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Abstract  

The purpose of this paper is to introduce a new class of nano ideal generalized 

homeomorphism namely, 𝑛𝐼𝑠α𝑔 − homeomorphism (briefly, 𝑛𝐼𝑠α𝑔 − Hompsm.) and 

*𝑛𝐼𝑠α𝑔 −  Hompsm. Further, we have investigated certain characteristics and some 

equivalent conditions were discussed. Also, we have discussed its relationship with some 

of the existing mappings. 
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1. Introduction 

Parimala et.al[3] introduced and studied the notion of nano ideal generalized Cl.S.s 

in nano ideal topological spaces. Pasunkili Pandian et.al [6],[1] introduced 𝑛𝐼𝑠𝛼𝑔 − Cl. 

S.s and studied 𝑛𝐼𝑠𝛼𝑔 − Cl. Map., 𝑛𝐼𝑠𝛼𝑔 − Op. Map., 𝑛𝐼𝑠𝛼𝑔 − Cont.Fn. and 𝑛𝐼𝑠𝛼𝑔 − 

Irr.Fn. map in nano ideal topological spaces. In this paper, we introduce the concept of 

𝑛𝐼𝑠𝛼𝑔 − Hompsm. and *𝑛𝐼𝑠𝛼𝑔 − Hompsm. in nano ideal topological spaces and 

investigated its relationship with some of the existing Hompsm.s. Further, we have 

studied their characteristics. 

2. Preliminaries 

Definition 2.1 [4] A subset ℋ of a nano topological space (Γ, 𝒩) is said to be nano 

semi α − open set (briefly, 𝑛𝑠α − Op.S.) set if there exists a 𝑛α − Op. S. 𝒫 in Γ such 

that 𝒫 ⊆ ℋ ⊆ 𝑛 − 𝑐𝑙(𝒫) or equivalently if ℋ ⊆ 𝑛 − 𝑐𝑙(𝑛α − 𝑖𝑛𝑡(𝒫)). 
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Definition 2.2 [2] Let (Γ, 𝒩, ℐ) be a nano ideal topological space with an ideal ℐ on Γ 

where 𝒩 = τℛ  (𝑋) and (. )𝑛
∗  be a set operator from ℘(Γ) to ℘(Γ), (℘(Γ) the set of all 

subsets of Γ). For a subset ℋ ⊂ Γ, ℋ𝓃
∗ (ℐ, 𝒩) = {𝑥 ∈ Γ: 𝐺𝑛 ∩ ℋ ∉ ℐ, for every 𝐺𝑛 ∈

𝐺𝑛(𝑥)}, where 𝐺𝑛 = {𝐺𝑛: 𝑥 ∈ 𝐺𝑛, 𝐺𝑛 ∈ 𝒩} is called the nano local function (briefly, 

𝑛 − local function) of ℋ with respect to ℐ and 𝒩. We will simply write ℋ𝓃
∗  for 

ℋ𝓃
∗  (ℐ, 𝒩). 

Definition 2.3 [6] A subset ℋ of a nano ideal topological space (Γ, ℳ, 𝒥) is said to be 

nano ideal semi  α generalized Cl. S. (briefly, 𝑛𝐼𝑠α𝑔 − Cl. S.) if ℋ𝓃
∗ ⊆ 𝒦 whenever 

ℋ ⊆ 𝒦 and 𝒦 is nano semi α − open. 

Definition 2.4 [1] Let (Γ, ℳ, 𝒥) and (𝒱, ℳ′, 𝒥′) be nano ideal topological spaces. Then 

(i)  The mapping η: (Γ, ℳ, 𝒥) → (𝒱, ℳ′, 𝒥′) is said to be 𝑛𝐼𝑠α𝑔 − Cont.Fn. if 

the inverse image of every 𝑛 − Op. S. in (𝒱, ℳ′, 𝒥′) is 𝑛𝐼𝑠α𝑔 − open in 

(Γ, ℳ, 𝒥). 

(ii)  The mapping η: (Γ, ℳ, 𝒥) → (𝒱, ℳ′, 𝒥′) is said to be 𝑛𝐼𝑠α𝑔 − Irr.Fn. if the 

inverse image of every 𝑛𝐼𝑠α𝑔 − Cl. S. in (𝒱, ℳ′, 𝒥′) is 𝑛𝐼𝑠α𝑔 − closed in 

(Γ, ℳ, 𝒥). 

Definition 2.5 [6] A map η: (Γ, ℳ, 𝒥) → (𝒱, ℳ′, 𝒥′) is said to be 𝑛𝐼𝑠α𝑔 − Cl. Map. if 

for every 𝑛𝑠α − closed subset ℋ of (Γ, ℳ, 𝒥), η(ℋ) is 𝑛𝐼𝑠α𝑔 − Cl.S. 

The complement of 𝑛𝐼𝑠α𝑔 − Cl. Map. is 𝑛𝐼𝑠α𝑔 − Op. Map. 

Definition 2.6 [5] A map η: (Γ, ℳ, 𝒥) → (𝒱, ℳ′, 𝒥′) is called *𝑛𝐼𝑔 −  Op. Map. if for 

every 𝑛𝐼𝑔 − open subset ℋ of (Γ, ℳ, 𝒥), η(ℋ) is 𝑛𝐼𝑔 − Op.S. 

Definition 2.7 [5] (i) A map 𝑓: (Γ, , 𝒩, ℐ) → (Δ, 𝒩′, 𝒥) is called 𝑛 ∗ − Hompsm., if 

both 𝑓 and 𝑓−1 are 𝑛 ∗ − Cont.Fn. 

