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Abstract                                                                                                     

Mucor infections in humans are known as mucormycosis or zygomycosis, and can be serious 

and potentially life-threatening if left untreated. Mucormycosis is triggered by molds called 

Mucoromycetes. It is a rare, difficult-to-diagnose, and non-communicable disease that might 

affect the mucous membrane in the lungs, brain, eyes, skin, etc. Early diagnosis and treatment 

are essential for recovery. Mucormycosis treatment typically combines antifungal medication 

with surgical debridement. The specific approach to treatment depends on the level of the 

fungal infection. Knowledge regarding the side effects of drugs used for treatment is limited. 

Potential side effects of these drugs should be carefully weighed against their therapeutic 

benefits, and treatment should be tailored to the individual's specific circumstances. In this 

study, ProTox-II was used for the in silico estimation of toxicity levels of the recommended 

medications for mucormycosis using toxicity endpoints such as hepatotoxicity, cytotoxicity, 

carcinogenicity, mutagenicity and immunotoxicity. A close monitoring and management of 

potential side effects will ensure optimal outcomes in management of this life-threatening 

disease.  

Keywords: Drugs, Mucor, Mucormycosis, Pathogenesis, Toxicity, ProTox-II, SARS-CoV-2 

virus 

Introduction  
Mucor is a type of filamentous fungus that is ubiquitous [1]. Around 50 species of Mucor are 

reported worldwide. Mucor species are common and predominantly saprotrophs [2]. Mucor 

can colonize and thrive on organic substrates, including soil, vegetation surfaces, fruit and 

vegetable waste, animal manure, and agricultural remains, to varying degrees. It is associated 

with flora, fauna, and humans as opportunistic pathogens [3]. Additionally, dust particles and 

decomposing plant matter are all potential habitats for this thermotolerant fungus [4]. Fungi 

colonize the surface of the hosts and obtain sugar and amino acids as nutrient sources [5]. 

Fungi within the order Mucorales includes a number of economically significant and versatile 

species [6]. Some of these fungi are involved in the production of certain food products and 

drinks like tempeh and sake [7]. However, they can also cause significant economic losses as 

food spoilage organisms, particularly in fruits, vegetables, and dairy products [8]. Mucorales 

fungi can also act as plant parasites, causing diseases such as mucor rot in crops such as 
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strawberries, grapes, and tomatoes. In addition, some species are potentially fatal for humans 

[9].  

Mucorales are the 3
rd

 most widespread source of IFIs or intrusive fungal infections in persons 

having weakened immune systems or underlying medical conditions [1, 10]. Fungal 

infections can happen when someone breathes in spores, eats spoiled food, or comes into 

contact with contaminated objects while suffering from an open cut or burn [11]. When 

infected, the blood vessels of the host get constricted as the hyphae grow out from the spores, 

causing tissues in the vicinity to swell and eventually die. The infection of fungi  can affect 

the brain, lungs and skin etc. The severity of the fungal infection depends on the immunity 

and health conditions of the individual [1]. 

Paucity of effective antifungal drugs against the causative agent for Mucormycosis has 

recently increased lethal incidences caused by the fungi of class Zygomycetes [12]. A group 

of molds known as Mucoromycetes are the source of the deadly but uncommon fungal 

infection known as mucormycosis (formerly known as zygomycosis) [13, 14].  

Mucorales and the Entomophthorales are two disease-causing orders of Zygomycetes fungi 

[15]. Some examples of these disease-causing fungi are Absidia corymbifera, Rhizomucor 

pusillus, and Rhizopus arrhizus. The onset of Mycoses disease, in most cases, is sudden and it 

affects primarily patients with pre existing ailments [16, 17]. 

The disease is linked to people with a weak immune system, such as acidotic diabetes [18]. 

