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Abstract 
This research paper demonstrates an enhancement in the damping of a dynamic system by utilizing the dissipation of 

energy resulting from repeated collisions between a free mass and the base structure. The study involves both 

theoretical and experimental investigations conducted on a base-excited cantilever beam. The experiments were 

performed under two conditions: without an impact mass and with an impact mass, both at the fundamental 

frequency of the system and in close proximity to it. The mathematical model employed a multi-degree-of-freedom 

(MDOF) system, which experiences momentum transfer due to the impact of the free mass on the main mass. 

MATLAB codes were developed to simulate the dynamic response of the MDOF system for the base-

excited cantilever beam, both with and without the impact mass. The influence of the impact mass on the response 

of the base-excited cantilever beam was analyzed using the finite element method and the constant average 

acceleration method of the Newmark's family. The theoretical results were compared to the experimental findings 

and showed good agreement. The frequencies predicted by the theoretical model matched the frequencies obtained 

from the experiments for both cases (with and without impact mass). Additionally, the damping value predicted by 

the theoretical model with the impact mass aligned with the damping value obtained from the experiments. The 

model also estimated the contact force between the colliding bodies at the tip of the beam. 

Keywords: Base-excited cantilever beam, Finite element method, Newmark method, Impact mass. 

 

1. Introduction 
 
Active and passive techniques are commonly 

employed to reduce resonant vibrations in structures. 

While active damping techniques may not always be 

suitable due to factors such as power requirements, cost, 

and environmental constraints, passive damping 

techniques offer a viable alternative. Passive damping 

encompasses various forms, including viscous damping, 

viscoelastic damping, friction damping, and impact 

damping. Viscous and viscoelastic damping are typically 

affected by temperature variations, while friction 

dampers may degrade over time due to wear. 

Consequently, attention has turned to impact dampers, 

especially for applications in cryogenic or high-

temperature environments. These dampers utilize 

repeated impacts between a small moving mass and the 

main structure to effectively control random vibrations. 

The resulting momentum exchange between the main 

mass and impact mass leads to substantial damping. 

Vibration control systems can employ passive, active, or 

hybrid approaches to manage vibrations. Passive 

systems are generally considered the simplest, most cost-

effective, and reliable among all control systems. While 

equipping a body with an absorber can be challenging  

 

 

 

from a construction standpoint, impact 

dampers can be easily installed. 

The objective of the study was to investigate the 

dynamic response of beams when subjected to 

moving point loads. The researchers utilized the 

finite element method and a numerical time 

integration technique known as the Newmark 

method for the vibration analysis [1]. The purpose of 

the research was to examine the characteristics of a 

vibration system that is mitigated using an impact 

damper. The authors derived precise formulas for 

determining the optimal values of the impact 

damper's damping and initial displacement in a 

single-degree-of-freedom structure [2]. The study 

investigated methods for enhancing the damping 

capacity of long and slender cutting tools, such as 

boring tools or drills, by utilizing impact dampers 

[3]. 

The study analyzed the performance of particle 

dampers (vertical and horizontal) when attached to a 

primary system (with single degree of freedom 

(SDOF) and multi degree of freedom (MDOF)) 

under varying dynamic loads, including free 
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vibration and random excitation [4]. The study 

investigated the free vibration behavior of a vibratory 

system equipped with a resilient impact damper, taking 

into account the contact time. The findings revealed that 

the effectiveness of reducing vibration response depends 

not on the number of impacts, but primarily on the type of 

collision between the impact mass and the main mass, 

specifically when they collide face-to-face [5]. The 

performance of a single particle vertical impact damper 

was examined across different forcing oscillation 

amplitudes and frequencies, mass ratios, structural 

damping ratios, impact damper lid heights, and 

damper/structure coefficients of restitution [6]. 