(ii) A map 𝑓: (Γ, 𝒩, ℐ) → (Δ, 𝒩′, 𝒥) is called 𝑛𝐼𝑔 − Hompsm., if both 𝑓 and 𝑓−1 are 

𝑛𝐼𝑔 − Cont.Fn. 

(iii) A map 𝑓: (Γ, 𝒩, ℐ) → (Δ, 𝒩′, 𝒥) is called *𝑛𝐼𝑔 − Hompsm., if both 𝑓 and 𝑓−1 are 

𝑛𝐼𝑔 − Irr.Fn. 

Theorem 2.1 [6] Every 𝑛𝐼𝑠α𝑔 − Cl. S. is 𝑛𝐼𝑔 − closed but not conversely. 

Theorem 2. 2 [6] Every 𝑛 ∗ -Cl. S. is 𝑛𝐼𝑠α𝑔 − closed but not conversely. 

Theorem 2.3 [1] Every 𝑛 ∗ − Cont.Fn. is 𝑛𝐼𝑠α𝑔 − Cont.Fn.but not conversely. 

Theorem 2.4 [1] Every 𝑛𝐼𝑠α𝑔 − Irr.Fn. function is 𝑛𝐼𝑠α𝑔 − Cont.Fn.but not 

conversely. 

Theorem 2.5 [1] Every 𝑛𝐼𝑠α𝑔 − Cont.Fn. is 𝑛𝐼𝑔 − Cont.Fn. 



On 𝑛𝐼𝑠𝛼𝑔 − Homeomorphism                                                                       Section A-Research paper 

 

Eur. Chem. Bull. 2023,12(Special issue 8),6911-6919                                                                                              6913 

 

 

 

3. 𝒏𝑰𝒔𝛂𝒈 − Homeomorphism 

Definition 3.1 A bijection η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) is said to be 𝑛𝐼𝑠α𝑔 − Hompsm. if 

both η and η−1 are 𝑛𝐼𝑠α𝑔 − Cont.Fn. 

Example 3.1 Let Γ = {𝑢1, 𝑢2, 𝑢3} ; Γ/ℛ = {{𝑢1, 𝑢2}, {𝑢3}} ; 𝒳 = {𝑢1, 𝑢3} ; 𝒥 =

{∅, {𝑢3}}. ℳ = {∅, Γ, {𝑢3}, {𝑢1, 𝑢2}}. 𝑛𝐼𝑠α𝑔 − Cl. S.s are ℘(Γ). Let Δ = {𝑣1, 𝑣2, 𝑣3} ; 

Δ/ℛ = {{𝑣1}, {𝑣2, 𝑣3}} ; 𝒴 = {𝑣1, 𝑣2} ; 𝒥′ = {∅, {𝑣2}}. ℳ′ = {∅, Γ, {𝑣1}, {𝑣2, 𝑣3}}. 

𝑛𝐼𝑠α𝑔 − Cl. S.s are ℘(Δ). Define η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) as η(𝑢1) = 𝑣1; η(𝑢2) =

𝑣2; η(𝑢3) = 𝑣3. Both η and η−1 are 𝑛𝐼𝑠α𝑔 − Cont.Fn. Hence, η is 𝑛𝐼𝑠α𝑔 − Hompsm. 

Theorem 3.1 

For any bijection η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′), the following axioms are equivalent. 

(1)  η−1: (Δ, ℳ′, 𝒥′) → (Γ, ℳ, 𝒥) is 𝑛𝐼𝑠α𝑔 − Cont.Fn. 

(2)  η is a 𝑛𝐼𝑠α𝑔 − Op. Map. 

(3)  η is 𝑛𝐼𝑠α𝑔 − Cl. Map. 

Proof. (1) ⇒ (2) : Let ℋ be a 𝑛 − Op. S. in (Γ, ℳ, 𝒥). Since η−1 is 𝑛𝐼𝑠α𝑔 − Cont.Fn., 

(η−1)−1(ℋ) = η(ℋ) is 𝑛𝐼𝑠α𝑔 − open in (Δ, ℳ′, 𝒥′). Hence, η is 𝑛𝐼𝑠α𝑔 − Op. Map. 

(2) ⇒ (3) : Let η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) be 𝑛𝐼𝑠α𝑔 − Op. Map. Let ℋ be a 𝑛 − Cl. S. 

in (Γ, ℳ, 𝒥).Then 𝒱 − ℋ is 𝑛 − Op. S. in (Γ, ℳ, 𝒥).Since η is 𝑛𝐼𝑠α𝑔 − Op. Map., 

η(Δ − ℋ) is 𝑛𝐼𝑠α𝑔 − Op. S. in (Δ, ℳ′, 𝒥′). This implies that η(Δ − ℋ) is 𝑛𝐼𝑠α𝑔 − 

Op. S. in (Δ, ℳ′, 𝒥′) so that η(ℋ) is 𝑛𝐼𝑠α𝑔 − Cl. S. in (Δ, ℳ′, 𝒥′). Therefore, η is 

𝑛𝐼𝑠α𝑔 − Cl. Map. 

(3) ⇒ (1): Assume that ℋ is a 𝑛 − Cl. S. in (Γ, ℳ, 𝒥). Then by hypothesis, 

(η−1)−1(ℋ) = η(ℋ) is 𝑛𝐼𝑠α𝑔 − Cl. S. in (Δ, ℳ′, 𝒥′) so that η−1 is 𝑛𝐼𝑠α𝑔 − Cont.Fn. 