Gastrointestinal mucormycosis is associated with malnourished children [19], and primary 

cutaneous mucormycosis is manifested in patients with severe burns and tissue trauma [19, 

20, 21]. Mucormycosis was also identified in patients having cancer and AIDS [1]. The 

fungus Mucor, which causes "black fungus," primarily affects patients with weakened 

immune systems or those who have chronic kidney illness or diabetes [22].  

 

Economic importance  

Mucor species are important biotechnologically due to their rapid growth rates and potential 

for secondary metabolite production (e.g., antibiotics) [23]. Fungi of the order Mucorales are 

important as fermenting agents, and as producers of enzymes [5]. In the biobased economy, 

fungi are important for efficient and sustainable utilization of resources [24].  

Fungi help produce renewable substitutes from fossil resources, and economically important 

products from agricultural and food processing industries wastes [25]. They can also play a 

role as a bacterial antagonist, strengthening the gut biota and counteracting lifestyle diseases 

[26]. They make crop plants more resilient to climate change [27]. Fungi are also used in the 

development of novel biological medicines [27, 28]. The genus Mucor comprises around 40-

50 recognized species, of considerable economic importance and are promising candidates 

for discovering new drugs and value-added bio-based products [29].  

Mucor species have important biotechnological potentials; they produce enzymes like 

amylase, lipase, pectinase, polygalacturonase, and protease [30, 31]. Mucor indicus is a mold 

that has a high economic value and is utilized in the production of industrial products such as 

ethanol lactic acid, amylases, rennin, and organic products such as fumaric acid, chitosan, oil 

(single-cell oils), and polyunsaturated fatty acids [32]. It is also a rich nutritional source, 

which is utilized as fish feed [32]. 

As an alternate fuel (or oxygenate alternative) to the conventional fossil fuels, ethanol has 

attracted a lot of attention in recent decades. Bioethanol (ethanol from a renewable resource) 

can be formed by M. indicus & R. oryzae from the cellulose component of lignocellulosic 

wastes like straw of rice, which is one of the world's richest lignocellulosic wastes [33]. 

Additionally, Mucor circinelloides has attracted significant attention for production of 

ethanol [34]. Mucor indicus could be beneficial to clean up oil spills  and can be utilized in 

heavy metal removal from wastewaters [35]. Chinese cheese called sufu is prepared from 
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soybeans with the help of the mucor [36]. Mucor circinelloides, Mucor indicus, and Mucor 

subtilissimus are examples of zygomycetes that can degrade cellulose and grow on 

lignocellulose, a mixture of hexose and pentose [37]. 

 

Taxonomy and current classification  

The taxonomy of the phylum Zygomycota has undergone significant changes in recent years 

due to advances in molecular phylogenetics [6, 38]. It is important to note that the taxonomy 

of Zygomycota is still evolving, and new research may lead to further changes in the future. 

Zygomycosis encompasses two pathologically and clinically distinct conditions, 

mucormycosis (caused by Mucorales) and entomophthoramycosis (caused by 

Entomophthorales) of Zygomycota [39, 19]. Phylum Zygomycota includes Mucorales and 

Entomophthorales, amongst other orders. Both classes are pathogenic members [39]. In the 

decreasing order of severity, the mucormycosis causing genera (i.e. members of order 

Mucorales)  are Mucor, Cunninghamella, Apophysomyces, Lichtheimia, Saksenaea, and 

Rhizomucor [39, 40].  

Basidiobolus (causes subcutaneous tissue infection) and Conidiobolus (causes chronic 

rhinofacial infection) belong to the Entomophthorales and are also pathogenic fungi that 

cause basidiobolomycosis and conidiobolomycosis respectively [41].  

The Mucorales and the Entomophthorales are two orders of Zygomycetes that are known to 

cause infectious disease in humans [42]. Zygomycosis has been used interchangeably with 

mucormycosis. The fungi that cause the diseases, formerly referred to collectively as 

zygomycosis, are now recognised independently as mucormycosis (caused by Mucor), 

conidiobolomycosis (caused by Conidiobolus), and basidiobolomycosis (caused 

by Basidiobolus) [43].  

