds. The information was organized and presented in a coherent manner, 

highlighting the strengths and limitations of each method, regulatory considerations, challenges, and 

advancements in the field, the review provides a comprehensive analysis of the current analytical 

techniques for identifying and quantifying genotoxic impurities in drug substances, ensuring the 

inclusion of relevant information and insights from a wide range of scientific literature and regulatory 

guidelines. 

3. Genotoxic impurities classification 

Genotoxic impurities (GTIs) are classified based on their potential to cause genetic material damage to 

humans and animals, the classification of genotoxic impurities is important for assessing their risk and 

determining the appropriate strategies for their control and regulation. In addition, Jacobson-Kram, 

David, et al examined practical and theoretical strategies for qualifying several classes of impurities 

[69]. ICH M7 R1 provides guidelines and classifications for genotoxic impurities, these are four 

classes of genotoxic impurities Class-1 impurities are mutagenic and carcinogens; depending on the 

relevant animal studies and mechanistic understanding, these impurities are either strongly suspected 

to be human carcinogens or have sufficient evidence to establish their propensity to cause cancer in 

humans. Most at danger from these impurities is the health of people, and there is minimal proof that 
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Class 2 impurities pose a risk for human cancer because they are recognised mutagens with an 

uncertain level of carcinogenicity. Class 3 These may produce promising results in some animal 

experiments or they may behave in a genotoxic manner in the studies, and Class 3 impurities have an 

alerting structure and are unrelated to the structure of the drug substance. They must be controlled or 

minimized to levels below acceptable limits using the proper TTC approach or a bacterial mutagenicity 

assay; if they are not mutagenic, they fall under Class 5 or if resulting in Ames test positive should be 

classified as Class 2. 

Class 4 impurities have alerting structures or compounds related to drug substances or intermediates 

that have been tested and are non-mutagenic to be treated as non-mutagenic impurities and Class 5 

impurities have no structural alarms or enough data to show that it is not mutagenic or carcinogenic to 

be treated as non-mutagenic impurities. and are not genotoxic, posing a risk to human health, The 

International Conference on Harmonisation (ICH) guidelines provide specific guidelines and standards 

for the control of genotoxic impurities in pharmaceutical products. These genotoxic impurities must 

first be classified before risks can be assessed, acceptable limits can be established, and the best 

analytical techniques for their detection and quantification in pharmaceutical products can be 

determined.  

4. Sources of Genotoxic impurities 

 

Figure 2: Sources of Genotoxic Impurities 

Genotoxic impurities (GTIs) can originate from various sources throughout the drug development and 

manufacturing process [70]. Understanding the potential sources of genotoxic impurities is crucial for 

implementing effective control strategies and developing appropriate analytical methods. Here are 

some common sources of genotoxic impurities 

4.1 Starting Materials: 

The Sources of genotoxic impurities are raw materials, intermediates, reagents, solvents, and catalysts 

used in the synthesis of Active pharmaceutical ingredients (API's).  Alkyl halides are chemical 

compounds that are used as raw material and contain one or more halogen atoms, such as chlorine, 

bromine, fluorine, or iodine, and these halo-alkanes have high reactivity, convenience of use, and are 

cost-effective, and they are extensively used in alkylation processes as starting materials or reagents in 
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the synthesis of active pharmaceutical ingredients (APIs), and even trace levels of these chemicals can 

alkylate DNA [71]. 

4.2 By-products and Degradation Products: 

During the synthesis or manufacturing process, chemical reactions can produce impurities as by-

products or degradation products. These impurities can arise from side reactions, hydrolysis, oxidation, 

or other degradation pathways. Impurities from catalysts, solvents, or other process-related factors can 

also contribute to the formation of genotoxic impurities. Jamrógiewicz, Marzena, et al. reported that 

Ranitidine under photo exposition results in the production of volatile degradation products [72]. 

4.3 Residual Solvents: 

Some solvents used in the manufacturing process can contain genotoxic impurities. Residual solvents, 

such as organic solvents or cleaning agents, may carry traces of impurities that have genotoxic 

potential. Example Ethylene Dichloride, Benzene (Class I residual solvents) as per ICH Q3C 

guidelines [73]. 

4.4 Impurities from Packaging and Storage: 

Genotoxic impurities can also originate from the packaging materials or storage conditions. For 

instance, leaching of impurities from containers, closures, or packaging materials into the drug product 

can introduce genotoxic impurities. 

4.5 The presence of genotoxic impurities in drug substances can be influenced by environmental 

conditions. Pollutants, pesticides, or other impurities from the air, water, or soil, for example, can find 

their way into the drug manufacturing process and contaminate the final product. Stiborová, Marie, et 

al investigated the mechanism of carcinogenicity of 2-methoxyaniline (o-anisidine), an industrial and 

environmental pollutant [74]. Mani, Sujata et al studied the effect of triphenylmethane dye used as in 

human and veterinary medicine as a biological stain and its toxic, genotoxic, and carcinogenic effects 

on the environment [75]. Hayden, Patrick J., et al conducted studies for genotoxic inhalable chemicals 

using comet assay on human tissue models [76]. Hayden, Patrick J., et al studied metal genotoxic 

impurities in Water for Injection (WFI) [77,78]. Masood, Farhana, et al proposed methods for 

genotoxicity testing of environmental pollutants [79]. Chmielińska, Katarzyna, et al studied the impact 

of cyclic mustard gas impurities on the environment [80]. Industrial activities, waste incineration, and 

other sources can lead to environmental contamination by pollutants like polycyclic aromatic 

hydrocarbons (PAHs) [81,82]. dioxins, and persistent organic pollutants (POPs)  [83,84]. If drug 

substances are exposed to these impurities during production or storage, there is a risk of introducing 

genotoxic impurities 

The Environmental Protection Agency (EPA) set health reference levels for NMBA (30 ng/l), NDEA 