Theorem 3.2 Let η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) be a bijective and 𝑛𝐼𝑠α𝑔 − Cont.Fn. Then 

the following statements are equivalent. 

(1)  η is a 𝑛𝐼𝑠α𝑔 − Op. Map. 

(2) η is a 𝑛𝐼𝑠α𝑔 − Hompsm. 

(3) η is a 𝑛𝐼𝑠α𝑔 − Cl. Map. 

Proof. (1) ⇒ (2):Let η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) be 𝑛𝐼𝑠α𝑔 − Op. Map. Let ℋ be a 𝑛 − 

Cl. S. in (Γ, ℳ, 𝒥).Then Δ − ℋ is 𝑛 − Op. S. in (Γ, ℳ, 𝒥).Since η is 𝑛𝐼𝑠α𝑔 − Op. 

Map., η(Δ − ℋ) is 𝑛𝐼𝑠α𝑔 − Op. S. in (Δ, ℳ′, 𝒥′). This implies that η(Δ − ℋ) is 

𝑛𝐼𝑠α𝑔 − Op. S. in (Δ, ℳ′, 𝒥′) so that η(ℋ) is 𝑛𝐼𝑠α𝑔 − Cl. S. in (Δ, ℳ′, 𝒥′). Therefore, 

η is a 𝑛𝐼𝑠α𝑔 − Cl. Map. By Theorem 3.1, η−1: (Δ, ℳ′, 𝒥′) → (Γ, ℳ, 𝒥) is 𝑛𝐼𝑠α𝑔 − 

Cont.Fn. By hypothesis, η is 𝑛𝐼𝑠α𝑔 − Cont.Fn.so that η is 𝑛𝐼𝑠α𝑔 − Hompsm. 

(2) ⇒ (3) : Assume that η is 𝑛𝐼𝑠α𝑔 − Hompsm. Then η and η−1 are 𝑛𝐼𝑠α𝑔 − Cont.Fn. 

By Theorem 3.1, η is a 𝑛𝐼𝑠α𝑔 − Cl. Map. 
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(3) ⇒ (1) : The result is trivial. 

Remark 3.1 Let η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) be bijevtive. η is said to be 𝑛𝐼𝑠α𝑔 − 

Hompsm. if η is both 𝑛𝐼𝑠α𝑔 − Cont.Fn.and 𝑛𝐼𝑠α𝑔 − Op. Map. 

Theorem 3.3 Let η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) be a 𝑛∗ − Hompsm. Then η is 𝑛𝐼𝑠α𝑔 − 

Hompsm. 

Proof. From the hypothesis, both η and η−1 are 𝑛∗ − Cont.Fn. Since every 𝑛∗ − 

Cont.Fn. is 𝑛𝐼𝑠α𝑔 − Cont.Fn., the result follows. 

Remark 3.2 The reverse implication of the previous need not be true. This is shown in 

the following example. 

Example 3.2 Let Γ = {𝑢1, 𝑢2, 𝑢3} ; Γ/ℛ = {{𝑢1, 𝑢2}, {𝑢3}} ; 𝒳 = {𝑢1, 𝑢3} ; 𝒥 =

{∅, {𝑢3}}. ℳ = {∅, Γ, {𝑢3}, {𝑢1, 𝑢2}}. 𝑛𝐼𝑠α𝑔 − Cl. S.s are ℘(Γ). 𝑛∗ − Cl. S.s are 

∅, Γ, {𝑢3}, {𝑢1, 𝑢2}. Let Δ = {𝑣1, 𝑣2, 𝑣3} ;  Δ/ℛ = {{𝑣1}, {𝑣2, 𝑣3}} ; 𝒴 = {𝑣1, 𝑣2} ; 𝒥′ =

{∅, {𝑣2}}. ℳ′ = {∅, Γ, {𝑣1}, {𝑣2, 𝑣3}}. 𝑛𝐼𝑠α𝑔 − Cl. S.s are ℘(Δ). 𝑛∗ − Cl. S.s are 

∅, Δ, {𝑣1}, {𝑣2}, {𝑣1, 𝑣2}, {𝑣2, 𝑣3}. Define η as in the Example 3.1. Here, η−1({𝑣2, 𝑣3}) =

{𝑢2, 𝑢3} is not 𝑛∗ − Cl. S. in (Γ, ℳ, 𝒥) for the 𝑛 − Cl. S. {𝑣2, 𝑣3} in (Δ, ℳ′, 𝒥′). 

Therefore, η is 𝑛𝐼𝑠α𝑔 − Hompsm. but not 𝑛∗ − Cont.Fn., hence η is not 𝑛∗ − Hompsm. 

Theorem 3.4 Every 𝑛𝐼𝑠α𝑔 − Hompsm. is a 𝑛𝐼𝑔 − Hompsm. 

Proof. Let η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) be a 𝑛𝐼𝑠α𝑔 − Hompsm. Then η and η−1 are 

𝑛𝐼𝑠α𝑔 − Cont.Fn.and η is a bijection. By Theorem 2.5, every 𝑛𝐼𝑠α𝑔 − Cont.Fn. is 

𝑛𝐼𝑔 − Cont.Fn., the result follows. 

Remark 3.3 The reverse implication of the preceding theorem is not valid as shown in 

the successive example. 