The paper discusses the findings of experimental and 

analytical investigations regarding the performance of a 

multi-unit particle damper in a horizontally vibrating 

system. The study reveals that the response of the primary 

system is influenced by the number of cavities and the 

dimensions of these cavities [7]. An analysis is conducted 

on a system with two degrees of freedom that can function 

as a vibration impact damper. The results demonstrate that 

a decrease in the coefficient of restitution leads to a 

reduction in vibration amplitude. It is also observed that 

the impact damper performs more effectively compared to 

a traditional dynamic vibration damper [8]. The study 

focuses on investigating the performances of impact 

dampers that incorporate a free mass and a damping 

mechanism. Several key findings were obtained: 

(a) The consumption of vibratory energy through 

collisions plays a crucial role in determining the damping 

capability of impact dampers. 

(b) The frequency of a vibratory system equipped with an 

impact damper can be estimated based on the natural 

frequency of the main vibratory system and the mass ratio. 

(c) The damping capability of the impact damper increases 

with both the amplitude of the main vibratory system and 

the mass ratio.  

Furthermore, the study reveals that the optimal damping 

effect of the impact damper can be achieved through a 

combination of the mass ratio and the clearance [9]. 

Despite the existing studies on the dynamics of impact 

dampers, there is still a need to further understand their 

performance across a wide range of conditions. This paper 

addresses this gap by employing the finite element method 

along with the Newmark method to analyze the dynamic 

response of a multi-degree-of-freedom (MDOF) system. 

The Newmark integration method assumes that 

acceleration varies linearly between two time instants. 

Among the methods in the Newmark family, the constant 

average acceleration method is utilized to obtain the 

solution for the structural dynamic problems. The 

theoretical model developed in this paper provides 

predictions for frequencies and damping values that are in 

good agreement with the experimental results. 

Additionally, the theoretical model is capable of 

predicting the contact force between the colliding 

bodies. This comprehensive approach using the finite 

element method and the Newmark method 

contributes to a better understanding of the behavior 

of impact dampers under various operating 

conditions. 

 

NOMENCLATURE 

 

Symbol      Description  

 

A             Area of beam, m
2  

cc            Damping matrix without impact mass  

cc1           Damping matrix at non- contact 

cc2           Damping matrix at contact 

 dd 21    Total clearance, m 

E             Young’s modulus, mN/ 2  

F             Force vector at time ‘ t ’ 

F
tt

ˆ


       Effective force vector 

F I

tt 
      Impact force 

F
tt 

        Force vector at time‘ tt  ’ 

f
d n              

Damped fundamental frequencies, Hz  

f
nn              

Fundamental frequencies , Hz  

I e              Moment of  inertia of beam m
4  

kk             Stiffness matrix of beam 

kk1            Stiffness matrix at no contact  

kk2      Stiffness matrix at contact 

k I 0       
Spring stiffness at no contact, m/N  

k I        Spring stiffness at contact, m/N  

k̂          Effective stiffness matrix 

Le         
Length of beam, m 

mb        
Mass of box, kg  

mI        Impact mass, kg  

ma        Mass of box plus impact mass, kg  

mm     Mass matrix of beam including box 

mm f    Mass matrix beam, box plus impact mass 

mm1     Mass matrix for contact & non-contact 

th          Thickness of beam, m 

t         Time step, sec  

UUU
ttt  ,, Displacement, velocity, acceleration vectors              

UUU
tttttt   ,, Displacement, velocity, acceleration  

vectors at  time  ‘ tt  ’ 

U n 1        Displacement of impact mass 
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U n 1
       Displacement at tip 

 

w           Width of beam, m 

           Density of beam, m
3kg/  

            Input excitation level , m 

nn
      Natural frequencies, secrad/  

              Damping ratio 

 21
,     

Proportional damping constants  

 ,,      Stability & accuracy constants for 

Constant average acceleration method 










aaaa

aaaa

8765

4321

,,,

,,,
Newmark methods constants 

 

2. Theoretical model 

 
2.1 Cantilever beam without impact mass 

Fig.1 shows the cantilever beam (with box). Fig.2 shows 

the mathematical model of MDOF system for base 

excited cantilever beam without impact mass. 