(0.4 ng/l), NDMA (0.6 ng/l), NDPA (7ng/l), NMEA (3 ng/l), and NPYR (2 ng/l) (EPA, 2016) 

 



A Comprehensive Review of Current and Emerging Analytical Techniques for the Identification, Quantification, 
and Assessment of Genotoxic Impurities in Drug Substances  
                                                                                                                                            Section A-Research paper 
 

12535 

Eur. Chem. Bull. 2023,12(10), 12526-12564 

 

Figure 3: Environmental Protection Agency (EPA) Health reference levels for Nitrosamines 

It is important for pharmaceutical manufacturers to thoroughly assess and monitor potential sources of 

genotoxic impurities throughout the entire drug development and manufacturing process. 

Implementing appropriate quality control measures, including rigorous testing of key starting raw 

materials to finished products and risk assessment strategies [85]. Can help identify and mitigate the 

presence of genotoxic impurities, ensuring the safety and quality of pharmaceutical products. 

Regulatory guidelines, such as those provided by organizations like the International Council for 

Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH), provide 

guidance on the control and qualification of genotoxic impurities in drug substances. 

5. Current Regulatory Guidelines for Genotoxic Impurities 

Regulatory guidelines play a crucial role in providing standards and recommendations for the control 

and qualification of genotoxic impurities (GTIs) in pharmaceutical products. Here are some current 

regulatory guidelines that address the assessment and management of genotoxic impurities 

The ICH has published several guidelines for the control of genotoxic impurities, as well as guidance 

on genotoxicity evaluation and data interpretation for pharmaceuticals intended for human use. [86,87] 

5.1 ICH M7: Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to 

Limit Potential Carcinogenic Risk: This guideline is concerned with the evaluation and management of 

mutagenic impurities that may pose a risk of causing cancer. It provides a framework for evaluating 

the genotoxic potential of impurities and establishing acceptable limits [88-95]. 

5.2 ICH Q3A (R2): This guideline addresses impurities in new drug substances and includes 

considerations for genotoxic impurities. It provides guidance on the qualification and control of 

impurities, including those with genotoxic potential according to Identification and Qualification 

Decision Tree mentioned in the ICH Q3A guidelines [96]. 

5.3 United States Pharmacopeia (USP): 

USP provides standards and monographs for pharmaceutical products. It includes specific chapters and 

guidelines related to genotoxic impurities, such as USP <1663> Assessment of Genotoxic Impurities 

in Pharmaceuticals: This chapter provides guidance on the assessment of genotoxic impurities in 

pharmaceutical products. It outlines testing strategies and acceptance criteria for evaluating the 

genotoxic potential of impurities [97-99]. 
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5.4 European Medicines Agency (EMA): 

EMA provides guidelines EMEA/CHMP/QWP/251344 [100]. and regulatory requirements for the 

pharmaceutical industry within the European Union. Guidelines on residual solvents 

EMA/CHMP/ICH/82260/2006, and ICH M7(R1) Assessment and Control of DNA Reactive 

(Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk, this guideline is an 

adaptation of the ICH M7 guideline and provides guidance for the assessment and control of 

mutagenic impurities with potential carcinogenic risk in pharmaceutical products and 

EMA/CHMP/CVMP/SWP/169430/2012 Guideline on the Limits of Genotoxic Impurities and 

provides recommendations on the setting of limits for genotoxic impurities in pharmaceutical products. 

It includes information on the assessment, qualification, and control of genotoxic impurities, It is 

important for pharmaceutical manufacturers to follow these regulatory guidelines and incorporate them 

into their drug development, manufacturing, and quality control processes to ensure compliance and 

the safety of pharmaceutical products. It is also essential to stay updated with the latest revisions and 

updates to these guidelines, as regulatory requirements may evolve over time, In a referral under 

Article 31 of Directive 2001/83/EC, procedure EMEA/H/A-31/1471, the risks connected to the 

presence of the nitrosamines N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) in 

sartan blood pressure medications (angiotensin II receptor blockers) containing a tetrazole ring have 

been evaluated. Acceptable intakes (AI) of 96.0 ng for NDMA and 26.5 ng for NDEA have been 

established limits based on the TD50 values in rat carcinogenicity studies [101,102]. 

The Carcinogenic Potency Database (CPDB, 2007), which provides information on animal 

carcinogenicity, is the most complete source. A mathematical model was used to determine the dose 

(TD50) that causes cancer in 50% of the animals in this database's 6540 long-term animal cancer 

studies involving 1547 substances. Table 3, lists the TD50 values from the CPDB for the N-

nitrosamines described in this report, arranged by their descending carcinogenic potency (harmonic 

mean TD50). 

Table 3: TD50 values for various N-nitrosamines discovered in the CPDB reported as per EMA 

Assessment Report EMA/369136/2020, [103]. 