Example 3.3 Let Γ = {𝑢1, 𝑢2, 𝑢3, 𝑢4} ; Γ/ℛ = {{𝑢1}, {𝑢2, 𝑢3}, {𝑢4}} ; 𝒳 = {𝑢1, 𝑢4} ; 

𝒥 = {∅, {𝑢1}}. ℳ = ∅, Γ, {𝑢1, 𝑢4}. Here, 𝑛𝐼𝑠α𝑔 − Cl. S.s are ∅, Γ, {𝑢1}, {𝑢2, 𝑢3}, 

{𝑢1, 𝑢2, 𝑢3}, {𝑢2, 𝑢3, 𝑢4} and 𝑛𝐼𝑔 − Cl. S.s are ∅, Γ, {𝑢1}, {𝑢2}, {𝑢3}, {𝑢1, 𝑢2}, {𝑢1, 𝑢3}, 

{𝑢2, 𝑢3}, {𝑢2, 𝑢4}, {𝑢3, 𝑢4}, {𝑢1, 𝑢2, 𝑢3}, {𝑢1, 𝑢2, 𝑢4}, {𝑢1, 𝑢3, 𝑢4}, {𝑢2, 𝑢3, 𝑢4}. 

Let Δ = {𝑣1, 𝑣2, 𝑣3, 𝑣4} ; Δ/ℛ = {{𝑣1}, {𝑣2, 𝑣4}, {𝑣3}} ; 𝒴 = {𝑣1, 𝑣2} ; 𝒥′ =

{∅, {𝑣2}, {𝑣3}, {𝑣2, 𝑣3}}. ℳ′ = ∅, Δ, {𝑣1}, {𝑣2, 𝑣4}, {𝑣1, 𝑣2, 𝑣4}. Here ∅, Δ, {𝑣2}, {𝑣3}, 

{𝑣1, 𝑣3}, {𝑣2, 𝑣3}, {𝑣3, 𝑣4}, {𝑣1, 𝑣2, 𝑣3}, {𝑣1, 𝑣3, 𝑣4}, {𝑣2, 𝑣3, 𝑣4} are both 𝑛𝐼𝑠α𝑔 − Cl. S.s 

and 𝑛𝐼𝑔 − Cl. S.s. Define η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) as η(𝑢1) = 𝑣4; η(𝑢2) =

𝑣3; η(𝑢3) = 𝑣1; η(𝑢4) = 𝑣2. η−1 is both 𝑛𝐼𝑔 − Cont.Fn.and 𝑛𝐼𝑠α𝑔 − Cont.Fn. 

For the 𝑛 − Cl. S. {𝑣3} in (Δ, ℳ′, 𝒥′), η−1({𝑣3}) = {𝑢2} is 𝑛𝐼𝑔 − closed but not 

𝑛𝐼𝑠α𝑔 − closed in (Γ, ℳ, 𝒥). Therefore, η is 𝑛𝐼𝑔 − Cont.Fn. but not 𝑛𝐼𝑠α𝑔 − Cont.Fn.  

Hence, η is 𝑛𝐼𝑔 − homeomorphsim but not 𝑛𝐼𝑠α𝑔 − Hompsm. 

Remark 3.4 Composition of two 𝑛𝐼𝑠α𝑔 − Hompsm. need not be 𝑛𝐼𝑠α𝑔 − Hompsm. 

Example 3.4 Let Γ = {𝑢1, 𝑢2, 𝑢3} ; Γ/ℛ = {{𝑢1}, {𝑢2, 𝑢3}} ; 𝒳 = {𝑢2} ; 𝒥 = {∅, {𝑢2}}. 

ℳ = {∅, Γ, {𝑢2, 𝑢3}}. 𝑛𝐼𝑠𝛼𝑔 − Cl. S.s are ∅, Γ, {𝑢1}, {𝑢2}, {𝑢1, 𝑢2}, {𝑢1, 𝑢3}. Let Δ =

{𝑣1, 𝑣2, 𝑣3} ; Δ/ℛ = {{𝑣1, 𝑣3}, {𝑣2}} ; 𝒴 = {𝑣3} ; 𝒥′ = {∅, {𝑣1}}. ℳ′ = {∅, Γ, {𝑣1, 𝑣3}}. 
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𝑛𝐼𝑠𝛼𝑔 − Cl. S.s are ∅, Δ, {𝑣1}, {𝑣2}, {𝑣1, 𝑣2}, {𝑣2, 𝑣3}. Let Λ = {𝑤1, 𝑤2, 𝑤3}; Λ/ℛ =

{{𝑤1, 𝑤2}, {𝑤3}} ; 𝒵 = {𝑤2} ; 𝒥′′ = {∅, {𝑤2}}. ℳ′′ = {∅, Λ, {𝑤1, 𝑤2}}. 𝑛𝐼𝑠𝛼𝑔 − Cl. S.s 

are ∅, Λ, {𝑤2}, {𝑤3}, {𝑤1, 𝑤3}, {𝑤2, 𝑤3}. Define η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) as 𝜂(𝑢1) =

𝑣1; 𝜂(𝑢2) = 𝑣2; 𝜂(𝑢3) = 𝑣3. Define 𝜁: (Δ, ℳ′, 𝒥′) → (Λ, ℳ′′, 𝒥′′) as 𝜁(𝑣1) =

𝑤1; 𝜁(𝑣2) = 𝑤3; 𝜁(𝑣3) = 𝑤2. Both 𝜂 and 𝜁 are 𝑛𝐼𝑠𝛼𝑔 − Hompsm. As 𝜁 ∘

𝜂: (Γ, ℳ, 𝒥) → (Λ, ℳ′′, 𝒥′′), (𝜁 ∘ 𝜂)({𝑢2, 𝑢3}) = 𝜁(𝜂({𝑢2, 𝑢3})) = 𝜁({𝑣2, 𝑣3}) =

{𝑤2, 𝑤3} which is not 𝑛𝐼𝑠𝛼𝑔 − open in (Λ, ℳ′′, 𝒥′′) for 𝑛 − Op. S. {𝑢2, 𝑢3} of 

(Γ, ℳ, 𝒥). Therefore, 𝜁 ∘ 𝜂 is not 𝑛𝐼𝑠𝛼𝑔 − Hompsm. 