 
Fig.1 Cantilever beam without impact mass 

 
Fig.2 Schematic diagram of MDOF system 

The assumptions are made in the mathematical 

formulation: 

i. Vibratory system is considered as MDOF system 

(with box). 

ii. Rotary inertia of beam is neglected. 

iii. Shear modulus has not been considered.  

iv. Euler-Bernoulli beam element is used. 

v. Beam with box considered as a main system 

Mass and stiffness matrix for a cantilever beam 

element at time ‘t’ are given below, 

)1(                

422313
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
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
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
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




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LLLL
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mm

eeee

ee

eeee
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e

To get the fundamental frequencies including mass 

of box )(mb the corresponding diagonal element of 

mass matrix is modified and equation(1) becomes,

 







































)(

420
,

(2)               

422313

221561354

313422

315422156

420

)(

22

22

LA
Cwhere

LLLL

LCmL

LLLL

LL

LA
mm

e
b

eeee

ebbe

eeee

ee

e





The expression of mass matrix with mass of box 

(    and impact mass    is given by: 

(3)        

422313

221561354

313422

315422156

420

)(

22

22




















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


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ebe
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f

e

a
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233

3636

323

3636

)2(
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3


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




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
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






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LeLe
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L

IE
kk
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ee

e

e

The general form of differential equation for 

undamped forced vibration of MDOF system 

without impact mass is obtained by substituting 

equation (2) and (4) in the following equation  

  (5)                               ][])[]([
2

FUmmkk tt
n 

Applying boundary conditions for cantilever beam 

(left end of beam is assumed to be fixed (i.e. 

displacement and rotation are zero here) and 

neglecting the forcing function, 
 

where, the natural frequencies of the system is: 

(6)                                                 1,2.....n           
n


mm

kk
n

(7)                                                  
2

n



n
f
nn



The damped natural frequency of the system is:

 (8)                                                )1(
2

ff
d n

n



The expression for proportional damping [cc] of the 

system is obtained by using equations (2), (4) and 

(7): 
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(10)                      2,where

(9)                                          ][][][

21

21

1

21













 




ff

ff

kkmmcc

nn

nn



 
(11)                                         

2

21

2
ff

nn


 

Linear dynamic equilibrium equation of motion, at time 't' 

with damping is: 

(12)                               ][]][[]][[]][[ FUkkUccUmm tttt
   

Constant average acceleration method is used to solve 

above expression.  
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F
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U
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U
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n

t
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















where n = 4, 5, 6, …… 

Initially at time t=0, above displacement, velocity and 

acceleration vectors are zero. 

We have linear dynamic equilibrium equation of motion, 

at time ' tt  ' with damping is: 

(14)                 ][]][[]][[]][[ FUkkUccUmm tttttttt  
 

 (15)                                    )20/(1 ,Where
1

ft
n

 At 

time tt  , for base excited system, we have
 

(16)                                      
0

)2sin(
1

2

1

















 tf

U

U d


(17)                       
0

)2sin()2(
11

2

2

1

















 tftf

U

U dd






 
To calculate displacement, velocity, acceleration at time‘

tt  ’, following procedure is used. By using equation 

(14) for known displacement and rotation. 

Effective stiffness matrix is given by,

 

(18)                                      ˆ
63 ccammakkk  For 

each time step, calculate effective loads at time 
 

‘ tt  ’, 

(19)                          )(

)(ˆ

876

543

UaUaUacc

UaUaUammFF
ttt

ttttttt







  

(20)                                                 ˆˆ
FUk

tttt   

(21)                      )( 543 UaUaUUaU
ttttttt    

(22)                              12 UaUaUU
tttttt   



For Constant average acceleration method we have, 

(23)                               )1/(,1/,/

,1/1,),/(1),1(,

2/1,4/1,2/1
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321
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


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2.2 Cantilever beam with impact mass 
Fig.3 shows the cantilever beam with impact mass at non-

contact condition. Fig.4 shows mathematical model of 

MDOF system for base excited cantilever beam with 

impact mass. 

