

On $nIs_{\alpha}g$ – Homeomorphism

G.BABY SUGANYA¹, DR. S.PASUNKILIPANDIAN², DR. M. KALAISELVI³

¹Research Scholar (Reg.No. 19222072092002), Department of Mathematics, Govindammal Aditanar College for Women (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012,Tamil Nadu, India), Tiruchendur.

²Associate Professor, Department of Mathematics, Aditanar College of Arts and Science (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), Tiruchendur, Tamil Nadu, India,

³Associate Professor, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), Tamil Nadu, India,

Abstract

The purpose of this paper is to introduce a new class of nano ideal generalized homeomorphism namely, $nIs_{\alpha}g$ – homeomorphism (briefly, $nIs_{\alpha}g$ – Hompsm.) and $*nIs_{\alpha}g$ – Hompsm. Further, we have investigated certain characteristics and some equivalent conditions were discussed. Also, we have discussed its relationship with some of the existing mappings.

Keywords: $nIs_{\alpha}g$ - continuity, $nIs_{\alpha}g$ - irresolute function, $nIs_{\alpha}g$ - homeomorphism, $*nIs_{\alpha}g$ - homeomorphism

2010 AMS subject classification: 54C05, 54C10

DOI: 10.48047/ecb/2023.12.si8.586

1. Introduction

Parimala et.al[3] introduced and studied the notion of nano ideal generalized Cl.S.s in nano ideal topological spaces. Pasunkili Pandian et.al [6],[1] introduced $nIs_{\alpha}g - Cl$. S.s and studied $nIs_{\alpha}g - Cl$. Map., $nIs_{\alpha}g - Op$. Map., $nIs_{\alpha}g - Cont.Fn$. and $nIs_{\alpha}g - Irr.Fn$. map in nano ideal topological spaces. In this paper, we introduce the concept of $nIs_{\alpha}g - Hompsm$. and $*nIs_{\alpha}g - Hompsm$. in nano ideal topological spaces and investigated its relationship with some of the existing Hompsm.s. Further, we have studied their characteristics.

2. Preliminaries

Definition 2.1 [4] A subset \mathcal{H} of a nano topological space (Γ, \mathcal{N}) is said to be nano semi α – open set (briefly, ns_{α} – Op.S.) set if there exists a $n\alpha$ – Op. S. \mathcal{P} in Γ such that $\mathcal{P} \subseteq \mathcal{H} \subseteq n - cl(\mathcal{P})$ or equivalently if $\mathcal{H} \subseteq n - cl(n\alpha - int(\mathcal{P}))$. **Definition 2.2** [2] Let $(\Gamma, \mathcal{N}, \mathcal{I})$ be a nano ideal topological space with an ideal \mathcal{I} on Γ where $\mathcal{N} = \tau_{\mathcal{R}}(X)$ and $(.)_n^*$ be a set operator from $\wp(\Gamma)$ to $\wp(\Gamma)$, $(\wp(\Gamma)$ the set of all subsets of Γ). For a subset $\mathcal{H} \subset \Gamma, \mathcal{H}_n^*(\mathcal{I}, \mathcal{N}) = \{x \in \Gamma: G_n \cap \mathcal{H} \notin \mathcal{I}, \text{ for every } G_n \in$ $G_n(x)\}$, where $G_n = \{G_n: x \in G_n, G_n \in \mathcal{N}\}$ is called the nano local function (briefly, n – local function) of \mathcal{H} with respect to \mathcal{I} and \mathcal{N} . We will simply write \mathcal{H}_n^* for $\mathcal{H}_n^*(\mathcal{I}, \mathcal{N})$.

Definition 2.3 [6] A subset \mathcal{H} of a nano ideal topological space $(\Gamma, \mathcal{M}, \mathcal{J})$ is said to be nano ideal semi α generalized Cl. S. (briefly, $nIs_{\alpha}g - \text{Cl. S.}$) if $\mathcal{H}_{n}^{*} \subseteq \mathcal{K}$ whenever $\mathcal{H} \subseteq \mathcal{K}$ and \mathcal{K} is nano semi α – open.

Definition 2.4 [1] Let $(\Gamma, \mathcal{M}, \mathcal{J})$ and $(\mathcal{V}, \mathcal{M}', \mathcal{J}')$ be nano ideal topological spaces. Then

- (i) The mapping $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\mathcal{V}, \mathcal{M}', \mathcal{J}')$ is said to be $nIs_{\alpha}g$ Cont.Fn. if the inverse image of every n Op. S. in $(\mathcal{V}, \mathcal{M}', \mathcal{J}')$ is $nIs_{\alpha}g$ open in $(\Gamma, \mathcal{M}, \mathcal{J})$.
- (ii) The mapping $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\mathcal{V}, \mathcal{M}', \mathcal{J}')$ is said to be $nIs_{\alpha}g$ Irr.Fn. if the inverse image of every $nIs_{\alpha}g$ Cl. S. in $(\mathcal{V}, \mathcal{M}', \mathcal{J}')$ is $nIs_{\alpha}g$ closed in $(\Gamma, \mathcal{M}, \mathcal{J})$.

Definition 2.5 [6] A map η : $(\Gamma, \mathcal{M}, \mathcal{J}) \rightarrow (\mathcal{V}, \mathcal{M}', \mathcal{J}')$ is said to be $nIs_{\alpha}g$ - Cl. Map. if for every ns_{α} - closed subset \mathcal{H} of $(\Gamma, \mathcal{M}, \mathcal{J})$, $\eta(\mathcal{H})$ is $nIs_{\alpha}g$ - Cl.S. The complement of $nIs_{\alpha}g$ - Cl. Map. is $nIs_{\alpha}g$ - Op. Map.

Definition 2.6 [5] A map η : $(\Gamma, \mathcal{M}, \mathcal{J}) \rightarrow (\mathcal{V}, \mathcal{M}', \mathcal{J}')$ is called *nIg - Op. Map. if for every nIg - open subset \mathcal{H} of $(\Gamma, \mathcal{M}, \mathcal{J}), \eta(\mathcal{H})$ is nIg - Op.S.

