

 1Assistant Professor, , Gobi Arts and Science College, Gobichettipalayam – 638453, India, Email: kavithaashmi@gmail.com
 ²Research Scholar, Department of Mathematics, Nesamony Memorial Christian College, Marthandam – 629165, India , Email: krishankumarikr@yahoo.com
 ³Assistant Professor, Department of Mathematics, Nesamony Memorial Christian College, Marthandam – 629165, India, Email: nidhamaths@gmail.com

Article History: Received: 18.04.2023	Revised:07.05.2023	Accepted: 16.06.2023	
---------------------------------------	--------------------	----------------------	--

Abstract: For a graph G that has at least two vertices. If G[M] is connected, an opendetourmono-phonic set M is termed a connected open detourmono-phonic set. The lowest number of a connected open detourmono-phonic set of G is the connected open detourmono-phonic number $odm_c(G)$. The odm_c -set of G is any connected open detourmono-phonic number $odm_c(G)$ of certain standard graphs and achieved some findings in this work. For a connected graph G, it is demonstrated that There is an integer n such that $odm_c(G) = k$ for any pair of positive integers k, n with $3 \le k \le n$.

Keywords: mono-phonic number, open detourmono-phonic number, connected open detourmono-phonic number

DOI: 10.48047/ecb/2023.12.8.506

INTRODUCTION

For a connected graph *G* that does not contain loops or numerous edges, *m* and *n* stand for the graph's *order* and *size*, respectively. We direct the reader to [1] for graph theoretic terms. If the edges *e* connect the vertices *u* and *v*, then the vertices *u* and *v* are neighbours. N(v) denotes the neighbourhood of *v*, the subgraph of *Ginduced* by all vertices close to *v*. Thus deg(v) = |N(v)|. If deg(v) = n - 1, then *v* is called a universal vertex. If the subgraph produced by N(v) is complete, then *v* is a simplicial vertex. The no of edges in a shortest path is the distance between two vertices in a graph. If an edge links two non-neighbour vertices of a route P, the path has a chord. A mono-phonic route is one that has no chords. The mono-phonic distance $d_m(x, y)$ lis length of the longest x - y mono-phonic route. A x - y mono-phonic route is defined as one with a length of $d_m(x, y)$ If each vertex *v* of *G* sits on a x - y mono-phonic path in G for any $x, y \in M$, the set M is a mono-phonic set of *G*. The minimum numberof mono-phonic set M of G is called the mono phonic number m(G). The mono-phonic concepts set studied in [2,4].

A set $M \subseteq V$ in G is an open monophonic set if for each vertex v in G, either v is an internal vertex of an x - ymonophonic path for each $x, y \in S$ or v is an extreme vertex of G and $v \in M$, The open monophonic number om is the minimal cardinality of an open mono-phonic set of G. [6] looked into the possibility of an open mono-phonic number. If a mono-phonic set M such that G[M] is connected, a set $M \subseteq v$ in a graph G called connected open mono-phonic set of G. The connected mono-phonic number $m_c(G)$ is the least number of a connected mono-phonic set of G. [2] explored the connected mono-phonic number. Anu – v detourmono-phonic path is the longest u - v mono-phonic path. If each vertex v is an internal vertex of u –vdetourmono-phonic path for some u and v in M, then the set $M \subseteq V$ of G is a detourmono-phonic set of G. [7] looked at the detourmono-phonic notions.

If $J_{dm}(M) = V$, a set $M \subseteq V$ is termed an open detour mono phonic set of G. The odm set of G has the smallest cardinality (G). [3] looked at open detourmono-phonic notions. If v is

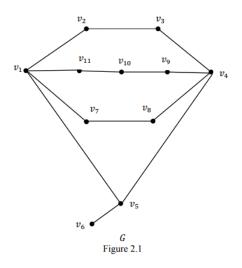
not an interior vertex of any x - y detourmono-phonic path for any $x, y \in V$, it is said to be a detourmono-phonic simplicial vertex of G.

Definition 1.1 [5] A branch *G* at v is a cut vertex v in a connected *G* and the subgraph H of G - v, as well as the vertex v combined with all edges joining v and V(H).

THE CONNECTED OPEN DETOURMONO-PHONIC NO.OF A GRAPH

Definition 2.1. An open detour mono-phonic set M is called a connected open detour monophonic set if G[M] is connected. The connected open detour mono-phonic number $odm_c(G)$ is the minimum cardinality of a connected open detour mono-phonic set of G. Any open detour mono-phonic set of order $odm_c(G)$ is called odm_c -set of G.