 
Fig.3. Cantilever beam with impact mass 

 
Fig.4. Schematic diagram of MDOF system with 

impact mass 

 

Assumptions:- 

i. Linear motion of impact mass (ball) 

ii. Impact mass attached to the main system by 

a spring. 

iii. At contact and non-contact condition spring 

stiffness have different values 

iv. Friction between main mass & impact mass 

is neglected. 

v. Vibratory system is considered as a MDOF 

system. 

vi. Rotary inertia of beam was neglected. 

vii. Shear modulus has not been considered.  

viii. Euler-Bernoulli beam element is used. 

ix. Normal contact of colliding bodies 

considered. 

           Natural frequencies for cantilever beam 

including mass of box and mass of impact mass are 

calculated by putting equation (3) and (4) in equation 

(5). 

 For forced vibration system, equation [2] is 

modified as given in [24], while the stiffness matrix 

varies for non- contact and contact conditions for an 

impact system as discussed in case 1 and 2. 

 (24)  
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Case1: dxxd 1122 )(  ,impact mass moves 

freely at a constant speed without any collision 

inside the cavity of box m) 004.0( 21
 dd attached 

to main mass. So, stiffness of system for non-contact 

condition is given as, 
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The expression for proportional damping [cc1] of the 

system including impact mass and for non-contact 

condition is obtained by using equations (24), (25) and (7): 

(26)                           ][][][ 12111 kkmmcc  

Linear dynamic equilibrium equation of motion for non-

contact condition and known displacement and rotation,  

(27)     ][]][[]][[]][[ 111 FUkkUccUmm
tttttttt  

 

Constant average acceleration method is used to solve 

above expression to obtain displacement, velocity and 

acceleration of the system at each time increment.
 

Case2:  )( 121 xxd  or )( 122 xxd  , impact mass 

collides with left or right side of main mass.  So, stiffness 

of system including contact condition is shown below, 
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expression for proportional damping [cc2] of the system 

with impact mass and for contact condition is obtained by 

using equations (24), (28) and (7): 

(29)                                  ][][][ 22112 kkmmcc  

Linear dynamic equilibrium equation of motion for 

contact condition and known displacement and rotation, 

(30)     ][]][[]][[]][[ 221 FUkkUccUmm
tttttttt  

 

Constant average acceleration method is used to solve 

above expression to obtain displacement, velocity and 

acceleration of the system at each time increment. 

 

2.3 Contact force between colliding bodies 

 Contact force between colliding bodies is 

estimated using following equation, 

(31)           )( 111 FUUkUm I

tt

n

tt

n

tt

In

tt

I
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
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
  

 

3. EXPERIMENTAL SETUP 

 
   A cantilever beam with tip mass (box) is considered 

as the main mass. The spherical impact mass, which has a 

mass of 0.00343 kg and a diameter of 9.49 mm, is 

positioned inside the box so that it only moves 

perpendicular to the beam within the clearance (d1 = d2 = 

0.004 m).  

Fig. 5 depicts a schematic of the experimental setup used 

for impact damper tests. Aside from the test article, the 

test setup consists of an excitation (shaker) system, 

control system, and data acquisition system.  

The test object is given harmonic excitation using a 

hydraulic shaker system and a load cell.

 
Fig.5. Schematic diagram of experimental set up  

One end of the beam is fastened to fixture 1 that is 

set up on the shaker table in order to simulate 

harmonic vibration conditions experimentally.  The 

vibration signals from experiments are measured 

using non-contact type sensors (laser sensors) near 

the middle of the beam.  

Due to the sensor limitation ( 20 mm), the 

cantilever beam's middle was measured and test data 

was extrapolated to the beam's tip based on the first 

mode shape function. Both experiments with and 

without impact mass are run. 