Definition 2.7 [5] (i) A map $f: (\Gamma, \mathcal{N}, \mathcal{I}) \to (\Delta, \mathcal{N}', \mathcal{J})$ is called n * - Hompsm., if both f and f^{-1} are n * - Cont.Fn.

(ii) A map $f: (\Gamma, \mathcal{N}, \mathcal{I}) \to (\Delta, \mathcal{N}', \mathcal{J})$ is called nIg – Hompsm., if both f and f^{-1} are nIg – Cont.Fn.

(iii) A map $f: (\Gamma, \mathcal{N}, \mathcal{I}) \to (\Delta, \mathcal{N}', \mathcal{J})$ is called *nIg – Hompsm., if both f and f^{-1} are nIg – Irr.Fn.

Theorem 2.1 [6] Every $nIs_{\alpha}g$ – Cl. S. is nIg – closed but not conversely.

Theorem 2. 2 [6] Every n * -Cl. S. is $nIs_{\alpha}g$ - closed but not conversely.

Theorem 2.3 [1] Every n * - Cont.Fn. is $nIs_{\alpha}g - \text{Cont.Fn.but}$ not conversely.

Theorem 2.4 [1] Every $nIs_{\alpha}g$ – Irr.Fn. function is $nIs_{\alpha}g$ – Cont.Fn.but not conversely.

Theorem 2.5 [1] Every $nIs_{\alpha}g$ – Cont.Fn. is nIg – Cont.Fn.

3. $nIs_{\alpha}g$ – Homeomorphism

Definition 3.1 A bijection $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ is said to be $nIs_{\alpha}g$ – Hompsm. if both η and η^{-1} are $nIs_{\alpha}g$ – Cont.Fn. **Example 3.1** Let $\Gamma = \{u_1, u_2, u_3\}$; $\Gamma/\mathcal{R} = \{\{u_1, u_2\}, \{u_3\}\}$; $\mathcal{X} = \{u_1, u_3\}$; $\mathcal{J} = \{\emptyset, \{u_3\}\}$. $\mathcal{M} = \{\emptyset, \Gamma, \{u_3\}, \{u_1, u_2\}\}$. $nIs_{\alpha}g$ – Cl. S.s are $\wp(\Gamma)$. Let $\Delta = \{v_1, v_2, v_3\}$; $\Delta/\mathcal{R} = \{\{v_1\}, \{v_2, v_3\}\}$; $\mathcal{Y} = \{v_1, v_2\}$; $\mathcal{J}' = \{\emptyset, \{v_2\}\}$. $\mathcal{M}' = \{\emptyset, \Gamma, \{v_1\}, \{v_2, v_3\}\}$. $nIs_{\alpha}g$ – Cl. S.s are $\wp(\Delta)$. Define $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ as $\eta(u_1) = v_1; \eta(u_2) = v_2; \eta(u_3) = v_3$. Both η and η^{-1} are $nIs_{\alpha}g$ – Cont.Fn. Hence, η is $nIs_{\alpha}g$ – Hompsm. **Theorem 3.1**

For any bijection $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$, the following axioms are equivalent.

- (1) $\eta^{-1}: (\Delta, \mathcal{M}', \mathcal{J}') \to (\Gamma, \mathcal{M}, \mathcal{J})$ is $nIs_{\alpha}g$ Cont.Fn.
- (2) η is a $nIs_{\alpha}g$ Op. Map.
- (3) η is $nIs_{\alpha}g$ Cl. Map.

Proof. (1) \Rightarrow (2) : Let \mathcal{H} be a $n - \text{Op. S. in } (\Gamma, \mathcal{M}, \mathcal{J})$. Since η^{-1} is $nIs_{\alpha}g - \text{Cont.Fn.}$, $(\eta^{-1})^{-1}(\mathcal{H}) = \eta(\mathcal{H})$ is $nIs_{\alpha}g - \text{open in } (\Delta, \mathcal{M}', \mathcal{J}')$. Hence, η is $nIs_{\alpha}g - \text{Op. Map.}$ (2) \Rightarrow (3) : Let η : ($\Gamma, \mathcal{M}, \mathcal{J}$) \rightarrow ($\Delta, \mathcal{M}', \mathcal{J}'$) be $nIs_{\alpha}g - \text{Op. Map.}$ Let \mathcal{H} be a n - Cl. S.in ($\Gamma, \mathcal{M}, \mathcal{J}$). Then $\mathcal{V} - \mathcal{H}$ is n - Op. S. in ($\Gamma, \mathcal{M}, \mathcal{J}$). Since η is $nIs_{\alpha}g - \text{Op. Map.}$, $\eta(\Delta - \mathcal{H})$ is $nIs_{\alpha}g - \text{Op. S.}$ in ($\Delta, \mathcal{M}', \mathcal{J}'$). This implies that $\eta(\Delta - \mathcal{H})$ is $nIs_{\alpha}g -$ Op. S. in ($\Delta, \mathcal{M}', \mathcal{J}'$) so that $\eta(\mathcal{H})$ is $nIs_{\alpha}g - \text{Cl. S. in } (\Delta, \mathcal{M}', \mathcal{J}')$. Therefore, η is $nIs_{\alpha}g - \text{Cl. Map.}$

(3) \Rightarrow (1): Assume that \mathcal{H} is a $n - \text{Cl. S. in } (\Gamma, \mathcal{M}, \mathcal{J})$. Then by hypothesis, $(\eta^{-1})^{-1}(\mathcal{H}) = \eta(\mathcal{H})$ is $nIs_{\alpha}g - \text{Cl. S. in } (\Delta, \mathcal{M}', \mathcal{J}')$ so that η^{-1} is $nIs_{\alpha}g - \text{Cont.Fn.}$ **Theorem 3.2** Let $n: (\Gamma, \mathcal{M}, \mathcal{J}) \Rightarrow (\Delta, \mathcal{M}', \mathcal{J}')$ be a bijective and $nIs_{\alpha}g - \text{Cont.Fn.}$ Theorem 3.2.