 

4. *𝒏𝑰𝒔𝛂𝒈 − Closed Maps 

Definition 4.1 A map η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) is said to be *𝑛𝐼𝑠α𝑔 − Cl. Map. if for 

every 𝑛𝐼𝑠α𝑔 − closed subset ℋ of (Γ, ℳ, 𝒥, η(ℋ) is 𝑛𝐼𝑠α𝑔 − closed. The complement 

of *𝑛𝐼𝑠α𝑔 − Cl. Map. is *𝑛𝐼𝑠α𝑔 − Op. Map. 

Example 4.1 Let Γ = {𝑢1, 𝑢2, 𝑢3, 𝑢4}; Γ/𝑅 = {{𝑢1}, {𝑢2, 𝑢3}, {𝑢4}} ; 𝒳 = {𝑢1, 𝑢3} and 

𝒥 = {∅, {𝑢2}}. ℳ = {∅, Γ, {𝑢1}, {𝑢1, 𝑢2, 𝑢3}, {𝑢2, 𝑢3}}. 𝑛𝐼𝑠α𝑔 − Cl. S.s are 

∅, Γ, {𝑢2}, {𝑢4}, {𝑢1, 𝑢4}, {𝑢2, 𝑢4}, {𝑢3, 𝑢4}, {𝑢1, 𝑢2, 𝑢4}, {𝑢1, 𝑢3, 𝑢4}, {𝑢2, 𝑢3, 𝑢4}. Let Δ =

{𝑣1, 𝑣2, 𝑣3, 𝑣4} ; Δ/𝑅 = {{𝑣1}, {𝑣2, 𝑣4}, {𝑣3}} ; 𝒴 = {𝑣1, 𝑣2} and 𝒥′ =

{∅, {𝑣2}, {𝑣3}, {𝑣2, 𝑣3}}.  𝑛𝐼𝑠α𝑔 − Cl. S.s are ∅, Γ, {𝑣2}, {𝑣3}, {𝑣1, 𝑣3}, {𝑣2, 𝑣3}, {𝑣3, 𝑣4}, 

{𝑣1, 𝑣2, 𝑣3}, {𝑣1, 𝑣3, 𝑣4}, {𝑣2, 𝑣3, 𝑣4}. Define η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) by η(𝑢1) =

𝑣4, η(𝑢2) = 𝑣2, η(𝑢3) = 𝑣1, η(𝑢4) = 𝑣4. Here, η is *𝑛𝐼𝑠α𝑔 − Cl. Map. 

Theorem 4.1 Every *𝑛𝐼𝑠α𝑔 − Cl. Map. is 𝑛𝐼𝑠α𝑔 − Cl. Map. 

Proof. Let η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) is *𝑛𝐼𝑠α𝑔 − Cl. Map. Let ℋ be a 𝑛 − closed 

seubset of (Γ, ℳ, 𝒥). Since every 𝑛 − Cl. S. is 𝑛𝐼𝑠α𝑔 − Cl. S., ℋ is 𝑛𝐼𝑠α𝑔 − Cl. S. in 

(Γ, ℳ, 𝒥). Also, since η is *𝑛𝐼𝑠α𝑔 − Cl. Map. η(ℋ) is 𝑛𝐼𝑠α𝑔 − Cl. S. in (Δ, ℳ′, 𝒥′) so 

that η is 𝑛𝐼𝑠α𝑔 − Cl. Map. 

Remark 4.1 A 𝑛𝐼𝑠α𝑔 − Cl. Map. Need not be *𝑛𝐼𝑠α𝑔 − Cl. Map. 

Example 4.2 Consider (Γ, ℳ, 𝒥) and (Δ, ℳ′, 𝒥′) of Example 4.1. Define 

η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) by η(𝑢1) = 𝑣4, η(𝑢2) = 𝑣1, η(𝑢3) = 𝑣2, η(𝑢4) = 𝑣3 which 

is 𝑛𝐼𝑠α𝑔 − Cl. Map. For the 𝑛𝐼𝑠α𝑔 − Cl. S. {𝑢2} of (Γ, ℳ, 𝒥), η({𝑢2}) = {𝑣1} is not 

𝑛𝐼𝑠α𝑔 − Cl. S. in (Δ, ℳ′, 𝒥′). Therefore, η is not *𝑛𝐼𝑠α𝑔 − Cl. Map. 

Theorem 4.2 A map η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) is *𝑛𝐼𝑠α𝑔 − Cl. Map. if and only if for 

every 𝑛𝐼𝑠α𝑔 − open subset ℋ containing η−1(𝒮), there is a 𝑛𝐼𝑠α𝑔 − Op. S. 𝒦 of 

(Δ, ℳ′, 𝒥′), η(ℋ) such that 𝒮 ⊆ 𝒦 and η−1(𝒦) ⊆ ℋ. 