 

4. METHODOLOGY 
 

At the end of cantilever the impact mass is kept for 

forced (base) excitation tests. Repeated theoretical 

and experimental runs are conducted at various 

excitation intensities. The system's damping varies 

for lower levels of excitation whereas the variation is 

almost nonexistent for higher levels of excitation, 

according to the results of testing and theoretical 

models for various excitation levels. Thus, the basic 

excitation level of 0.2037mm is used.  The following 

scenarios are tested both with and without an impact 

damper: 
I. For a base excitation level of 0.2037 mm, 

without impact mass. Here, the sine sweep 

levels are provided from 4Hz to 6Hz in 21 

steps, with the base excitation level 

remaining at 0.2037 mm. 0.1 Hz more was 

added to each stage. 

II. With an impact mass for a 0.2037 mm base 

excitation level. Here, the sine sweep levels 

are given from 4Hz to 6Hz in 21 steps with 

an increase in step frequency of 0.1 Hz, 

while the base excitation level is fixed at 

0.2037 mm. To determine the frequencies 
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and damping of the system, the time domain data 

from the aforementioned tests was processed and 

analysed. 

 

5. RESULTS AND DISCUSSION 
 

It is discovered that the experimentally measured 

frequencies coincide with those predicted by theory. Table 

1 compares the system's natural frequency as determined 

by experiment and theoretical model. 

Table 1 : Comparison of natural frequencies 

Description 

Theoretical 

estimate 

(Hz) 

Experiment 

(Hz) 

Without impact 

mass 

(beam + box) 

5.30 5.05 

With impact mass 

(beam + box & ball) 
4.98 4.95 

 

 Using forced vibration with a base excitation of 

0.2037 mm and various sine levels, experiments were 

conducted without and with an impact mass (ball). The 

results are shown in Fig. 6. 

 
Fig.6. Response of   beam without and with ball for 0.2037 

mm base excitation -Experiment 

When the impact mass is introduced, the response 

obtained from the aforementioned figure is utilised to 

calculate the damping of the system, and it is discovered 

that this damping increases from 0.29% to 1.4%.    

Fig. 7, illustrates the theoretical behaviour of a 

cantilever beam without and with an impact mass (ball) 

for a forced vibration system with a base excitation of 

0.2037mm at various sine levels. 

 
Fig.7. Response of   beam without and with ball for 

0.2037 mm base excitation –Theoretical 

Following the determination of the system's 

damping value from an experiment without an 

impact mass, the theoretical model's prediction of the 

damping value with an impact mass is tested, and it 

is discovered to be a good match to the experimental 

value. As observed in Fig. 7, the addition of impact 

mass causes the system's damping to increase by 

almost five times.  

The contact force between the colliding 

bodies (impact mass and cantilever beam) at the free 

end of the cantilever beam, estimated from the 

theoretical model, is shown in Fig. 8. 

 
Fig.8. Contact force between colliding bodies at 

resonance for base excitation 0.2037 mm - 

Theoretical 

 

6. CONCLUSION 

 
The impact damper's influence on a vibrating 

cantilever beam is assessed by comparing the 

system's response with and without the impact 

damper. 

The theoretical model developed in the study 

demonstrates a good match with experimental results 

in terms of frequencies and damping values. The 

results from the theoretical model indicate a 

significant improvement in the damping of the 

system with the inclusion of the impact damper. The 

impact system damping is shown to increase from 
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0.29% to 1.4%, resulting in a fivefold improvement. 

Similarly, the experimental results also exhibit similar 

damping enhancements. 

Additionally, the theoretical model predicts the impact 

force between the colliding bodies. It is observed that the 

impact force stabilizes at 0.02N, indicating a consistent 

and predictable behavior during the collision process. 

These findings emphasize the positive impact of the 

impact damper on the vibrating cantilever beam system. 

The theoretical model's predictions align well with the 

experimental results, highlighting the effectiveness of the 

impact damper in improving damping performance. 
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