The clinical histopathology of the tissue infected with the three fungi plays a crucial role in 

diagnosis. All of them have marked phylogenetic differences but they are morphologically 

similar in terms of having coenocytic or non-septate hyphae. Clinical outcome of the tissue 

histopathology has profound effects on the diagnosis and the ensuing treatment [43].  

The phylum Zygomycota has been demonstrated to be polyphyletic through molecular-

phylogenetic evaluation, and the taxa that were formerly included in Zygomycota have been 

moved to the separate phylum Glomeromycota and four subphyla with still unresolved 

positioning. The newly established classification has a significant impact on the designation 

of the medical condition because the classification of the Zygomycota (Zygomycetes), in 

which the fungal members responsible for the condition had been categorized, served as the 

foundation for the nomenclature of the disease zygomycosis (39, 44). Zygomycosis was 

traditionally defined as an umbrella term for two distinct medical conditions with distinct 

clinicopathological manifestations: mucormycosis, produced by fungi included within the 

order Mucorales of Zygomycota, and entomophthoromycosis, attributed to the fungal species 

included within the order Entomophthorales of the former Zygomycota (39, 44). The term 

"zygomycosis," however, has been utilized more frequently as an alternative name for 

mucormycosis alone without modification of the original definition. Based on the evolution 

of our understanding of its etymology, revisions in the taxonomic classification and the 

medical condition, the traditional names "mucormycosis" and "entomophthoramycosis" are 

preferable to "zygomycosis."(39, 44 ).  

The disease caused by these genera referred to as ‘zygomycosis’ or  ‘mucormycosis’ has led 

to a lot of confusion. Both mucormycosis and entomophthoramycosis [39, 44] are types of 

zygomycosis caused by different fungi in the same order, but they have some differences in 

terms of the populations they affect, the parts of the body they commonly affect, and the 

severity of the infection [17, 42, 43, 45.]. Actinomucor elegans, is an invasive mucormycosis-

causing fungus [46]. 
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Morphological features  

Mucor species have a highly developed mycelium and branched hyphae [47]. The hyphae in 

Mucor are generally coenocytic, rarely septate [25]. The cytoplasm of the hypha appears 

granular. Mucor has been cultured and grows on agar [44] Initially colonies appear cottony 

and become dark grey, after growth of sporangia [48]. Sporangiophores are straight or rarely 

circinate and repeatedly sympodial branches are hyaline, grey or brownish [2]. Sporangia are 

round, black, and filled with sporangiospores [25, 49, 50].  

Within infected tissues, the strains that cause pathogenesis only manifest in the form of 

hyphae (without a yeast phase) [51, 52]. Non Septation of hyphae means hyphal cells are 

mixed and nuclei float in the cells [53].  

Following Candidiasis and Aspergillosis, Mucormycosis is the most common aggressive 

fungal-infection [1]. The fungus is found in soil, dust, manure, decaying fruits and vegetables 

and as bread mold. Interestingly the pathogen can be cultured from the mouth, nose, throat, 

and stools of healthy people without infections. Fungal spore inhalation, contact with 

contaminated tissue via trauma, ingestion, or direct inoculation are the usual causes of 

infection in an immunocompromised individual [54].  

The lungs, digestive tract, kidneys, and skin are prominently the primary infection sites. 

Diabetics frequently suffer from infections that begin in the nasal lining and extend to the 

hypopharynx, eyes, and brain [55].  

Pathogenic potential of Mucorales and Entomophthorales 

In total, 27 species of Mucorales (representing 11 genera) have been associated with the 

mucormycosis infection [56]. People with compromised immune systems, untreated diabetic 

ketoacidosis, chemotherapy, haematological disease, and other potentially life-threatening 

conditions are more likely to develop a Mucorales infection swiftly [56]. Twenty-one of the 

27 species have complete genomic sequence databases that can be accessed. Several different 

types of fungi, including Rhizopus, Mucor, Lichtheimia (formerly Absidia), Cunninghamella, 

Rhizomucor, and Apophysomyces, are responsible for the spread of mucormycosis infection 

[57, 19]. 