Theorem 3.2 Let $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ be a bijective and $nIs_{\alpha}g$ – Cont.Fn. Then the following statements are equivalent.

- (1) η is a $nIs_{\alpha}g$ Op. Map.
- (2) η is a $nIs_{\alpha}g$ Hompsm.
- (3) η is a $nIs_{\alpha}g$ Cl. Map.

Proof. (1) \Rightarrow (2):Let η : ($\Gamma, \mathcal{M}, \mathcal{J}$) \rightarrow ($\Delta, \mathcal{M}', \mathcal{J}'$) be $nIs_{\alpha}g - \text{Op.}$ Map. Let \mathcal{H} be a n - Cl. S. in ($\Gamma, \mathcal{M}, \mathcal{J}$). Then $\Delta - \mathcal{H}$ is n - Op. S. in ($\Gamma, \mathcal{M}, \mathcal{J}$). Since η is $nIs_{\alpha}g - \text{Op.}$ Map., $\eta(\Delta - \mathcal{H})$ is $nIs_{\alpha}g - \text{Op. S. in}$ ($\Delta, \mathcal{M}', \mathcal{J}'$). This implies that $\eta(\Delta - \mathcal{H})$ is $nIs_{\alpha}g - \text{Op. S. in}$ ($\Delta, \mathcal{M}', \mathcal{J}'$) so that $\eta(\mathcal{H})$ is $nIs_{\alpha}g - \text{Cl. S. in}$ ($\Delta, \mathcal{M}', \mathcal{J}'$). Therefore, η is a $nIs_{\alpha}g - \text{Cl.}$ Map. By Theorem 3.1, η^{-1} : ($\Delta, \mathcal{M}', \mathcal{J}'$) \rightarrow ($\Gamma, \mathcal{M}, \mathcal{J}$) is $nIs_{\alpha}g - \text{Cont.Fn.}$ By hypothesis, η is $nIs_{\alpha}g - \text{Cont.Fn. so that } \eta$ is $nIs_{\alpha}g - \text{Hompsm.}$ (2) \Rightarrow (3) : Assume that η is $nIs_{\alpha}g - \text{Cl. Map.}$ $(3) \Rightarrow (1)$: The result is trivial.

Remark 3.1 Let $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ be bijevtive. η is said to be $nIs_{\alpha}g$ – Hompsm. if η is both $nIs_{\alpha}g$ – Cont.Fn.and $nIs_{\alpha}g$ – Op. Map.

Theorem 3.3 Let $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ be a n^* – Hompsm. Then η is $nIs_{\alpha}g$ – Hompsm.

Proof. From the hypothesis, both η and η^{-1} are n^* – Cont.Fn. Since every n^* – Cont.Fn. is $nIs_{\alpha}g$ – Cont.Fn., the result follows.

Remark 3.2 The reverse implication of the previous need not be true. This is shown in the following example.

Example 3.2 Let $\Gamma = \{u_1, u_2, u_3\}$; $\Gamma/\mathcal{R} = \{\{u_1, u_2\}, \{u_3\}\}$; $\mathcal{X} = \{u_1, u_3\}$; $\mathcal{J} = \{\emptyset, \{u_3\}\}$. $\mathcal{M} = \{\emptyset, \Gamma, \{u_3\}, \{u_1, u_2\}\}$. $nIs_{\alpha}g - Cl.$ S.s are $\wp(\Gamma)$. $n^* - Cl.$ S.s are $\emptyset, \Gamma, \{u_3\}, \{u_1, u_2\}$. Let $\Delta = \{v_1, v_2, v_3\}$; $\Delta/\mathcal{R} = \{\{v_1\}, \{v_2, v_3\}\}$; $\mathcal{Y} = \{v_1, v_2\}$; $\mathcal{J}' = \{\emptyset, \{v_2\}\}$. $\mathcal{M}' = \{\emptyset, \Gamma, \{v_1\}, \{v_2, v_3\}\}$. $nIs_{\alpha}g - Cl.$ S.s are $\wp(\Delta)$. $n^* - Cl.$ S.s are $\emptyset, \Delta, \{v_1\}, \{v_2\}, \{v_1, v_2\}, \{v_2, v_3\}$. Define η as in the Example 3.1. Here, $\eta^{-1}(\{v_2, v_3\}) = \{u_2, u_3\}$ is not $n^* - Cl.$ S. in $(\Gamma, \mathcal{M}, \mathcal{J})$ for the n - Cl. S. $\{v_2, v_3\}$ in $(\Delta, \mathcal{M}', \mathcal{J}')$. Therefore, η is $nIs_{\alpha}g - Hompsm.$ but not $n^* - \text{Cont.Fn.}$, hence η is not $n^* - \text{Hompsm.}$

Proof. Let $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ be a $nIs_{\alpha}g$ – Hompsm. Then η and η^{-1} are $nIs_{\alpha}g$ – Cont.Fn.and η is a bijection. By Theorem 2.5, every $nIs_{\alpha}g$ – Cont.Fn. is nIg – Cont.Fn., the result follows.

Remark 3.3 The reverse implication of the preceding theorem is not valid as shown in the successive example.