Name of the Chemical Abbreviation 

TD50 [mg/kg/ day] 

harmonic mean rat, 

CPDB 

Nitroso-N-methyl-N-(2- 

phenyl)ethylamine 
NMPEA 0.00998 

N-Nitrosodiethylamine NDEA 0.026 

N-Nitrosomethylethylamine NMEA 0.053 

N-Nitrosodimethylamine NDMA 0.096 

N-Nitrosonornicotine NNN 0.096 

4-(N-Nitrosomethylamino ) -1-(3-

pyridyl)-1- butanone 
NNK 0.0999 

N-Nitrosomorpholine NMOR 0.109 

N-nitrosomethylaniline NMPA 0.142 
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N-Nitrosodi-n-propylamine NDPA 0.186 

Nitrosodibutylamine NDBA 0.691 

N-nitrosopyrrolidine NPYR 0.799 

N-Methyl-N´-nitro-N-nitrosoguanidin MNNG 0.803 

N-Methyl-N´-nitro-N-nitrosoguanidin NMBA 0.982 

N-Methyl-N´-nitro-N-nitrosoguanidin NPIP 1.43 

N-Nitrosodiethanolamine NDELA 3.17 

N,N-diisopropylethyl-N-ethylamine DIPNA 0 

N-nitrosodiphenylamine NDPhA 167 

 

 

Figure 4: The TD50 [mg/kg/day] value was obtained from the harmonic mean of rats, data taken from 

Carcinogenic Potency Database (CPDB). 

From the Table 3 data and graph, NMPEA is having the lowest value 0.00998 mg/Kg/day. 

Table 4: The Carcinogenic Potency Database (CPDB) provides the TD50 (mg/kg/day) values of the 

most potent chemicals collected from rat studies 

Chemical Name 

TD 50 

(mg/kg/day) 

4-(Methylnitrosamino)-1-(3-pyridyl)-1-

butanol 

0.103 

4-(Methylnitrosamino)-1-(3-pyridyl)-1-

(butanone) 
s
 

0.0999 

1-Nitroso-5,6-dihydrouracil 0.0983 

N-Nitrosodimethylamine 
s
 0.0959 

N´-Nitrosonornicotine 
s
 0.0957 

Melphalan 
s
 0.0938 

N-Nitroso-N-methylurea 
s
 0.0927 

Nitrosoethylurethan 0.0904 

Dinitrosohomopiperazine 0.0615 

167 

0.00998 0.026 0.053 0.096 0.096 0.0999 0.109 0.142 0.186 

0.691 0.799 0.803 
0.982 
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Nitroso-1,2,3,6-tetrahydropyridine 0.0601 

N-Nitroso-2,3-dihydroxypropyl-2-

hydroxypropylamine 
s
 

0.0535 

Triamcinolone acetonide 0.053 

Nitrosoethylmethylamine 0.0503 

Azoxymethane 0.0466 

N-Nitrosomethyl-2-hydroxypropylamine 0.0463 

Nitrosoheptamethyleneimine 0.0378 

Chlorozotocin 0.0375 

Nitroso-2,3-dihydroxypropyl-2-oxo-

propylamine 
s
 

0.0352 

Hexamethylphosphoramide 0.0344 

N-Nitrosodiethylamine 
s
 0.0265 

Z-Ethyl-O,N,N-azoxyethane 0.022 

Cadmium sulphate (1:1) 
s
 0.0217 

Z-Ethyl-O,N,N-azoxymethane 0.0189 

N-Nitrosomethyl(2-oxopropyl) amine 0.0172 

Aristolochic acid, sodium salt  0.0141 

Cadmium chloride 
s
 0.0136 

Nitrogen mustard 0.0114 

Nitroso-N-methyl-N-(2-phenyl) 

ethylamine 

0.00998 

Trenimon 0.00504 

Bis-(chloromethyl)ether 0.00357 

Aflatoxin B1 
s
 0.0032 

Aflatoxin, crude 0.00299 

2-Azoxypropane 0.00268 

Aflatoxicol 0.00247 

Actinomycin D 0.00111 

Mitomycin-C 0.00102 

HCDD mixture 0.000596 

1-Azoxypropane 0.000241 

2,3,7,8-Tetrachlorodibenzo-p-dioxin 0.0000235 
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Figure 5: The TD50 [mg/kg/day] value was obtained from the harmonic mean of rats, data of most 

potent chemicals taken from the Carcinogenic Potency Database (CPDB).  

5.5 FDA Guidance for Industry: Genotoxic and Carcinogenic Impurities in Drug Substances and 

Products, Recommended Approaches, FDA guidance document provides general recommendations for 

the identification, qualification, and control of genotoxic and carcinogenic impurities in drug 

substances and products. it offers guidance on assessing impurities with potential genotoxicity and 

carcinogenicity [104]. 

On 28 February 2019, FDA updated a table of interim acceptable intake limits for nitrosamine 

impurities to reflect N-Nitroso-N-methyl-4-aminobutyric acid (NMBA) limits, which are the same as 

those for NDMA. If laboratory testing confirms the presence of nitrosamine impurities in finished drug 

products, the agency will use the interim limits below to recommend manufacturers conduct a 

voluntary recall. The FDA is collaborating with industry and international agencies to guarantee that 

no contaminants access the market. However, we are tolerating the impurities below the level 

established in the table for a short period of time to avoid a possible shortage of ARBs, 

FDA revised interim limits for nitrosamine impurity in ARBs in February 2019 shown in Table 4. 

Table 5: Interim Acceptable Intake (AI) Limits for NDMA, NDEA, and NMBA in Angiotensin II 

Receptor Blockers (ARBs) [105]. 