“Entomophthoromycosis” are infections caused by Entomophthorales [58]. Conidiobolus spp. 

elicit rhinofacial entomophthoramycosis in immunocompetent and in immunocompromised 

hosts. In immunocompetent patients, Basidiobolus spp. infection induces subcutaneous 

entomophthoromycosis of the limbs, chest, back, and the buttocks. Pulmonary, nasal, 

retroperitoneal and GI tract infections caused by Basidiobolus spp. are becoming more 

common in various parts of the world. Laboratory diagnosis relies on contaminated tissue 

culture. However, molecular analysis approaches, using DNA probes, and RT-PCR are 

increasingly being employed to detect and identify these species in the tissue. Antifungal 

triazoles dominate treatment. Depending on the location of the infection, surgery may be 

required to treat entomophthoromycosis [58, 59]. 

Mucormycosis is a lethal invasive infection spread by the fungus of the subphylum and order 

Mucoromycotina and Mucorales respectively [60, 61]. Mucormycosis has emerged as the 

third most prevalent form of fungal infection to spread through the blood and cause mortality 

[11]. Pulmonary and zygomycosis infections are perhaps the most common infection, and 

these two types of mucormycosis were observed in patients during the COVID-19 pandemic 

[62, 63]. Despite the use of antibiotics, mortality rates among immunocompromised patients 

remained high, at around 70% [64]. Angioinvasion and necrosis of tissue are the early signs 

of progression of the disease that promotes the spread of the fungus through the bloodstream, 

resulting in deeper infections and less effective antifungal drugs are the reason for high 

mortality [19, 44]. There is an urgent need to better understand the molecular mechanisms 

that drive the disease in order to develop new methods of curing and preventing 
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mucormycosis due to the paucity of current treatment options and the high morbidity of 

extremely disfiguring surgical procedures [61, 65]. 

Fungus can enter our body through cuts, scrapes, wounds, or other forms of trauma in the 

dermal layer of the skin [48]. Mucormycosis is not a transmittable disease. It is a lethal 

contamination with a pathogenesis that is not completely understood. It was demonstrated 

that Fungi of the order Mucorales secrete a toxin called mucoricin that contributes to the 

pathogenicity of the disease they cause [66, 60].  

Mucormycosis is associated with several species of Rhizopus, Mucor, Lichtheimia and 

Cunninghamella, etc. Rhizopus and Mucor are common agents for spreading of 

mucormycosis [56]. It is reported to be much more prevalent in emerging countries, as 

compared to established economies.  Haematological cancers and transplants are the two 

most prevalent illnesses in the advanced countries. Mucor spp. was reported to be responsible 

for many more mucormycosis cases amongst organ transplant recipients, followed by 

Rhizopus spp. and Lichtheimia [11].  

Mucorales are resistant to voriconazole and have been associated with breakthrough 

infections in patients receiving prophylactic voriconazole treatment. The other risk factors are 

intravenous drug abuse and under nourishment [67, 44]. 

Mucormycosis: 

● The outcome of infection by fungi of order Mucorales, e.g.: Rhizopus or Mucor. 

● Usually affects people with low immunity, diabetes, cancer and HIV. 

● The sinuses, brain, and lungs are particularly vulnerable. 

● Possible fatality unless promptly diagnosed and treated. 

Entomophthoromycosis: 

● Caused by fungi in the order Entomophthorales, such as Basidiobolus or 

Conidiobolus. 

● Typically affects healthy people, particularly those who live in tropical or subtropical 

areas. 

● Most commonly affects the skin and subcutaneous tissues, but can affect other organs, 

eyes and gastrointestinal tract. 

● Tends to be less aggressive than mucormycosis, and the prognosis is generally better. 

 

Mucormycosis: Diagnosis and Management 

Mucormycosis is hard to identify and treat successfully because it can be identified only after 

a biopsy [68]. Tissues are analysed by advanced molecular methods in pathology [69]. 