Example 3.3 Let $\Gamma = \{u_1, u_2, u_3, u_4\}$; $\Gamma/\mathcal{R} = \{\{u_1\}, \{u_2, u_3\}, \{u_4\}\}$; $\mathcal{X} = \{u_1, u_4\}$; $\mathcal{J} = \{\emptyset, \{u_1\}\}$. $\mathcal{M} = \emptyset, \Gamma, \{u_1, u_4\}$. Here, $nIs_{\alpha}g - \text{Cl. S.s are } \emptyset, \Gamma, \{u_1\}, \{u_2, u_3\}, \{u_1, u_2, u_3\}, \{u_2, u_3, u_4\}$ and $nIg - \text{Cl. S.s are } \emptyset, \Gamma, \{u_1\}, \{u_2\}, \{u_3\}, \{u_1, u_2\}, \{u_1, u_3\}, \{u_2, u_3\}, \{u_2, u_4\}, \{u_3, u_4\}, \{u_1, u_2, u_3\}, \{u_1, u_2, u_4\}, \{u_1, u_2, u_4\}, \{u_1, u_3, u_4\}, \{u_2, u_3, u_4\}$. Let $\Delta = \{v_1, v_2, v_3, v_4\}$; $\Delta/\mathcal{R} = \{\{v_1\}, \{v_2, v_4\}, \{v_3\}\}$; $\mathcal{Y} = \{v_1, v_2\}$; $\mathcal{J}' = \{\emptyset, \{v_2\}, \{v_3\}, \{v_2, v_3\}\}$. $\mathcal{M}' = \emptyset, \Delta, \{v_1\}, \{v_2, v_4\}, \{v_1, v_2, v_4\}$. Here $\emptyset, \Delta, \{v_2\}, \{v_3\}, \{v_1, v_3, v_4\}, \{v_2, v_3\}, \{v_1, v_2, v_3\}, \{v_1, v_2, v_3\}, \{v_1, v_3, v_4\}, \{v_2, v_3, v_4\}$ are both $nIs_{\alpha}g - \text{Cl. S.s}$ and $nIg - \text{Cl. S.s. Define } \eta$: $(\Gamma, \mathcal{M}, \mathcal{J}) \rightarrow (\Delta, \mathcal{M}', \mathcal{J}')$ as $\eta(u_1) = v_4$; $\eta(u_2) = v_3$; $\eta(u_3) = v_1$; $\eta(u_4) = v_2$. η^{-1} is both $nIg - \text{Cont.Fn. and } nIs_{\alpha}g - \text{Cont.Fn.}$ For the $n - \text{Cl. S. }\{v_3\}$ in $(\Delta, \mathcal{M}', \mathcal{J}')$, $\eta^{-1}(\{v_3\}) = \{u_2\}$ is nIg - closed but not $nIs_{\alpha}g - \text{closed in}(\Gamma, \mathcal{M}, \mathcal{J})$. Therefore, η is $nIg - \text{Cont.Fn. but not} nIs_{\alpha}g - \text{Cont.Fn.}$ Hence, η is $nIg - \text{homeomorphsim but not} nIs_{\alpha}g - \text{Hompsm.}$

Remark 3.4 Composition of two $nIs_{\alpha}g$ – Hompsm. need not be $nIs_{\alpha}g$ – Hompsm. **Example 3.4** Let $\Gamma = \{u_1, u_2, u_3\}$; $\Gamma/\mathcal{R} = \{\{u_1\}, \{u_2, u_3\}\}$; $\mathcal{X} = \{u_2\}$; $\mathcal{J} = \{\emptyset, \{u_2\}\}$. $\mathcal{M} = \{\emptyset, \Gamma, \{u_2, u_3\}\}$. $nIs_{\alpha}g$ – Cl. S.s are $\emptyset, \Gamma, \{u_1\}, \{u_2\}, \{u_1, u_2\}, \{u_1, u_3\}$. Let $\Delta = \{v_1, v_2, v_3\}$; $\Delta/\mathcal{R} = \{\{v_1, v_3\}, \{v_2\}\}$; $\mathcal{Y} = \{v_3\}$; $\mathcal{J}' = \{\emptyset, \{v_1\}\}$. $\mathcal{M}' = \{\emptyset, \Gamma, \{v_1, v_3\}\}$. $nIs_{\alpha}g - \text{Cl. S.s are } \emptyset, \Delta, \{v_1\}, \{v_2\}, \{v_1, v_2\}, \{v_2, v_3\}. \text{ Let } \Lambda = \{w_1, w_2, w_3\}; \Lambda/\mathcal{R} = \{\{w_1, w_2\}, \{w_3\}\}; \mathcal{Z} = \{w_2\}; \mathcal{J}'' = \{\emptyset, \{w_2\}\}. \mathcal{M}'' = \{\emptyset, \Lambda, \{w_1, w_2\}\}. nIs_{\alpha}g - \text{Cl. S.s}$ are $\emptyset, \Lambda, \{w_2\}, \{w_3\}, \{w_1, w_3\}, \{w_2, w_3\}.$ Define $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ as $\eta(u_1) = v_1; \eta(u_2) = v_2; \eta(u_3) = v_3.$ Define $\zeta: (\Delta, \mathcal{M}', \mathcal{J}') \to (\Lambda, \mathcal{M}'', \mathcal{J}'')$ as $\zeta(v_1) = w_1; \zeta(v_2) = w_3; \zeta(v_3) = w_2.$ Both η and ζ are $nIs_{\alpha}g$ - Hompsm. As $\zeta \circ \eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Lambda, \mathcal{M}'', \mathcal{J}''), (\zeta \circ \eta)(\{u_2, u_3\}) = \zeta(\{v_2, v_3\}) = \{w_2, w_3\}$ which is not $nIs_{\alpha}g$ - open in $(\Lambda, \mathcal{M}'', \mathcal{J}'')$ for n - Op. S. $\{u_2, u_3\}$ of $(\Gamma, \mathcal{M}, \mathcal{J}).$ Therefore, $\zeta \circ \eta$ is not $nIs_{\alpha}g$ - Hompsm.