Proof. Necessity: Let ℋ be a 𝑛𝐼𝑠α𝑔 − Op. S. in (Γ, ℳ, 𝒥). Then ℋ𝒸 is 𝑛𝐼𝑠α𝑔 − Cl. S. 

in (Γ, ℳ, 𝒥). Since η is *𝑛𝐼𝑠α𝑔 − Cl. Map., η(ℋ𝒸) is 𝑛𝐼𝑠α𝑔 − Cl. S. in (Δ, ℳ′, 𝒥′). 
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Thus, Γ − η(ℋ𝒸) is 𝑛𝐼𝑠α𝑔 − Op. S., say 𝒦 containing 𝒮 such that η−1(𝒦) ⊆

η−1(Δ − η(ℋ𝒸)) = Γ − ℋ𝒸 = ℋ. 

Sufficient: Let ℋ be 𝑛𝐼𝑠α𝑔 − Cl. S. in (Γ, ℳ, 𝒥). Then ℋ𝒸 is 𝑛𝐼𝑠α𝑔 − Op. S. in 

(Γ, ℳ, 𝒥). By hypothesis, there exists a 𝑛𝐼𝑠α𝑔 − Op. S. 𝒦 of (Δ, ℳ′, 𝒥′) such that 𝒮 ⊆

𝒦 and η−1(𝒦) ⊆ ℋ and so ℋ ⊆ (η−1(𝒦))
𝑐

= η−1(𝒦𝒸) which implies η(ℋ) = 𝒦𝒸. 

Since 𝒦𝒸 is *𝑛𝐼𝑠α𝑔 − closed, then η(ℋ) is *𝑛𝐼𝑠α𝑔 − closed in (Δ, ℳ′, 𝒥′). Hence, η 

is *𝑛𝐼𝑠α𝑔 − closed. 

 

5. *𝒏𝑰𝒔𝜶𝒈 − Homeomorphism 

Definition 5.1 A bijection η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) is said to be *𝑛𝐼𝑠α𝑔 − Hompsm. 

if both η and η−1 are 𝑛𝐼𝑠α𝑔 − Irr.Fn. 

Example 5.1 Let Γ = {𝑢1, 𝑢2, 𝑢3} ; Γ/ℛ = {{𝑢1, 𝑢2}, {𝑢3}} ; 𝒳 = {𝑢1, 𝑢3} ; 𝒥 =

{∅, {𝑢3}}. ℳ = {∅, Γ, {𝑢3}, {𝑢1, 𝑢2}}. ℘(Γ) is the 𝑛𝐼𝑠α𝑔 − Cl. S. 

Let Δ = {𝑣1, 𝑣2, 𝑣3} ; Δ/ℛ = {{𝑣1}, {𝑣2, 𝑣3}} ; 𝒴 = {𝑣1, 𝑣2} ; 𝒥′ = {∅, {𝑣2}}. 

ℳ′ = {∅, Δ, {𝑣1}, {𝑣2, 𝑣3}}. ℘(Δ) is the 𝑛𝐼𝑠α𝑔 − Cl. S. 

Define η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) as η(𝑢1) = 𝑣1; η(𝑢2) = 𝑣2; η(𝑢3) = 𝑣3. Both η and 

η−1 are 𝑛𝐼𝑠α𝑔 − Irr.Fn. Hence, η is *𝑛𝐼𝑠α𝑔 − Hompsm. 

Theorem 5.1 For any bijection η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′), the following axioms are 

equivalent. 

(1)  η−1: (Δ, ℳ′, 𝒥′) → (Γ, ℳ, 𝒥) is 𝑛𝐼𝑠α𝑔 − Irr.Fn. 

(2)  η is a *𝑛𝐼𝑠α𝑔 − Op. Map. 

(3)  η is *𝑛𝐼𝑠α𝑔 − Cl. Map. 

Proof. (1) ⇒ (2) : Let ℋ be a 𝑛𝐼𝑠α𝑔 − Op. S. in (Γ, ℳ, 𝒥). Since η−1 is 𝑛𝐼𝑠α𝑔 − 

Irr.Fn., (η−1)−1(ℋ) = η(ℋ) is 𝑛𝐼𝑠α𝑔 − open in (Δ, ℳ′, 𝒥′). Hence, η is *𝑛𝐼𝑠α𝑔 − 

Op. Map. 

(2) ⇒ (3) : Let η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) be *𝑛𝐼𝑠α𝑔 − Op. Map. Let ℋ be a 𝑛𝐼𝑠α𝑔 − 

Cl. S. in (Γ, ℳ, 𝒥).Then Γ − ℋ is 𝑛𝐼𝑠α𝑔 − Op. S. in (Γ, ℳ, 𝒥).Since η is *𝑛𝐼𝑠α𝑔 − 

Op. Map., η(Γ − ℋ) is 𝑛𝐼𝑠α𝑔 − Op. S. in (Δ, ℳ′, 𝒥′). This implies that η(ℋ)𝑐 is 

𝑛𝐼𝑠α𝑔 − Op. S. in (Δ, ℳ′, 𝒥′) so that η(ℋ) is 𝑛𝐼𝑠α𝑔 − Cl. S. in (Δ, ℳ′, 𝒥′). Therefore, 

η is *𝑛𝐼𝑠α𝑔 − Cl. Map. 

(3) ⇒ (1): Assume that ℋ is a 𝑛𝐼𝑠α𝑔 − Cl. S. in (Γ, ℳ, 𝒥). Then by hypothesis, 

(η−1)−1(ℋ) = η(ℋ) is 𝑛𝐼𝑠α𝑔 − Cl. S. in (Δ, ℳ′, 𝒥′) so that η−1 is 𝑛𝐼𝑠α𝑔 − Irr.Fn. 

map. 