Name of the 

Drug 

Max 

Daily 

Dose 

(mg/day) 

(AI) 

NDMA 

(ng/day)* 

(AI) 

NDMA 

(ppm)** 

(AI) 

NDEA 

(ng/day)* 

(AI) 

NDEA 

(ppm)** 

(AI) 

NMBA 

(ng/day)* 

(AI) 

NMBA 

(ppm)** 

Azilsartan 80 96 1.2 26.5 0.33 96 1.2 

Candesartan 32 96 3 26.5 0.83 96 3 

Eprosartan 800 96 0.12 26.5 0.033 96 0.12 

Irbesartan 300 96 0.32 26.5 0.088 96 0.32 

0.00001 0.0001 0.001 0.01 0.1 

4-(Methylnitrosamino)-1-(3-pyri­dyl)-… 

N-Nitrosodimethylamine s 

N-Nitroso-N-methylurea s 

Nitroso-1,2,3,6-tetrahydropyridine 

Nitrosoethylmethylamine 

Nitrosoheptamethyleneimine 

Hexamethylphosphoramide 

Cadmium sulphate (1:1) s 

Aristolochic acid, sodium salt (77% … 

Nitroso-N-methyl-N-(2-phenyl) … 

Aflatoxin B1 s 

Aflatoxicol 

HCDD mixture 

TD50 (mg/kg/day) 

N
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 Carcinogenic Potency Data of most potent chemicals value ranging from 

0.0000235 to 0.1 TD50 (mg/kg/day) 
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Losartan 100 96 0.96 26.5 0.27 96 0.96*** 

Olmesartan 40 96 2.4 26.5 0.66 96 2.4 

Telmisartan 80 96 1.2 26.5 0.33 96 1.2 

Valsartan 320 96 0.3 26.5 0.083 96 0.3 

   The interim table shows the Acceptable intake of NDMA and NMBA in ng/day is 96 ng/day  

* The allowable intake is daily exposure to a chemical such as NDMA, NDEA, or NMBA that has a 

cancer risk of one in 100,000 after 70 years of exposure.  

** These figures are based on a drug's maximum daily dose as stated on the label. 

*** For the time being, the FDA is not objecting to losartan with NMBA levels less than 9.82 ppm 

remaining on the market. 

Three more genotoxic impurities were added by FDA in 2021 to the existing list of nitrosamines, these 

are nitrosomethylphenylamin (NMPA), N-nitrosoisopropylethyl amine (NIPEA), and N-

nitrosodiisopropylamine (NDIPA), and also provided guidance to the industry in revision-1 for the 

control of nitrosamine impurities found in human drugs, Acceptable intake limits for NDMA are 96 

ng/day, NDEA is 26.5 ng/day, NMBA is 96 ng/day, NMPA is 26.5 ng/day, NIPEA is 26.5 ng/day, and 

NDIPA is 26.5 ng/day, along with its formation, structure, root cause [106]. 

The Nitrosamines International Strategic Group (NISG) was established in 2018 by a group of 

regulatory authorities in response to incidents involving nitrosamines around the world. This group 

shares information through multi-lateral teleconferences and external communications, contextualizing 

the risk to public health, scientific knowledge about the sources of contamination, and analytical 

techniques used to test potency. Another subgroup called the "Nitrosamines International Technical 

Working Group" (NITWG) was created in the year 2020 in order to share scientific information and 

current theories on technical safety and quality issues pertaining to nitrosamines and, where possible to 

promote technical convergence among member nations. [107].  

6. Current analytical techniques employed for genotoxic impurities quantification in drug 

substances 

Current analytical techniques for detecting and quantifying genotoxic impurities (GTIs) in drug 

substances employ various techniques to ensure the safety and quality of pharmaceutical products.  

Apart from the US-FDA, the Council of Europe and edqm provides some publically available 

Analytical methods published by various regulatory agencies like Swiss OMCL, OMCL-BW 

Germany, ANSM French-OMCL method.  

Table 6: Some of the analytical methods by various health regulatory agencies 

Product Method Agency GTI’S Method LOQ Range 

valsartan, 

losartan, 

irbesartan, 

olmesartan, 

candesartan 

 

GC-

MS/MS 

Swissmedic 

OMCL 

NDMA 

NDEA 

EIPNA 

DIPNA 

DPNA 

DBNA 

   LOQ 15 ppb 

Ranitidine 

Drug 

Substance 

and Film 

Coated 

Tablets  

LC-

MS/MS 

German 

OMCL at the 

Chemisches 

und Veterinär-

Untersuchungs

amt (CVUA) 

NDMA sample solution (0.5 

ng/ml – 30 ng/ml) 

in drug substance and 

film-coated tablets 

(0,05 ppm – 3 ppm) 
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Valsartan 

active 

substance 

 

HPLC-UV ANSM 

 (French 

OMCL) 

NDMA and NDEA Valsartan NDMA 

LOQ 0.3ppm, 

 

Sartan Drugs 

(valsartan, 

irbesartan, 

losartan, 

candesartan, 

and 

Olmesartan) 

GC-MS-

MS (Direct 

Injection) 

 

Health Canada NDMA and NDEA NDMA LOQ 

0.0054ppm 

NDEA LOQ 

0.0073ppm 

LOSARTAN 

Potassium 

LC-

MS/MS 

edqm NMBA LOQ 28.6 ppb 

Salbutamol 

Drug 

Substance 

LC-

MS/MS 

Taiwan Food 

and Drug 

administration 

N-Nitroso 

Salbutamol 

(LOQ) for N-nitroso 

salbutamol is 0.025 

μg/g 

Sartan Drug 

Substances 

(losartan 

potassium 

drug 

substance) 