Prompt diagnosis and early treatment are critical [70]. The saprophytic fungus begins by 

attacking the sinuses, subsequently it spreads to the mouth, eye orbit and to the lungs, leading 

to an acute phase wherein there is an inadequate supply of blood to the affected tissue which 

ultimately leads to tissue necrosis [62]. If it is left untreated, it can cause a loss of vision 

(temporary or permanent), fever, headache, redness in face, allergy etc.[71]. There are a 

number of laboratory assessments that can be performed, such as a tissue biopsy, a CT scan, 

and a reverse transcriptase-PCR [72]. Amphotericin B and Micafungin are the most 

prescribed medicines against these fungi [73]. Mucormycosis is an acute, potentially fatal, 

extremely aggressive fungal infection that can be treated by surgically removing the 

contaminated tissue. The infection originates within the nose and then moves on to infect the 

paranasal sinuses, followed by orbit/brain infiltration. conventional treatments involve 

antifungal medication and surgical removal of the infected region. Infection of the nose, 

internasal sinuses, neck regions by mucormycosis can be highly dangerous and even lead to 

death sometimes [19, 59, 71, 74].  There are numerous reports available which indicate that 

surgical excision of the afflicted areas successfully cures patients of the infection if it had 
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only spread locally [68, 75]. Hence, there has been a sudden demand in the search for a cure 

to mucormycosis [75, 76]. 

In silico prediction to treat mucormycosis disease 

As a consequence of the recent advancements in the field of computational research, in silico 

approaches can potentially provide substantial advantages for conducting risk assessments in 

compliance with the regulatory standards, for evaluating safety profile of a plethora of 

experimental compounds that can specifically target a particular disease, in the 

pharmaceutical industry [77]. 

Compounds having the strongest docking scores in the screening process may represent 

effective therapies [78]. Prior to these chemicals being potentially utilised by the 

pharmaceutical industry, however, toxicity must be meticulously evaluated in preclinical 

research [79]. Preclinical toxicological analysis of substances to ensure ultimate outcome and 

also to determine side effects is expensive as well as complicated with ethical challenges 

throughout drug development, which can take up to 12  years [80]. In order to better direct 

further toxicity studies and chemical selection, toxicity prediction based on computational 

methods can be employed for preliminary screening to identify relevant toxicity endpoints 

[81].  

Prior to COVID-19, mucormycosis had a death rate of about 50% [82] but widespread 

occurrence of the two infections together caused 85% of deaths  [83] The worst-case situation 

for any person was to have both widespread mucormycosis and SARS-CoV-2 [83, 84]. 

Steroids that were given to COVID-19 patients to lower inflammation in their lungs, resulted 

in raising their blood sugar levels, making them more susceptible to mucormycosis infection 

[85]. 

The immunological irregularity initiated by the SARS-CoV-2 virus, and excessive 

consumption of antibiotics, in patients with uncontrolled blood sugar levels, diabetic 

ketoacidosis, are considered to have led to the spike in  mucormycosis infected cases whilst 

the 2nd peak of the COVID-19 infection was going on, and the disease had been 

acknowledged as an epidemic in various regions in the country. It was called "black fungus" 

because of the black coloration it imparted to dead and dying tissue [86]. 

Many studies have been conducted all over the world to try materials that could be used to 

treat mucormycosis.  

 

Materials and Methods 

In Silico Prediction Methods to measure the extent of Toxicity of Drugs used to cure 

Mycosis [77]. 

For in silico methods, an online ProTox-II system served as the platform [77]. PubChem-

name of the molecules are used for the analysis [87].  

This platform is grounded in the following five steps: 

Step Classification Models for prediction 

1 Acute toxicity (oral toxicity) 6 classes of toxicity 

2 Toxicity against Fatal Organs 1 

3 Toxicological endpoints 4 

4 Toxicological different pathways 12 

5 Toxicological targets 15 
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ProTox-II tool is based on molecular similarity index and techniques of ML (machine 

learning) [77].  