4. * $nIs_{\alpha}g$ – Closed Maps

Definition 4.1 A map η : $(\Gamma, \mathcal{M}, \mathcal{J}) \rightarrow (\Delta, \mathcal{M}', \mathcal{J}')$ is said to be $*nls_{\alpha}g$ – Cl. Map. if for every $nIs_{\alpha}g$ – closed subset \mathcal{H} of $(\Gamma, \mathcal{M}, \mathcal{J}, \eta(\mathcal{H})$ is $nIs_{\alpha}g$ – closed. The complement of $*nls_{\alpha}g$ – Cl. Map. is $*nls_{\alpha}g$ – Op. Map. **Example 4.1** Let $\Gamma = \{u_1, u_2, u_3, u_4\}$; $\Gamma/R = \{\{u_1\}, \{u_2, u_3\}, \{u_4\}\}$; $\mathcal{X} = \{u_1, u_3\}$ and $\mathcal{J} = \{\emptyset, \{u_2\}\}. \mathcal{M} = \{\emptyset, \Gamma, \{u_1\}, \{u_1, u_2, u_3\}, \{u_2, u_3\}\}. nls_{\alpha}g - Cl. S.s are$ $\emptyset, \Gamma, \{u_2\}, \{u_4\}, \{u_1, u_4\}, \{u_2, u_4\}, \{u_3, u_4\}, \{u_1, u_2, u_4\}, \{u_1, u_3, u_4\}, \{u_2, u_3, u_4\}.$ Let $\Delta =$ $\{v_1, v_2, v_3, v_4\}$; $\Delta/R = \{\{v_1\}, \{v_2, v_4\}, \{v_3\}\}$; $\mathcal{Y} = \{v_1, v_2\}$ and $\mathcal{J}' = \{v_1, v_2\}$ $\{\emptyset, \{v_2\}, \{v_3\}, \{v_2, v_3\}\}$. $nIs_{\alpha}g - Cl. S.s are <math>\emptyset, \Gamma, \{v_2\}, \{v_3\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_4, v_4\},$ $\{v_1, v_2, v_3\}, \{v_1, v_3, v_4\}, \{v_2, v_3, v_4\}.$ Define $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ by $\eta(u_1) =$ $v_4, \eta(u_2) = v_2, \eta(u_3) = v_1, \eta(u_4) = v_4$. Here, η is $*nls_{\alpha}g$ – Cl. Map. **Theorem 4.1** Every $*nls_{\alpha}g - Cl$. Map. is $nls_{\alpha}g - Cl$. Map. *Proof.* Let $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ is $*nls_{\alpha}g - Cl$. Map. Let \mathcal{H} be a n - closed seubset of $(\Gamma, \mathcal{M}, \mathcal{J})$. Since every n - Cl. S. is $nIs_{\alpha}g - \text{Cl. S.}$, \mathcal{H} is $nIs_{\alpha}g - \text{Cl. S.}$ in $(\Gamma, \mathcal{M}, \mathcal{J})$. Also, since η is $*nIs_{\alpha}g - Cl$. Map. $\eta(\mathcal{H})$ is $nIs_{\alpha}g - Cl$. S. in $(\Delta, \mathcal{M}', \mathcal{J}')$ so that η is $nIs_{\alpha}g$ – Cl. Map. **Remark 4.1** A $nls_{\alpha}g$ – Cl. Map. Need not be $*nls_{\alpha}g$ – Cl. Map. **Example 4.2** Consider $(\Gamma, \mathcal{M}, \mathcal{J})$ and $(\Delta, \mathcal{M}', \mathcal{J}')$ of Example 4.1. Define $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ by $\eta(u_1) = v_4, \eta(u_2) = v_1, \eta(u_3) = v_2, \eta(u_4) = v_3$ which is $nIs_{\alpha}g$ – Cl. Map. For the $nIs_{\alpha}g$ – Cl. S. $\{u_2\}$ of $(\Gamma, \mathcal{M}, \mathcal{J}), \eta(\{u_2\}) = \{v_1\}$ is not $nIs_{\alpha}g$ – Cl. S. in ($\Delta, \mathcal{M}', \mathcal{J}'$). Therefore, η is not $*nIs_{\alpha}g$ – Cl. Map.

Theorem 4.2 A map $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ is $*nIs_{\alpha}g - \text{Cl.}$ Map. if and only if for every $nIs_{\alpha}g$ - open subset \mathcal{H} containing $\eta^{-1}(\mathcal{S})$, there is a $nIs_{\alpha}g$ - Op. S. \mathcal{K} of $(\Delta, \mathcal{M}', \mathcal{J}'), \eta(\mathcal{H})$ such that $\mathcal{S} \subseteq \mathcal{K}$ and $\eta^{-1}(\mathcal{K}) \subseteq \mathcal{H}$.

Proof. Necessity: Let \mathcal{H} be a $nIs_{\alpha}g$ – Op. S. in $(\Gamma, \mathcal{M}, \mathcal{J})$. Then \mathcal{H}^{c} is $nIs_{\alpha}g$ – Cl. S. in $(\Gamma, \mathcal{M}, \mathcal{J})$. Since η is $*nIs_{\alpha}g$ – Cl. Map., $\eta(\mathcal{H}^{c})$ is $nIs_{\alpha}g$ – Cl. S. in $(\Delta, \mathcal{M}', \mathcal{J}')$.

Thus, $\Gamma - \eta(\mathcal{H}^c)$ is $nIs_{\alpha}g - Op$. S., say \mathcal{K} containing \mathcal{S} such that $\eta^{-1}(\mathcal{K}) \subseteq \eta^{-1}(\Delta - \eta(\mathcal{H}^c)) = \Gamma - \mathcal{H}^c = \mathcal{H}$.

Sufficient: Let \mathcal{H} be $nIs_{\alpha}g - Cl. S.$ in $(\Gamma, \mathcal{M}, \mathcal{J})$. Then \mathcal{H}^{c} is $nIs_{\alpha}g - Op. S.$ in $(\Gamma, \mathcal{M}, \mathcal{J})$. By hypothesis, there exists a $nIs_{\alpha}g - Op. S. \mathcal{K}$ of $(\Delta, \mathcal{M}', \mathcal{J}')$ such that $S \subseteq \mathcal{K}$ and $\eta^{-1}(\mathcal{K}) \subseteq \mathcal{H}$ and so $\mathcal{H} \subseteq (\eta^{-1}(\mathcal{K}))^{c} = \eta^{-1}(\mathcal{K}^{c})$ which implies $\eta(\mathcal{H}) = \mathcal{K}^{c}$. Since \mathcal{K}^{c} is $*nIs_{\alpha}g$ - closed, then $\eta(\mathcal{H})$ is $*nIs_{\alpha}g$ - closed in $(\Delta, \mathcal{M}', \mathcal{J}')$. Hence, η is $*nIs_{\alpha}g$ - closed.

