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Abstract:  

In this paper, we examine fear in an eco-epidemiological model that includes refuge harvesting in the 

population of predators and infection in the population of prey.As a Holling type II functional response, the 

predator eats its prey at various rates. The stability of all biologically viable equilibrium points, as well as the 

positivity and boundedness of the solutions, have to be examined.To analyse this, the interior equilibrium of 

the system’s Hopf-bifurcation is obtained.Our analytical conclusions are supported by numerical simulations. 
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1 Introduction 

Predator-prey interactions have been included in 

the Lotka-Volterra model for a very long time, see 

[1-3]. In a similar vein, after the seminal work of 

Kermack and McKendrick [4,5].The interaction of 

the susceptible, infected,and recovered has been 

an interesting topic of study.The original predator-

prey model was developed in large part by Vito 

Volterra and Alfred James Lotka. Ecology models 

and epidemiology models are the two basic 

categories into which mathematical models are 

often divided. In ecological models studying the 

interactions between populations of a particular 

community are studied. Epidemiology models 

mean studying the spread of diseases between 

animals and humans.It is increasingly crucial to 

do research on the dynamics of illness within 

ecological systems. On the one hand, several 

studies of prey-predator dynamics have been 

conducted in recent decades, taking into account 

the impact of a range of biological characteristics 

in [6-9].Many mathematical models have been 

created and investigated in the field of 

epidemiology, taking into consideration various 

incidence rates and illnesses;[10-14] Experts were 

particularly interested in their recommended 

ecological models since it is well accepted that 

species harvesting is necessary for species 

coexistence. Ecology models and epidemiology 

models are the two basic categories into which 

mathematical models are often divided.There are 

three different forms of harvesting: constant, 

proportional to density, nonlinear, and others. All 

of these have been proposed and 

investigated.There have been several suggestions 

harvesting methods,of research and including 

harvesting continuously and depends on density in 

proportional harvesting [15-20]. 

 

This piece is structured as follows: The prey-

predator system’s past is described as Section 1. 

In Section 2, the mathematical formulation is 

presented. We talk about the positivity and 

boundedness of solutions. 

 

In Section 3, for the hypothetical sick system. The 

existence of equilibrium points is described in 

Section 4.Local stability analyses in Section 5.The 

Hope-Bifurcation Analysis is found in Section 

6.Results are presented numerically in Section 

7.Finally, this paper concludes with a few 

observations about the suggested system in 

Section 7. 

 

2 Model formation 

Table provides detailed biological meanings for the parameters 

Parameters living organisms 

X Susceptible Prey 

Y Infected Prey 

Z Predator 

r The Prey rate of growth 

K Carrying capacity for the environment 

a1 Semi-saturation constant 

 

 
 

 
 

The system of Equation is: 

(2.1) 

 

Then the system change into the non-dimensional . 
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Here, 

. 

 

Now the system becomes, 

  (2.2) 

 

here the conditions are, 

 

Assuming the initial values are not negative  

 

3 The Positive and boundaries of solutions 

THEOREM 3.1 All the solutions of (2.2) are efficacy in  

Proof. since x(0),y(0),andz(0) are all greater than or equal to zero,Then the system (2.2) becomes 

. 

then the solutions of (2.2) are positive. □ 

 

THEOREM 3.2 All the solutions of (2.2) are bounded in  

Proof. Any solution to the system (2.2) with positive starting conditions, let x(t),y(t), and z(t).Then 

, 

 

Let u = x + y + z 

 

(while,c < 1) 

 

r  during which,γ = min(δ,h) 

. 

To 2.2 is bounded for the region,then 

 
□ 



Dynamical Behavior Of Fear Effect On A Diseased Prey-Predator Model With Refuge  

And Predator Harvesting  Section A-Research Paper 

 

Eur. Chem. Bull. 2023, 12(Special Issue 10), 4147 – 4155     4150 

4 The Presence of equilibrium points 

In this section the Possible equilibrium points (2.2) are investigated. Five equilibrium points for the system 

(2.2) were observed. 

. 

• The trivial equilibrium point is E0(0,0,0). 

• Equilibrium with no diseased prey and no predator E1(1,0,0), 

• The equilibrium state free from predators or predation E3(x,ˆ y,ˆ 0), 

. 

• interior equilibrium is endemic E∗(x∗,y∗,z∗), 

, 

, 

and the x∗is the one and only non negative quadratic root, 

R+QS+PS2 = 0, 

R = −a(((1 − m)r(cθ − (δ + h) + (cαd − a(δ + h)(1 + r))). 

P = r(1 − m)(cα + cθ − (δ + h)) 

Q = (1 − m)(cθ − (δ + h))(−r + ar) − cαr + a(δ + h) + (δ + h) − cα)r). 

 

5 Analyses of local stability 

In order to determine the system trait for the regional stability equation (1),we identify the system’s 

 
Where, 

, 

THEOREM 5.1 The Point of trivial equilibrium It is unstable for E0(0,0,0). 

 
 

THEOREM 5.2 The equilibrium point without ill prey and without predators it is stable, E1(1,0,0).If d > 1, 

otherwise unstable. 
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The location of the Jacobian array described above has the following characteristic equation: 

, , 

 

Hence E1(1,0,0) is stable if d > 1, otherwise unstable. 

  

THEOREM 5.3 Locally asymptotically stable equilibrium point E3 without predators.if 

 
where, 

, 

, 

λ3 + Lλ2 + Mλ + N = 0. 

 

Here, 

L = −f11 − f33, 

M = −f21f12 + f33f11, N = f12f21f33. 