Remark 5.1 Let η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) be bijevtive. η is said to be *𝑛𝐼𝑠α𝑔 − 

Hompsm. if η is both 𝑛𝐼𝑠α𝑔 − Irr.Fn. and *𝑛𝐼𝑠α𝑔 − Op. Map. 
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Theorem 5.2 Let η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) be a bijective and $𝑛𝐼𝑠_\𝑎𝑙𝑝ℎ𝑎 𝑔 − $ 

Irr.Fn. map. Then the following statements are equivalent. 

(1)  η is a *𝑛𝐼𝑠α𝑔 − Op. Map. 

(2)  η is a *𝑛𝐼𝑠α𝑔 − Hompsm. 

(3)  η is a *𝑛𝐼𝑠α𝑔 − Cl. Map. 

Proof. (1) ⇒ (2):Let η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) be *𝑛𝐼𝑠α𝑔 − Op. Map. Let ℋ be a 

𝑛𝐼𝑠α𝑔 − Cl. S. in (Γ, ℳ, 𝒥).Then its complement ℋ𝒸 is 𝑛𝐼𝑠α𝑔 − Op. S. in 

(Γ, ℳ, 𝒥).Since η is *𝑛𝐼𝑠α𝑔 − Op. Map., η(ℋ𝒸) is 𝑛𝐼𝑠α𝑔 − Op. S. in (Δ, ℳ′, 𝒥′). This 

implies that (η(ℋ))
𝑐
 is 𝑛𝐼𝑠α𝑔 − Op. S. in (Δ, ℳ′, 𝒥′) so that (η(ℋ)) is 𝑛𝐼𝑠α𝑔 − Cl. 

S. in (Δ, ℳ′, 𝒥′). Therefore, η is *𝑛𝐼𝑠α𝑔 − Cl. Map. By Theorem 4.3, 

η−1: (Δ, ℳ′, 𝒥′) → (Γ, ℳ, 𝒥) is 𝑛𝐼𝑠α𝑔 − Irr.Fn. By hypothesis, η is 𝑛𝐼𝑠α𝑔 − Irr.Fn. so 

that η is *𝑛𝐼𝑠α𝑔 − Hompsm. 

(2) ⇒ (3) : Assume that η is *𝑛𝐼𝑠α𝑔 − Hompsm. Then η and η−1 are 𝑛𝐼𝑠α𝑔 − Irr.Fn. By 

Theorem 4.3, η is *𝑛𝐼𝑠α𝑔 − Cl. Map. 

(3) ⇒ (1) : The result is trivial. 

Theorem 5.3 Every *𝑛𝐼𝑠α𝑔 − Hompsm. is 𝑛𝐼𝑠α𝑔 − Hompsm. 

Proof. Let η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) be *𝑛𝐼𝑠α𝑔 − Hompsm. Then η and η−1 are 

𝑛𝐼𝑠α𝑔 − Irr.Fn. and η is bijective.  

Since every 𝑛𝐼𝑠α𝑔 − Irr.Fn. function is 𝑛𝐼𝑠α𝑔 − Cont.Fn., both η and η−1 are 𝑛𝐼𝑠α𝑔 − 

Cont.Fn. Therefore, η is 𝑛𝐼𝑠α𝑔 − Hompsm. 

Remark 5.2 The reverse implication of the preceding theorem is not valid as shown in 

the successive example. 

Example 5.2 Let Γ = {𝑢1, 𝑢2, 𝑢3, 𝑢4} ; Γ/ℛ = {{𝑢1}, {𝑢2, 𝑢3}, {𝑢4}} ; 𝒳 = {𝑢1, 𝑢3} ; 

𝒥 = {∅, {𝑢3}}. ℳ = {∅, Γ, {𝑢1}, {𝑢2, 𝑢3}, {𝑢1, 𝑢2, 𝑢3}}. 𝑛𝐼𝑠α𝑔 − Cl. S.s are ∅, Γ, {𝑢3}, 

{𝑢4}, {𝑢1, 𝑢4}, {𝑢2, 𝑢4}, {𝑢3, 𝑢4}, {𝑢1, 𝑢2, 𝑢4}, {𝑢1, 𝑢3, 𝑢4}, {𝑢2, 𝑢3, 𝑢4}. 

Let Δ = {𝑣1, 𝑣2, 𝑣3, 𝑣4} ; Δ/ℛ = {{𝑣1, 𝑣3}, {𝑣2}, {𝑣4}} ; 𝒴 = {𝑣2, 𝑣3} ; 𝒥′ = {∅, {𝑣1}}. 

ℳ′ = {∅, Δ, {𝑣2}, {𝑣1, 𝑣3}, {𝑣1, 𝑣2, 𝑣3}. 𝑛𝐼𝑠α𝑔 − Cl. S.s are ∅, Δ, {𝑣1}, {𝑣4}, {𝑣1, 𝑣4}, 

{𝑣2, 𝑣4}, {𝑣3, 𝑣4}, {𝑣1, 𝑣2, 𝑣4}, {𝑣1, 𝑣3, 𝑣4}, {𝑣2, 𝑣3, 𝑣4}. 

Define η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) as η(𝑢1) = 𝑣1; η(𝑢2) = 𝑣2; η(𝑢3) = 𝑣3; η(𝑢4) = 𝑣4 

which is 𝑛𝐼𝑠α𝑔 − Hompsm. For the 𝑛𝐼𝑠α𝑔 − Cl. S. {𝑣1} in (Δ, ℳ′, 𝒥′), η−1({𝑣1}) =

{𝑢1} is not 𝑛𝐼𝑠α𝑔 − Cl. S. in (Γ, ℳ, 𝒥) hence, η−1 is not 𝑛𝐼𝑠α𝑔 − Irr.Fn. Therefore, η is 

𝑛𝐼𝑠α𝑔 − Hompsm. but not *𝑛𝐼𝑠α𝑔 −Hompsm. 