HPLC Taiwan Food 

and Drug 

Administration 

Azido Compounds 

Test of (5- 

AMBBT) 5- (4'- 

((5-azidomethyl)-2- 

butyl- 4 -chloro-

1H-imidazol-1-

yl)methyl)-[1,1'-

biphenyl]-2-yl) -

1H-tetrazole 

(LOQ) for 5-AMBBT 

is 8 μg/g 

Medicines GC-

MS/MS 

Taiwan Food 

and Drug 

Administration 

12 nitrosamines 

such 

as N-nitroso 

dibutylamine 

(NDBA) 

LOQ 0.05 μg/g 

N-Nitroso 

Diiso 

butylamine (NDiBA) 

LOQ 0.10 μg/g 

Medicines LC-

MS/MS 

Taiwan Food 

and Drug 

Administration 

12 nitrosamines 

such as N-nitroso 

diethanolamine 

(NDELA) 

LOQ 

0.05 μg/g 

 

6.1 High-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography 

(UPLC) are frequently used chromatographic techniques for determining impurities in drug 

substances, Based on their retention periods and peak regions, impurities are separated, recognized, 

and quantified using a chromatographic column, mobile phase, and detector. Specialized HPLC 

variations, such as reverse-phase HPLC, normal-phase HPLC, or ion exchange HPLC, are also 

utilized. UV, photodiode array (PDA) detectors for UV active substances, and IR detectors are among 

the detector types that are frequently used. Jenny Wang et al. developed an HPLC method to look for 

the genotoxic impurity hydrazine in pharmaceuticals. [108]. Jain, Mohit, et al developed a five 

potential genotoxic impurity method using HPLC with a UV detector in HILIC (Hydrophilic 

Interaction Liquid Chromatography) mode [109-110]. Fluorescence detectors for high sensitivity and 

specificity, refractive index detectors for UV inactive substances Using a photochemically induced 

fluorescence detector and HPLC, Michal Doua, et al. were able to identify genotoxic impurities in the 

vortioxetine manufacturing process. [111]. 
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6.2 Gas chromatography (GC) is frequently employed for the identification of genotoxic substances 

that are volatile and semi-volatile. Using a chromatographic column and a gaseous mobile phase, 

impurities are separated. Dianne L. Poster et al. [112]. Cover the methods for identifying PAHs in 

environmental samples. The detection sensitivity and specificity are increased when gas 

chromatography is paired with mass spectrometry (MS) or an electron capture detector (ECD). For the 

identification and measurement of genotoxic impurities in the modern era, mass spectrometry (MS) is 

a potent analytical technique. It involves ionizing and fragmenting the impurities, followed by mass 

analysis to determine their molecular weights and structural information [113]. And combining 

chromatographic and spectral methods in hyphenated techniques [114].  

6.3 For genotoxic impurity limit measurement, the combination of liquid chromatography (LC) and 

mass spectrometry (MS) is the most often employed hyphenated approach. While MS is a detection 

method that offers information about the molecular weight and structure of the analytes, LC is a 

separation technique that enables the separation of complicated mixtures into separate components, 

allowing for the utilization of both methods' advantages like HPLC and mass spectrometry may be 

coupled (LC-MS) [115]. Or GC (GC-MS) gas chromatography coupled with mass spectrometry [116]. 

To provide a comprehensive analysis of genotoxic impurities, charged species, including impurities 

that are genotoxic, are separated using capillary electrophoresis (CE), which separates them based on 

their electrophoretic mobility. It provides excellent resolution and sensitivity for impurity analysis 

[117,118].  

Ames Assay or Ames test [119-123]. Are used to assess the mutagenic potential of genotoxic 

impurities. These tests utilize bacterial strains like salmonella [124-127]. With mutations in their DNA 

repair mechanisms to detect the presence of mutagenic compounds [128]. Sasaki, Yu F., et al. done a 

comparison of comet assay results and carcinogenicity [129]. 

6.4 In-Silico Tools are Computational tools such as (Quantitative) Structure-Activity Relationship ([Q] 

SAR) models with database [130-135]. For already identified genotoxic impurities, like Toxicity 

Estimation Software Tool (TEST) developed by the United States Environmental Protection Agency 

US-EPA [136]. Computer-assisted evaluation of industrial chemical substances according to regulation 

(CAESAR) [137]. Organization for Economic Co-operation and Development (OECD) provided a 

Guidance document on the validation of (Q) SAR models [138]. In addition, other similar 

computational tools are Toxtree, EPI Suite, Lazar OECD QSAR Application Toolbox, OncoLogic, 

PASS, and other commercially available software tools are ACD/Tox Suite, ADMET Predictor, 

BioEpisteme, Derek, Hazard Expert, MDL QSAR, Molcode Toolbox, MultiCASE, OASIS TIMES, 

TOPKAT, ToxAlert, q-Tox, CSGenoTox these models are used to predict the genotoxic potential of 

impurities based on their chemical structures. These tools can provide initial screening and assessment 

before experimental testing [139-144]. 

It is important for pharmaceutical manufacturers to select appropriate analytical methods based on the 

specific characteristics of the genotoxic impurities and the requirements of regulatory guidelines. And 

the validation of these tools is important for the right prediction, Contrera et al validated Toxtree and 

SciQSAR using a publicly available benchmark mutagenicity database and also assessed their 

applicability for the qualification of impurities in pharmaceuticals [145]. In addition, the developed 

methods should be validated as per ICH guidelines before implementation, to ensure accurate and 

reliable detection and quantification of genotoxic impurities in drug substances. 