A set of 33 models used  in order to predict various toxicity types including - acute toxicity, 

organ toxicity, adverse-outcomes (Tox21) pathways and their toxicity targets [88]. 

 

Prediction for Oral Toxicity  

PubChem name of compound analyse, were entered in ProTox prediction pane and clicked on 

Start-Tox prediction, depending on the Lethal-Dose50 (mg/kg body-weight), chemicals or 

mycotoxins were placed under 5 different toxicity classes [89], categorised as: 

Class-I.: Lethal upon consumption of Lethal-Dose50 of ≤ 5.0 mg/kg; 

Class-II.: Lethal upon consumption of 5mg/kg<Lethal-Dose50 of ≤ 50.0 mg/kg; 

Class-III.:Toxic upon consumption of 50mg/kg<Lethal-Dose50 of ≤300.0 mg/kg; 

Class-IV.: Injurious upon consumption of 300mg/kg<Lethal-Dose50 of ≤ 2000.0 mg/kg; 

Class-V.: Maybe injurious upon consumption, of 2000 mg/kg < Lethal-Dose50 of ≤ 5000.0 

mg/kg. 

Prediction of Toxicity of Drugs against various Organs 

We have compiled the drugs that are used to treat Mycosis by in silico methods. Drug 

toxicity studies were performed using the ProTox-II platform. 

In this prediction, models were based on data available on ProTox server from in vivo and in 

vitro investigations and the input data compared with available data. 

Prediction Toxicological Pathways 

Two different class of Toxicological Pathways are available for analysis in ProTox tool:  

1) Nuclear receptor signalling pathways: In these, class 7 pathways are available [90]. 

2) Stress response pathways: In this, class 5 pathways are available [91, 92]. 

Result and Discussion 
In Silico Toxicity Prediction - All the drugs  used in treatment may be harmful if swallowed 

as it is seen that they either belong to toxicity class 4 or class 5 none of them are fatal (See 

Table 1). 

Table 1 In Silico Toxicity Prediction for all drugs used to treat Covid-19  

S.NO Drugs used for Covid-

19 and Mucormycosis 

Analysed 

LD50 Value 

(mg/kg) 

Analysed 

Toxicity 

Class 

Analysed 

Similarity 

(%) 

Analysed 

accuracy 

(%) 

1. Enoxaparin 5000 5 58.14 67.38 

2. Methylprednisolone 160 4 100 100 

3. Dexamethasone 3000 5 100 100 

4. Remdesivir 1000 4 40.93 54.26 

5. Favipiravir 1717 4 39.16 23 

6. Isavuconazole 1000 4 37.66 23 

7. Itraconazole 320 4 100 100 

8. Micafungin 1000 4 45.13 54.26 

 

Organ-toxicity and toxicity endpoints:  

With the online (web server) ProTox-II system, the organ-toxicity of different drugs that were 

used to treat Covid-19 & Mucormycosis, it was observed that Isavuconazole, Enoxaparin, 

Isavuconazole, Itraconazole, Micafungin cause toxicity to the liver whereas other drugs such 

as Methylprednisolone, Dexamethasone, IItraconazole, Micafungin are immunotoxic, 

Favipiravir is carcinogenic and none of them are mutagenic or cytotoxic.  
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Table 2 Result of Organ toxicity by ProTrox-II web server for different Drugs used for 

treatment of Covid-19 Mucormycosis 

Ligands 
Organ Toxicity endpoints (Possibility/Probability) 

 

 Hepatotoxi

city 

Carcinogeni

city 

Immunotoxi

city 

Mutageni

city 

Cytotoxici

ty 

Enoxaparin + - - - - 

Methylprednisolon

e 

- - + - - 

Dexamethasone - - + - - 

Remdesivir - - - - - 

Favipiravir - + - - - 

Isavuconazole + - - - - 

Itraconazole + - + - - 

Micafungin + - + - - 

+ : Active, - : Inactive 

 