5. * $nIs_{\alpha}g$ – Homeomorphism

Definition 5.1 A bijection $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ is said to be $*nIs_{\alpha}g$ – Hompsm. if both η and η^{-1} are $nIs_{\alpha}g$ – Irr.Fn.

Example 5.1 Let $\Gamma = \{u_1, u_2, u_3\}$; $\Gamma/\mathcal{R} = \{\{u_1, u_2\}, \{u_3\}\}$; $\mathcal{X} = \{u_1, u_3\}$; $\mathcal{J} = \{\emptyset, \{u_3\}\}$. $\mathcal{M} = \{\emptyset, \Gamma, \{u_3\}, \{u_1, u_2\}\}$. $\mathcal{D}(\Gamma)$ is the $nIs_{\alpha}g - Cl. S$. Let $\Delta = \{v_1, v_2, v_3\}$; $\Delta/\mathcal{R} = \{\{v_1\}, \{v_2, v_3\}\}$; $\mathcal{Y} = \{v_1, v_2\}$; $\mathcal{J}' = \{\emptyset, \{v_2\}\}$. $\mathcal{M}' = \{\emptyset, \Delta, \{v_1\}, \{v_2, v_3\}\}$. $\mathcal{D}(\Delta)$ is the $nIs_{\alpha}g - Cl. S$. Define $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ as $\eta(u_1) = v_1; \eta(u_2) = v_2; \eta(u_3) = v_3$. Both η and η^{-1} are $nIs_{\alpha}g - Irr.Fn$. Hence, η is $*nIs_{\alpha}g - Hompsm$.

Theorem 5.1 For any bijection $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$, the following axioms are equivalent.

- (1) $\eta^{-1}: (\Delta, \mathcal{M}', \mathcal{J}') \to (\Gamma, \mathcal{M}, \mathcal{J})$ is $nIs_{\alpha}g Irr.Fn$.
- (2) η is a **nIs*_{α}*g* Op. Map.
- (3) η is **nIs*_{α}*g* Cl. Map.

Proof. (1) \Rightarrow (2) : Let \mathcal{H} be a $nIs_{\alpha}g$ – Op. S. in ($\Gamma, \mathcal{M}, \mathcal{J}$). Since η^{-1} is $nIs_{\alpha}g$ – Irr.Fn., $(\eta^{-1})^{-1}(\mathcal{H}) = \eta(\mathcal{H})$ is $nIs_{\alpha}g$ – open in ($\Delta, \mathcal{M}', \mathcal{J}'$). Hence, η is $*nIs_{\alpha}g$ – Op. Map.

 $(2) \Rightarrow (3) : \text{Let } \eta: (\Gamma, \mathcal{M}, \mathcal{J}) \rightarrow (\Delta, \mathcal{M}', \mathcal{J}') \text{ be } *nIs_{\alpha}g - \text{Op. Map. Let } \mathcal{H} \text{ be a } nIs_{\alpha}g - \text{Cl. S. in } (\Gamma, \mathcal{M}, \mathcal{J}).\text{Then } \Gamma - \mathcal{H} \text{ is } nIs_{\alpha}g - \text{Op. S. in } (\Gamma, \mathcal{M}, \mathcal{J}).\text{Since } \eta \text{ is } *nIs_{\alpha}g - \text{Op. Map., } \eta(\Gamma - \mathcal{H}) \text{ is } nIs_{\alpha}g - \text{Op. S. in } (\Delta, \mathcal{M}', \mathcal{J}'). \text{ This implies that } \eta(\mathcal{H})^c \text{ is } nIs_{\alpha}g - \text{Op. S. in } (\Delta, \mathcal{M}', \mathcal{J}') \text{ so that } \eta(\mathcal{H}) \text{ is } nIs_{\alpha}g - \text{Cl. S. in } (\Delta, \mathcal{M}', \mathcal{J}'). \text{ Therefore, } \eta \text{ is } *nIs_{\alpha}g - \text{Cl. Map.}$

 $(3) \Rightarrow (1)$: Assume that \mathcal{H} is a $nIs_{\alpha}g$ – Cl. S. in $(\Gamma, \mathcal{M}, \mathcal{J})$. Then by hypothesis, $(\eta^{-1})^{-1}(\mathcal{H}) = \eta(\mathcal{H})$ is $nIs_{\alpha}g$ – Cl. S. in $(\Delta, \mathcal{M}', \mathcal{J}')$ so that η^{-1} is $nIs_{\alpha}g$ – Irr.Fn. map.

Remark 5.1 Let $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ be bijevtive. η is said to be $*nIs_{\alpha}g$ – Hompsm. if η is both $nIs_{\alpha}g$ – Irr.Fn. and $*nIs_{\alpha}g$ – Op. Map.

Theorem 5.2 Let $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ be a bijective and $nIs_apha g -$ Irr.Fn. map. Then the following statements are equivalent.

- (1) η is a **nIs*_{α}*g* Op. Map.
- (2) η is a **nls*_{α}*g* Hompsm.
- (3) η is a **nIs*_{α}*g* Cl. Map.