Theorem 5.4 Composition of two *𝑛𝐼𝑠α𝑔 −  Hompsm. is *𝑛𝐼𝑠α𝑔 − Hompsm.  

Proof. Let η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) and ζ: (Δ, ℳ′, 𝒥′) → (Λ, 𝒩′, ℐ′) be *𝑛𝐼𝑠α𝑔 − 

Hompsm. respectively. Then ζ ∘ η: (Γ, ℳ, 𝒥) → (Λ, 𝒩′, ℐ′). Let ℋ be 𝑛𝐼𝑠α𝑔 − Op. S. 

in (Λ, 𝒩′, ℐ′). Since ζ is 𝑛𝐼𝑠α𝑔 − Irr.Fn., ζ−1(ℋ) is 𝑛𝐼𝑠α𝑔 − open in (Δ, ℳ′, 𝒥′). Since 

η is 𝑛𝐼𝑠α𝑔 − Irr.Fn., η−1(ℋ) is 𝑛𝐼𝑠α𝑔 − open in (Γ, ℳ, 𝒥). Therefore, ζ ∘ η is 𝑛𝐼𝑠α𝑔 − 
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Irr.Fn. Also, for the 𝑛𝐼𝑠α𝑔 − Op. S. ℋ in (Γ, ℳ, 𝒥), η(ℋ) is 𝑛𝐼𝑠α𝑔 − open in 

(Δ, ℳ′, 𝒥′), since η−1 is 𝑛𝐼𝑠α𝑔 − Irr.Fn. Since ζ is 𝑛𝐼𝑠α𝑔 − Irr.Fn., (ζ ∘ η)(ℋ) =

ζ(η(ℋ)) is 𝑛𝐼𝑠α𝑔 − open in (Λ, 𝒩′, ℐ′). Therefore, (ζ ∘ η)−1 is 𝑛𝐼𝑠α𝑔 − Irr.Fn. Hence, 

ζ ∘ η is *𝑛𝐼𝑠α𝑔 −Hompsm. 

Theorem 5.5 The set 𝑠∗𝑛𝐼𝑠α𝑔 − ℎ(Γ, ℳ, 𝒥) is a group under the composition of 

mapping. 

Proof. Define a binary operation ∗: *𝑛𝐼𝑠α𝑔 − ℎ(Γ, ℳ, 𝒥) × *𝑛𝐼𝑠α𝑔 − ℎ(Γ, ℳ, 𝒥) → 

*𝑛𝐼𝑠α𝑔 − ℎ(Γ, ℳ, 𝒥) by η ∗ ζ =  η ∘ ζ for all η, ζ ∈∗ 𝑛𝐼𝑠α𝑔 − ℎ(Γ, ℳ, 𝒥) and ∘ is the 

usual operation of map. Then by Theorem 4.9, η ∘ ζ ∈∗ 𝑛𝐼𝑠α𝑔 − ℎ(Γ, ℳ, 𝒥). We know 

that the composition of maps associative. The identity map 𝐼: (Γ, ℳ, 𝒥) → (Γ, ℳ, 𝒥) 

belonging to *𝑛𝐼𝑠α𝑔 − ℎ(Γ, ℳ, 𝒥) serves as the identity element. For any η ∈∗ 𝑛𝐼𝑠α𝑔 −

ℎ(Γ, ℳ, 𝒥), η ∘ η−1 = η ∘ η−1 = 𝐼. Hence, inverse exists for each element of *𝑛𝐼𝑠α𝑔 −

ℎ(Γ, ℳ, 𝒥). *𝑛𝐼𝑠α𝑔 − ℎ(Γ, ℳ, 𝒥) forms a group under the composition of maps. 

Theorem 5.6 Let η: (Γ, ℳ, 𝒥) → (Δ, ℳ′, 𝒥′) be an *𝑛𝐼𝑠α𝑔 − Hompsm. Then η induces 

an isomorphism from the group *𝑛𝐼𝑠α𝑔 − ℎ(Γ, ℳ, 𝒥) onto the group *𝑛𝐼𝑠α𝑔 −

ℎ (Δ, ℳ′, 𝒥′). 

Proof. Let η ∈ ∗𝑛𝐼𝑠α𝑔 − ℎ(Δ, ℳ′, 𝒥′). Define a map Ωη: ∗𝑛𝐼𝑠α𝑔 − ℎ(Γ, ℳ, 𝒥) →

 ∗𝑛𝐼𝑠α𝑔 − ℎ(Δ, ℳ′, 𝒥′) by Ωη(σ) = η ∘ σ ∘ η−1 for every σ ∈ ∗𝑛𝐼𝑠α𝑔 − ℎ(Γ, ℳ, 𝒥). 

Then σ is a bijection. Now, for all ζ, σ ∈ ∗𝑛𝐼𝑠α𝑔 − ℎ(Γ, ℳ, 𝒥),  

Ωη(ζ ∘ σ) = η ∘ (ζ ∘ σ)η−1 = (η ∘ η−1) ∘ (ηση−1) = Ωη(ζ) ∘ Ωη(σ). 

6.  Conclusion 
In this paper, we introduce Homeomorphism using 𝑛𝐼𝑠𝛼𝑔 − closed sets and discussed 

some of its characteristics. Further, we investigated some of the equivalent conditions. 
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