 

According to the Routh-Hurwitz criterion, all of the aforementioned feature’s zeros have negative real 

portions iff L,M and LM − N are positive, 

 

Now, 

LM − N = −f11(−f12f21 + f33(f33 + f11)).For f33 to be negative,if (h + δ) > (θ + α)c. 

 

If the aforementioned condition in the theorem is met, the E3 is locally asymptotically stable. 

 

THEOREM 5.4 Locally, the asymptotically stable positive equilibrium point E∗. 

 
where, 

, 

 

Then λ3 + Lλ2 + Mλ + N = 0, 

L = −l11 − l33, 

M = −l21l12 + l22l11 − l13l31 + l23l32, 

N = l13(−l22l31 + l21l32) + l23(l12l31 − l11l32). 

 

IfLM − N > 0,M > 0,L > 0,. Routh-Hurwitz criteria state that Every single one nothing in the aforementioned 

feature the actual unfavourable portions iff L,M and LM − N are positive. 

Asymptotically local stability exists for the E∗. □ 
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6 Hopf-Bifurcation Analysis 

THEOREM 6.1 If the critical value for the bifurcation parameter q1 is exceeded, the model (2.2) experiences 

the Hope-bifurcation. the existence of the following Hope-bifurcation criteria at q1 = q1∗ 

. 

 

Proof. For , 

 . (6.1) 

 and  be the zeros of the above equation.The following transversality require- 

ment must be satisfied in order to achieve the Hopf-bifurcation at q1 = q1∗. 

. 

 

The generic roots of the aforementioned equation are (6.1) for all q1. 

λ1 = r(q1) + is(q1), λ2 = r(q1) − is(q1), λ3 = −A1(q1). 

 

Now, we examine the situation. . 

Let λ1 = r(q1) + is(q1) in the (6.1), we get 

A(q1) + iB(q1) = 0. 

 

Where, 

A(q1) = r3(q1) + r2(q1)A1(q1) − 3r(q1)s2(q1) − s2(q1)A1V + A2(q1)r(q1) + A1(q1)A2(q1), B(q1) = A2(q1)s(q1) + 

2r(q1)s(q1)A1(q1) + 3r2(q1)s(q1) + s3(q1). 

 , (6.2) 

 , (6.3) 

 

where, 

ς1 = 3r2(q1) + 2r(q1)A1(q1) − 3s2(q1) + A2(q1), ς2 = 6r(q1)s(q1) + 2s(q1)a1(q1), 

ς3 = r2(q1)A′1(q1) + s2(q1)A1′(q1) + A′2(q1)r(q1), 

 ′ ′ 

ς4 = A2(q1)s(q1) + 2r(q1)s(q1)A1(q1). 

 

On multiplying (6.2) by ς1(q1) and (6.3) by ς2(q1) respectively 

  (6.4) 

 

Substituting r(q1) = 0 and , and ς4(q1), we obtain 

, 

 

The equation (6.4), implies 

 , (6.5) 

if , and . 

 is ensured if the transversality criterion holds, and at this point, the model 

(2.2) enters the Hopf-bifurcation at  □ 
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7 Numerical Simulations 

The system is numerically simulated in this part to 

verify the theoretical findings (2.2).The extent of 

attack and extraction were examined in the present 

research. h will be the two key variables that serve 

as control parameters. For the specified set of 

variables for the computational simulation is 

performed using the MATLAB software package. 

 

Parameters Indicative number 

m Variable 

β Variable 

α Variable 

h 0.1 

a 0.2 

d 0.6 

r 0.3 

δ 0.4 

c 0.5 

θ 0.7 

 

 
Figure 1: with the exception h = 0.1 and α = 0.3,the parametric values in the table represent the time series of 

the system (2.2) at equilibrium point E2.The time series below has the criteria displayed in the graph, the 

difference that exception h = 0.1 and α = 0.28. are used in the vicinity of equilibrium point E4 

 

 
Figure 2: shows that a decrease in infected prey happens when the incidence of susceptible predation 

increases. shows that as the predator density rises, so do the rates of predation on susceptible prey. 

 

7.1 Predation rate changes and their effects α 

7.2 Changes to the harvesting rate Some 

impacts of h 

The endemic equilibrium with regard to the 

parametric parameters indicated in the table with 

point E4 and the balance with no sickness coexist 

with E2 both exist with α = 0.25. h < 0.1 and 

0.0105264 < h < 0.773307, respectively. 

7.3 Changes the refuge constant m’s effects 

 

8 conclusion 

This study used refuge predator harvesting, in 

which the predator eats both susceptible and 

diseased prey, to analyse the dynamical behaviour 

of the fear impact on a model of a sick prey 

predator. The created system (2) is physically 
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well-behaved, per its boundaries, and optimism 

results. Three points of equilibrium are obtained.If 

all points are in harmony and the interior Local 

equilibrium points are asymptotically stable under 

specific conditions, with the exception of the 

unstable ill, prey-free, and predator-free 

equilibrium points as well as the trivial 

equilibrium point. Then, by choosing a bifurcation 

 

 
Figure 3: (a)Customizable values are included in the table. except h = 0.01 and α = 0.25.reflect the 

chronology of the system (2.2) at equilibrium point E2,(b) With the exception of the equilibrium point, the 

following time series employs the identical parametric parameters as those in the table E4 exception h = 0.07 

and α = 0.23 

 

 
Figure 4: The density of(a) SPP(b)IPP(c)PP the table’s parameter settings and h=0.01,0.14,0.16,0.18 α = 0.2 

 

 
Figure 5: (a)We can see that when the refuge constant rises, the density of the sensitive prey population 

declines.(b)illustrates a rise in the number of the refuge constant m increases from 0.3 to 0.6, infected prey.. 

parameter from the constant q, we discover that the Hopf bifurcation takes place rather near to the interior 

equilibrium. 
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