6.5 The LC-MS/MS (Liquid Chromatography-Mass Spectrometry) triple quad and GC-MS/MS (Gas 

Chromatography-Mass Spectrometry) triple quad are the two commonly used combination analytical 



A Comprehensive Review of Current and Emerging Analytical Techniques for the Identification, Quantification, 
and Assessment of Genotoxic Impurities in Drug Substances  
                                                                                                                                            Section A-Research paper 
 

12543 

Eur. Chem. Bull. 2023,12(10), 12526-12564 

techniques for the detection and quantification of organic genotoxic impurities (GTIs) in drug 

substances. 

To identify, isolate, and quantify genotoxic impurities in drug substances, liquid chromatography-

tandem mass spectrometry (LC-MS/MS) is used, where Impurities are separated using a liquid 

chromatographic column, and then detected using mass spectrometry. [146-149]. Manchuri, Krishna 

Moorthy, and colleagues developed a UHPLC-MS/MS method for identifying and quantifying Bis (2-

Chloroethyl) Amine, a genotoxic impurity in aripiprazole [150]. 

Chen Yuyuan et al developed 6 Potential genotoxic impurity methods in 5-difluoromethoxy-2-

mercapto-1H-benzimidazole which is a starting material for Pantoprazole sodium (PPZS) [151]. 

Multiple reaction monitoring (MRM) mode in tandem mass spectrometry improves the specificity and 

sensitivity by tracking particular mass-to-charge (m/z) transitions for target analytes. LC-MS/MS 

offers high sensitivity and selectivity, allowing for the detection and quantification of genotoxic 

impurities at low levels in complex matrices. Liquid chromatography and tandem mass spectrometry 

were utilized by Guo, Tian, et al. to quickly and simultaneously identify sulfonate ester genotoxic 

impurities in medicinal compounds. [152]. Three potential genotoxic impurities in rabeprazole 

formulations were quickly analyzed using LC-MS by Yenugu, Veera Manohara Reddy, et al. [153]. 

Four potential genotoxic impurities in the active pharmaceutical ingredients in TSD-1 were determined 

using an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) 

method established by Wang, Taiyu, et al. [154]. Li, Shuhong, et al. developed a UPLC-MS/MS 

method for Simultaneous and trace-level quantification of two potential genotoxic impurities in 

valsartan drug substance [155]. 

6.6 Gas chromatography and tandem mass spectrometry are combined analytical techniques known as 

GC-MS/MS (Gas Chromatography-Mass Spectrometry/Mass Spectrometry) to analyze genotoxic 

impurities. It entails the use of a gas chromatographic column to separate volatile or semi-volatile 

impurities, followed by mass spectrometry for detection and identification. Hari Naga Prasada Reddy, 

Chittireddy, et al, developed a GC-MS/MS method for allyl chloride, a possible genotoxic contaminant 

in Gemfibrozil. [156-163]. GC-MS/MS provides excellent sensitivity and selectivity for the analysis of 

volatile and thermally stable genotoxic impurities, multiple reaction monitoring (MRM) or selected 

reaction monitoring (SRM) modes in tandem mass spectrometry enable the targeted detection of 

specific analytes, Ahirrao, Vinod K., et al. developed a Time-dependent selected reaction monitoring 

(t-SRM)-based gas chromatography-tandem mass spectrometry method (GC-MS/MS) for trace level 

determination of genotoxic impurities in Alalevonadifloxacin mesylate [164]. 

6.7 LC-HRMS/MS (Liquid Chromatography High-resolution mass spectrometry)  is an analytical 

technique that combines the separation capabilities of liquid chromatography (LC) with the high-

resolution mass analysis provided by mass spectrometry (HRMS), LC-HRMS instrumentation 

typically consists of a liquid chromatography system, such as high-performance liquid chromatography 

(HPLC) or ultra-high-performance liquid chromatography (UPLC), coupled with a high-resolution 

mass spectrometer, such as a quadrupole time-of-flight (Q-TOF) or Orbi-trap mass spectrometer used 

for rapid screening of genotoxic impurities. The data obtained from LC-HRMS analysis is typically 

processed and analyzed using specialized software to identify and quantify the compounds of interest, 

several LC-HRMS methods are published by US-FDA to identify and quantify NDMA (N-nitroso 

dimethylamine) in metformin and Ranitidine drugs, shown in Table 2, and other researchers reported 

several LC-HRMS methods for quantification of genotoxic impurities [165-168]. 
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6.8 LC-GC-MS is a combination of Liquid Chromatography-Gas Chromatography-Mass Spectrometry 

analytical techniques to utilize the maximum capabilities of liquid chromatography, gas 

chromatography, and the power of mass spectrometry. [169-171].  

6.9 LC-ICP-MS (Liquid chromatography-inductively coupled plasma-mass spectrometry), This 

Technique uses inductively coupled plasma-mass spectrometry and liquid chromatography to detect 

and measure impurities that contain metals or other important elements. [172-176].  

6.10 LC-NMR (Liquid Chromatography-Nuclear Magnetic Resonance) is an emerging and powerful 

analytical technique that combines liquid chromatography with nuclear magnetic resonance 

spectroscopy to identify and characterize impurities based on their structural properties [177-181]. The 

ability to identify, quantify, and structurally clarify genotoxic impurities in pharmaceutical compounds 

is improved because of the combination of analytical approaches. The optimum process is dependent 

on the type of impurities, the required sensitivity and selectivity, and the regulatory requirements that 

must be met. These approaches need to be confirmed in order to generate accurate and reliable results 

from genotoxic impurity analysis, additionally, as an enhancement to results integration software, 

precise computational methods are needed to forecast the structure of genotoxic impurities [182,183]. 