Proof. (1) \Rightarrow (2):Let η : ($\Gamma, \mathcal{M}, \mathcal{J}$) \rightarrow ($\Delta, \mathcal{M}', \mathcal{J}'$) be $*nIs_{\alpha}g$ – Op. Map. Let \mathcal{H} be a $nIs_{\alpha}g$ – Cl. S. in ($\Gamma, \mathcal{M}, \mathcal{J}$). Then its complement \mathcal{H}^c is $nIs_{\alpha}g$ – Op. S. in ($\Gamma, \mathcal{M}, \mathcal{J}$). Since η is $*nIs_{\alpha}g$ – Op. Map., $\eta(\mathcal{H}^c)$ is $nIs_{\alpha}g$ – Op. S. in ($\Delta, \mathcal{M}', \mathcal{J}'$). This implies that ($\eta(\mathcal{H})$)^c is $nIs_{\alpha}g$ – Op. S. in ($\Delta, \mathcal{M}', \mathcal{J}'$) so that ($\eta(\mathcal{H})$) is $nIs_{\alpha}g$ – Cl. S. in ($\Delta, \mathcal{M}', \mathcal{J}'$). Therefore, η is $*nIs_{\alpha}g$ – Cl. Map. By Theorem 4.3, η^{-1} : ($\Delta, \mathcal{M}', \mathcal{J}'$) \rightarrow ($\Gamma, \mathcal{M}, \mathcal{J}$) is $nIs_{\alpha}g$ – Irr.Fn. By hypothesis, η is $nIs_{\alpha}g$ – Irr.Fn. so that η is $*nIs_{\alpha}g$ – Hompsm. (2) \Rightarrow (3) : Assume that n is $*nIs_{\alpha}g$ – Hompsm. Then n and n^{-1} are $nIs_{\alpha}g$ – Irr.Fn. By

(2) \Rightarrow (3) : Assume that η is $*nIs_{\alpha}g$ – Hompsm. Then η and η^{-1} are $nIs_{\alpha}g$ – Irr.Fn. By Theorem 4.3, η is $*nIs_{\alpha}g$ – Cl. Map.

 $(3) \Rightarrow (1)$: The result is trivial.

Theorem 5.3 Every $*nIs_{\alpha}g$ – Hompsm. is $nIs_{\alpha}g$ – Hompsm.

Proof. Let $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ be $*nIs_{\alpha}g$ – Hompsm. Then η and η^{-1} are $nIs_{\alpha}g$ – Irr.Fn. and η is bijective.

Since every $nIs_{\alpha}g$ – Irr.Fn. function is $nIs_{\alpha}g$ – Cont.Fn., both η and η^{-1} are $nIs_{\alpha}g$ – Cont.Fn. Therefore, η is $nIs_{\alpha}g$ – Hompsm.

Remark 5.2 The reverse implication of the preceding theorem is not valid as shown in the successive example.

Example 5.2 Let $\Gamma = \{u_1, u_2, u_3, u_4\}$; $\Gamma/\mathcal{R} = \{\{u_1\}, \{u_2, u_3\}, \{u_4\}\}$; $\mathcal{X} = \{u_1, u_3\}$; $\mathcal{J} = \{\emptyset, \{u_3\}\}$. $\mathcal{M} = \{\emptyset, \Gamma, \{u_1\}, \{u_2, u_3\}, \{u_1, u_2, u_3\}\}$. $nIs_{\alpha}g - Cl.$ S.s are $\emptyset, \Gamma, \{u_3\}$, $\{u_4\}, \{u_1, u_4\}, \{u_2, u_4\}, \{u_3, u_4\}, \{u_1, u_2, u_4\}, \{u_1, u_3, u_4\}, \{u_2, u_3, u_4\}$. Let $\Delta = \{v_1, v_2, v_3, v_4\}$; $\Delta/\mathcal{R} = \{\{v_1, v_3\}, \{v_2\}, \{v_4\}\}$; $\mathcal{Y} = \{v_2, v_3\}$; $\mathcal{J}' = \{\emptyset, \{v_1\}\}$. $\mathcal{M}' = \{\emptyset, \Delta, \{v_2\}, \{v_1, v_3\}, \{v_1, v_2, v_3\}$. $nIs_{\alpha}g - Cl.$ S.s are $\emptyset, \Delta, \{v_1\}, \{v_4\}, \{v_1, v_4\}, \{v_2, v_4\}, \{v_2, v_4\}, \{v_3, v_4\}, \{v_1, v_2, v_4\}, \{v_2, v_3, v_4\}$.

Define $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ as $\eta(u_1) = v_1; \eta(u_2) = v_2; \eta(u_3) = v_3; \eta(u_4) = v_4$ which is $nls_{\alpha}g$ – Hompsm. For the $nls_{\alpha}g$ – Cl. S. $\{v_1\}$ in $(\Delta, \mathcal{M}', \mathcal{J}'), \eta^{-1}(\{v_1\}) = \{u_1\}$ is not $nls_{\alpha}g$ – Cl. S. in $(\Gamma, \mathcal{M}, \mathcal{J})$ hence, η^{-1} is not $nls_{\alpha}g$ – Irr.Fn. Therefore, η is $nls_{\alpha}g$ – Hompsm. but not $*nls_{\alpha}g$ – Hompsm.

Theorem 5.4 Composition of two $*nIs_{\alpha}g$ – Hompsm. is $*nIs_{\alpha}g$ – Hompsm. *Proof.* Let $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Delta, \mathcal{M}', \mathcal{J}')$ and $\zeta: (\Delta, \mathcal{M}', \mathcal{J}') \to (\Lambda, \mathcal{N}', \mathcal{J}')$ be $*nIs_{\alpha}g$ – Hompsm. respectively. Then $\zeta \circ \eta: (\Gamma, \mathcal{M}, \mathcal{J}) \to (\Lambda, \mathcal{N}', \mathcal{J}')$. Let \mathcal{H} be $nIs_{\alpha}g$ – Op. S. in $(\Lambda, \mathcal{N}', \mathcal{J}')$. Since ζ is $nIs_{\alpha}g$ – Irr.Fn., $\zeta^{-1}(\mathcal{H})$ is $nIs_{\alpha}g$ – open in $(\Delta, \mathcal{M}', \mathcal{J}')$. Since η is $nIs_{\alpha}g$ – Irr.Fn., $\eta^{-1}(\mathcal{H})$ is $nIs_{\alpha}g$ – open in $(\Gamma, \mathcal{M}, \mathcal{J})$. Therefore, $\zeta \circ \eta$ is $nIs_{\alpha}g$ – Irr.Fn. Also, for the $nIs_{\alpha}g$ – Op. S. \mathcal{H} in $(\Gamma, \mathcal{M}, \mathcal{J})$, $\eta(\mathcal{H})$ is $nIs_{\alpha}g$ – open in $(\Delta, \mathcal{M}', \mathcal{J}')$, since η^{-1} is $nIs_{\alpha}g$ – Irr.Fn. Since ζ is $nIs_{\alpha}g$ – Irr.Fn., $(\zeta \circ \eta)(\mathcal{H}) = \zeta(\eta(\mathcal{H}))$ is $nIs_{\alpha}g$ – open in $(\Lambda, \mathcal{N}', \mathcal{I}')$. Therefore, $(\zeta \circ \eta)^{-1}$ is $nIs_{\alpha}g$ – Irr.Fn. Hence, $\zeta \circ \eta$ is $*nIs_{\alpha}g$ –Hompsm.