Toxicological pathways 

(i) Nuclear Receptor Signalling pathways 

Table 3 Nuclear receptor signalling pathways analysed by ProTrox-II web server for 

different Drugs used for treatment of Covid-19 Mucormycosis 

Ligand Different receptor and signalling pathways (Possibility/Probability) 

 Aryl 

Recept

or  

Andro

gen 

Recept

or  

Andro

gen 

Recept

or 

Ligand 

Bindin

g 

Domai

n  

Aromat

ase 

Estrog

en 

Recept

or 

Alpha 

Estrog

en 

Recept

or 

Ligand 

Bindin

g 

pathwa

y 

Peroxiso

me 

Proliferat

or 

Activated 

Receptor 

pathway 

Enoxaparin - - - - - - - 

Methylprednisolo

ne 

- + + - - - - 

Dexamethasone - + + - - - - 

Remdesivir - - - - - - - 

Favipiravir - - - - - - - 

Isavuconazole - - - - - - - 

Itraconazole - - - - - - - 

Micafungin - - - - - - - 

 

(ii) In Stress response pathways, five different stress pathways were analysed by ProTox II. 

Predictions results indicated that all the analysed drugs showed to interact with stress 

pathways mentioned in the table 4. 

According to the analysed result of drugs obtained against Nuclear receptor signalling 

pathways, it is concluded that Methylprednisolone and Dexamethasone could interact with 

Androgen Receptor and Ligand Binding Domain both showed maximum probabilities. 
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Table 4 Different Stress response pathways result using the ProTrox-II web server for 

different Drugs used for treatment of Covid-19 & Mucormycosis 

Ligands Stress response pathways (Possibility/Probability) 

 Nuclear 

factor 

(antioxid

ant 

responsiv

e 

element)  

Heat 

shock 

factor  
 

Mitochondr

ial 

Membrane 

Potential  

Tumor 

Suppresso

r factor 

(p53) 

ATPase 

family 

(AAA 

domain-

factor) 
 

Enoxaparin - - - - - 

Methylprednisolo

ne 

- - - - - 

Dexamethasone - - - - - 

Remdesivir - - - - - 

Favipiravir - - - - - 

Isavuconazole - - - - - 

Itraconazole - - - - - 

Micafungin - - - - - 

+ : Active, - : Inactive 

 

Conclusions  

Mucormycosis is a rare fungal disease that can spread rapidly and may ultimately prove 

lethal. The rarity of the illness implies that few people have experienced it or understand it, 

hence it remains untreated, and proves fatal. 

All the drugs used in its treatment may be harmful if swallowed, as it is seen that they either 

belong to toxicity class IV or class V and none of them are fatal. Results showed that all of 

the drugs interacted with all five stress-related pathways, such as antioxidant response 

pathways, heat-shock-factor-pathways, mitochondrial membrane-potential pathways, and p53 

suppressor gene pathways. However, Methylprednisolone and Dexamethasone could interact 

with the Receptor-Signalling-pathways such as Androgen-Receptor Ligand Domain and 

Androgen-Receptor pathways. The effects of a drug binding to the androgen receptor or its 

ligand binding domain depend on the specific drug and the context in which it is used, for 

example, if the drug blocks the AR and prevents its activation, it can be used to treat 

androgen-dependent diseases such as prostate cancer, which rely on AR signalling for their 

growth and survival. And if the drug binds to the AR and activates its signalling pathway, it 

can promote the growth and development of androgen-dependent tissues, such as the prostate 

gland and male external genitalia. This can be beneficial in certain medical conditions, such 

as hypogonadism or delayed puberty, where androgen therapy can help to restore normal 

physiological functions. So we may conclude that it is important to carefully evaluate the 

risks and benefits of Methylprednisolone and Dexamethasone as anti Covid drugs and each 

individual patient needs to be closely monitored for their response to such treatment. 
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