7. Current Control Strategies and Risk Assessment 

Control measures for genotoxic impurities (GTIs) aim to limit their presence in pharmaceutical items 

in order to safeguard patients. Müller, Lutz, et al. [184] provide a method for testing, categorising, 

qualifying, assessing the toxicological risk of, and regulating contaminants with the potential to cause 

genotoxicity in pharmaceutical goods. Chris Barber and colleagues suggested a framework for guiding 

the adoption of ICH M7 control techniques. [185]. In their paper, Risk Assessment of genotoxic 

impurities for novel chemical entities, Teasdale, Andrew, et al. discussed the usefulness of employing 

an in silico evaluation technique. [186]. The ICH M7 Guideline emphasises Preventive Measures, 

Analytical Testing, and Risk Assessment Procedures for DNA Reactive (Mutagenic) Impurities in 

Pharmaceuticals to Limit Potential Carcinogenic Risk. [187-191]. 

7.1 Risk Assessment and Identification: 

A broad decision tree was drawn based on standard industry practices and regulatory guidelines for 

identifying, measuring, and analyzing genotoxic impurities. its starts with risk assessment and ends 

with risk communication and control strategy which reflects standard methods and concerns used in 
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the pharmaceutical industry throughout drug development to assure product safety.

 

Figure 6: Decision tree Drawn based on standard industry practices and regulatory guidelines for 

identifying, measuring, and analyzing genotoxic impurities. 

Identify potential sources of genotoxic impurities in the drug substances and products by conducting a 

complete risk assessment in accordance with the regulations in effect. [192]. Using the point of 

departure matrices, MacGregor et al. reported on the International Workshops on Genotoxicity Testing 

(IWGT) report on a quantitative method for genotoxicity risk assessment. [193]. G. E. Johnson et al. 

[194] described the Derivation of point of departure (PoD) estimates in genetic toxicology 

investigations and potential applications in risk assessment. Snodin, David J., et al. [195], published a 

critical analysis concentrating on N-nitrosamines, a mutagenic contaminant in pharmaceuticals, the 

cohort of concern, with an emphasis on N-nitrosamines. Humfrey, Charles DN et al. highlighted recent 

developments in risk evaluation of possibly genotoxic impurities in pharmaceutical medicinal 

compounds [196]. The structural alarms related to frequently occurring probable genotoxic impurities 

are examined by Reddy, Ambavaram Vijaya Bhaskar, et al. They also explore draught guidelines 

provided by various regulatory authorities to restrict the quantities of impurities in medicinal 

compounds and determine their toxicity. [197]. Identifying and regulating genotoxic impurities in the 

early stages of chemical process development for pharmacological substances, Duane A. Pierson et al 

explored the numerous sources of anticipated impurities in the synthesis of a drug substance. [198]. 

The amount of DNA adducts produced endogenously by regular cellular metabolism, oxidative stress, 

and everyday background exposures must all be taken into account when using DNA adducts to assist 

quantitative risk assessment. [199-204]. Using in-silico techniques to assess the genotoxic potential of 

impurities, based on their chemical structure, such as structure-activity relationship (SAR) models, To 
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determine whether genotoxic impurities may be present, take into account the impurity profiles of 

starting materials, intermediates, and process-related impurities. 

7.2 Process Optimization and Design: 

Implement quality by design (QbD), Kowtharapu, Leela Prasad, et al used Box-Behnken Design 

(BBD) to optimize the final method conditions [205]. and robust process optimization to minimize the 

formation of genotoxic impurities during drug synthesis or manufacturing, Utilize appropriate 

manufacturing techniques, such as closed systems or containment measures, to prevent cross-

contamination and limit exposure to potential sources of genotoxic impurities. 

7.3 Qualification and Control: 

Develop and validate sensitive analytical methods on suitable instruments like LCMS, GCMS, ICP-

MS, LC-MS/MS, GC-MS/MS, and LC-HRMS for the detection and quantification of genotoxic 

impurities, Set appropriate acceptance criteria and specifications for genotoxic impurities based on 

regulatory guidelines, risk assessment, and safety considerations. Implement regular testing of raw 

materials, intermediates, and final products to ensure compliance with specified limits for genotoxic 

impurities, Establish robust quality control systems to monitor and manage genotoxic impurities 

throughout the manufacturing process. 

Packaging and Storage Considerations: Select appropriate packaging materials that minimize the risk 

of leaching or contamination by genotoxic impurities, Implement proper storage conditions to maintain 

the stability and integrity of the product and prevent the formation or introduction of impurities. 

7.4 Regulatory Compliance and Documentation: 

Follow regulatory guidelines for the control and qualification of genotoxic impurities, such as those 

published by the International Council for Harmonisation (ICH) and local regulatory agencies. 

Maintain thorough documentation and records of risk assessments, analytical methodologies, testing 

findings, and genotoxic impurity control strategies. Keep up to current on the newest regulatory 

standards and guidelines for genotoxic impurities, and adjust your control measures accordingly. 

Implementing these genotoxic impurity management measures helps to ensure that pharmaceutical 

products meet high-quality standards while minimizing potential threats to patient safety. 

Pharmaceutical producers must include these methods in their quality management systems while also 

adhering to appropriate regulatory standards and criteria. 