Theorem 5.5 The set $s^*nIs_{\alpha}g - h(\Gamma, \mathcal{M}, \mathcal{J})$ is a group under the composition of mapping.

Proof. Define a binary operation $*: *nIs_{\alpha}g - h(\Gamma, \mathcal{M}, \mathcal{J}) \times *nIs_{\alpha}g - h(\Gamma, \mathcal{M}, \mathcal{J}) \rightarrow *nIs_{\alpha}g - h(\Gamma, \mathcal{M}, \mathcal{J})$ by $\eta * \zeta = \eta \circ \zeta$ for all $\eta, \zeta \in *nIs_{\alpha}g - h(\Gamma, \mathcal{M}, \mathcal{J})$ and \circ is the usual operation of map. Then by Theorem 4.9, $\eta \circ \zeta \in *nIs_{\alpha}g - h(\Gamma, \mathcal{M}, \mathcal{J})$. We know that the composition of maps associative. The identity map $I: (\Gamma, \mathcal{M}, \mathcal{J}) \rightarrow (\Gamma, \mathcal{M}, \mathcal{J})$ belonging to $*nIs_{\alpha}g - h(\Gamma, \mathcal{M}, \mathcal{J})$ serves as the identity element. For any $\eta \in *nIs_{\alpha}g - h(\Gamma, \mathcal{M}, \mathcal{J})$, $\eta \circ \eta^{-1} = \eta \circ \eta^{-1} = I$. Hence, inverse exists for each element of $*nIs_{\alpha}g - h(\Gamma, \mathcal{M}, \mathcal{J})$. $*nIs_{\alpha}g - h(\Gamma, \mathcal{M}, \mathcal{J})$ forms a group under the composition of maps. Theorem 5.6 Let $\eta: (\Gamma, \mathcal{M}, \mathcal{J}) \rightarrow (\Delta, \mathcal{M}', \mathcal{J}')$ be an $*nIs_{\alpha}g - Hompsm$. Then η induces an isomorphism from the group $*nIs_{\alpha}g - h(\Gamma, \mathcal{M}, \mathcal{J})$ onto the group $*nIs_{\alpha}g - h(\Delta, \mathcal{M}', \mathcal{J}')$.

Proof. Let $\eta \in {}^*nIs_{\alpha}g - h(\Delta, \mathcal{M}', \mathcal{J}')$. Define a map $\Omega_{\eta}: {}^*nIs_{\alpha}g - h(\Gamma, \mathcal{M}, \mathcal{J}) \rightarrow {}^*nIs_{\alpha}g - h(\Delta, \mathcal{M}', \mathcal{J}')$ by $\Omega_{\eta}(\sigma) = \eta \circ \sigma \circ \eta^{-1}$ for every $\sigma \in {}^*nIs_{\alpha}g - h(\Gamma, \mathcal{M}, \mathcal{J})$. Then σ is a bijection. Now, for all $\zeta, \sigma \in {}^*nIs_{\alpha}g - h(\Gamma, \mathcal{M}, \mathcal{J})$, $\Omega_{\eta}(\zeta \circ \sigma) = \eta \circ (\zeta \circ \sigma)\eta^{-1} = (\eta \circ \eta^{-1}) \circ (\eta\sigma\eta^{-1}) = \Omega_{\eta}(\zeta) \circ \Omega_{\eta}(\sigma)$.

6. Conclusion

In this paper, we introduce Homeomorphism using $nIs_{\alpha}g$ – closed sets and discussed some of its characteristics. Further, we investigated some of the equivalent conditions.

Acknowledgements

My sincere gratitude to my Research Supervisors Dr.S.Pasunkilipandian and Dr.M.Kalaiselvi for their encouragement and support.

References

[1]G.Baby Suganya, S.Pasunkilipandian. On $nIs_{\alpha}g$ – continuity in nano ideal topological spaces, International Conference on Analysis and Applied Mathematics – Proceedings, 36-46, 2022.

[2] M. Parimala, R. Jeevitha, and A. Selvakumar. A new type of weakly closed set in ideal topological spaces. rn, 55:7, 2017b.

[3] M. Parimala, S. Jafari, and S. Murali. Nano ideal generalized closed sets in nano ideal topological spaces. In Annales Univ. Sci. Budapest, volume 60, pages 3–11, 2017a.

[4] Q. H. Imran. On nano semi alpha open sets. arXiv preprint arXiv:1801.09143, 2018.

[5] S. Ganesan. On nIg – homeomorphism in nano ideal topological spaces. Bulletin of the International Mathematical Virtual Institute, pages Vol.12(1),83–89, 2022.

[6] S.Pasunkilipandian ,G.Baby Suganya,M.Kalaiselvi, On some new notions using $nIs_{\alpha}g$ – closed sets in nano ideal topologcial spaces. Kala Sarovar Journal, pages Vol.25, No.02, 36–39, April-June 2022.