8. Discussion 

By summarizing the current state-of-the-art techniques, this review offers a comprehensive overview 

of the analytical strategies employed for the detection and quantification of GTIs, emphasizing their 

importance in drug substance risk assessment. And review highlights several key points as follows, 

8.1 Advancements in Analytical Techniques: 

This review focuses on various analytical techniques used for GTI analysis, including high-

performance liquid chromatography (HPLC), Ultra Performance Liquid Chromatography (UPLC), gas 

chromatography (GC), mass spectrometry (MS), and capillary electrophoresis (CE). It analyses the 

benefits and drawbacks of each technique and emphasizes its use in diverse settings. Furthermore, it 

emphasizes the expanding use of combination techniques for GTI analysis, including LC-MS/MS, GC-

MS/MS, and ICP-MS, which provide improved sensitivity, selectivity, and structure identification 

capabilities. 
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8.2 Importance of Sensitivity and Selectivity: 

When dealing with GTIs, the discussion emphasises the vital importance of sensitive and selective 

analytical methodologies. The capacity to detect and quantify these contaminants at low levels is 

critical for patient safety, as even trace concentrations of GTIs can be harmful. To acquire accurate and 

dependable results in GTI analysis, the review goes into the importance of method validation, defining 

proper acceptance criteria, and implementing solid quality control processes. 

8.3 Risk Assessment and Regulatory Guidelines: 

The risk assessment is the key control step of GTIs' elimination or minimizing of the risk level in 

compliance with regulatory guidelines. The risk assessment outlines the importance of evaluating 

potential sources of GTIs, considering toxicological properties, and estimating safe exposure limits. 

The review also explores the current regulatory guidelines provided by regulatory authorities, such as 

the FDA, ICH, and other local agencies and their impact on the analytical strategies employed for GTI 

identification and quantification  

8.4 Challenges and Future Perspectives: 

The discussion highlights the difficulties encountered in GTI analysis, such as the complexity of 

impurity profiles, the scarcity of reference standards, and the need for continuous method 

improvements. It also identifies topics for future research and development, such as the investigation 

of alternative methodologies, the development of better in silico tools for forecasting genotoxic 

potential, and the creation of more complete and harmonized regulatory requirements. 

The European guideline adopts a Threshold of Toxicological Concern (TTC) approach, which utilizes 

animal carcinogenicity data and conservative assumptions to estimate a daily dose (1.5 μg/day) 

associated with a lifetime cancer risk of 1 in 100,000. This risk level is deemed acceptable for 

genotoxic impurities in human medicines. However, presenting the TTC as a single precise figure may 

imply an unwarranted level of accuracy. Hence, it is suggested that regulatory authorities, allowing a 

range within fivefold of the TTC limit, adopt a more flexible approach. The acceptance of this staged 

TTC approach has varied among regulatory authorities, leading to discrepancies in the evaluation of 

new drug products. Therefore, it is vital to establish a common agreement between the pharmaceutical 

industry and regulatory authorities worldwide. This agreement would ensure the development and 

timely delivery of new medicines while maintaining patient safety 

Overall, this assessment of existing and new analytical approaches for identifying and quantifying 

GTIs in pharmacological compounds gives a thorough grasp of the field's advances, obstacles, and 

future directions. It is a helpful resource for academics, pharmaceutical makers, and regulatory 

authorities in creating effective control techniques and maintaining pharmaceutical product safety and 

quality by regulating GTIs. 

9. Conclusion 

Identifying and quantifying genotoxic impurities (GTIs) in drug substances by using the latest 

hyphenated analytical techniques and in-silico tools can provide a comprehensive overview of the 

genotoxic impurities and helps to control these genotoxic impurities in the drug developmental stage to 

the manufacturing stage, starting from raw materials to finished product, The review highlights the 

importance of hyphenated techniques and their capabilities, accurate and reliable detection and 

quantification of GTIs to ensure the safety and quality of drug products, The discussion of various 

analytical techniques, such as high-performance liquid chromatography (HPLC), gas chromatography 

(GC), mass spectrometry (MS), and capillary electrophoresis (CE), showcases the diverse approaches 
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employed for GTI analysis. The review emphasizes the increasing use of hyphenated techniques such 

as LC-MS/MS and GC-MS/MS, ICP-MS/MS, which offer enhanced sensitivity, selectivity, and 

structural identification capabilities, The review underscores the significance of sensitivity and 

selectivity in GTI analysis, as even trace amounts of GTIs can have detrimental effects on patient 

health. It emphasizes the need for method validation, appropriate acceptance criteria, and robust 

quality control systems to ensure accurate and reliable results. 

Furthermore, the review highlights the importance of risk assessment in managing GTIs. It discusses 

the evaluation of potential sources, consideration of toxicological properties, and estimation of safe 

exposure limits. The review also addresses the impact of regulatory guidelines provided by authorities 

such as the FDA and ICH on the analytical strategies employed for GTI identification and 

quantification, despite the advancements, challenges persist in GTI analysis, including impurity profile 

complexity and limited availability of reference standards. The review identifies areas for future 

research, such as the exploration of alternative techniques, improvement of predictive tools, and 

harmonization of regulatory guidelines, this review serves as a valuable resource for researchers, 

pharmaceutical manufacturers, and regulatory authorities, providing insights into the current state-of-

the-art analytical methods for GTI identification and quantification. By implementing these methods 

and adhering to regulatory guidelines, the pharmaceutical industry can continue to ensure the safety 

and quality of drug substances by effectively managing genotoxic impurities. 
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