Example 2.2. In Figure 2.1, $M = \{v_1, v_2, v_9, v_{10}\}$ is a odm-set of *G* which is not connected $M_1 = \{v_1, v_4, v_5, v_6, v_9, v_{10}\}$ is a odm_c -set of Godm_c(G) = 6.



Observation 2.3.Let *G* be a connected graph with $n \ge 2$.

(i) Eachod m_c - set inG containsdetourmono-phonicsimplicial vertex of G

(ii) $2 \le dm(G) \le odm(G) \le odm_c(G) \le n$.

(iii) Every subgraph of G - v contains an element of M, if v is a cut-vertex and M is a odm_c -set of G.

(iv) If G is of order $n \ge 4$ and G does not contains detour mono-phonic simplicial vertices, then $odm(G) \ge 3$.

(v) For any graph G with exactly one universal vertex, say x. If $d_m(G - x) \ge 3$, then x is a detourmonophonic simplicial vertex of G.

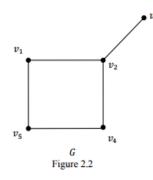
(vi) Let G be a complete graph, $odm_c(G) = n$.

Theorem 2.4. For a connected graph G. Every minimum odm_c -set G contains each cut vertex of G.

Proof.Let *M*be a minimum odm_c - set of G and vbe a cut-vertex of *G*. Let $G_1, G_2, \ldots, G_i, i \ge 2$ be the components of G - v. By Observation 2.3(iii) M contains at least one vertex from each G_i . We prove that $v \in M$. On the contrary $v \notin M$. Then G[M] is disconnected, which is aimpossible. Therefore $v \in M$. **Corollary 2.5.**For any connected graph *G* of order *n*. If *every vertex* of *G* is either a detourmonophonic *simplicial vertex* or *a cut - vertex of G*. Then $odm_c(G) = n$.

Proof. This comes from Observation 2.3(i) and Theorem 2.4.

Remark 2.6. The reverse part of the corollary 2.5 need not be true. A graph illustrating the failure of converse of Corollary 2.5. In Figure 2.2, $M = \{v_1, v_2, v_3, v_4, v_5\}$ is the only minimum odm_c -set of $G, odm_c(G) = 5 = n$.



The Connected Open detourmono-Phonic Number of Some Standard Graphs

Theorem 3.1. If $G = C_n$ is a cycle on *n*-vertices, then $\begin{cases}
3 & ifn = 3 \\
4 & ifn = 4,5
\end{cases}$

$$pdm_c(G) = \begin{cases} 5 & ifn = 6\\ 6 & ifn \ge 7 \end{cases}$$

Proof.Let $G = C_n, n \ge 3$. For $G = C_3 = K_3$, by Observation 2.3(iv) $odm_c(G) = 3$. For $G = C_4$ or C_5 . Since Ghas no detourmono-phonicsimplicial vertices, by Observation 2.3(iv), $odm(G) \ge 3$. Hence by Observation 2.3(ii) $odm_c(G) \ge 3$.Clearly,subsets of vertices V(G) with three element is not an odm_c -set of G. Let $M = \{v_1, v_2, v_3, v_4\}$ is an odm_c -set of G so that $odm_c(G) = 4$.For $G = C_n, n \ge 6$. It is clear that there is three element or 4 element which is subset of V(G) is not an odm_c -set of G. For n=6 $M_1 = \{v_1, v_2, v_3, v_4, v_5\}$ is an odm_c -set of G. Therefore $odm_c(G) = 5$.For $n \ge 7$,since $v_3 \notin J_{dm}(M_1), M_1$ is not an odm_c -set of G. Therefore $M_2 = \{v_1, v_2, v_3, v_4, v_5, v_6\}$ is an odm_c -set of G. odm $_c(G) = 6$.

Theorem 3.2. If $G = K_{r,s}$ is a complete bipartite graph $(2 \le r \le s)$, then $odm_c(G) = 4$.

Proof.Let $K_{r,s}(2 \le r \le s)$. Let $X = \{x_1, x_2, ..., x_r\}$ and $Y = \{y_1, y_2, ..., y_s\} \in G$. Since Ghas no detourmono-phonicsimplicial vertices, by Observation 2.3(ii) and (iv) $odm_c(G) \ge 3$. Clearly, three element subset of V(G) is not an odm_c – set of G, $odm_c(G) \ge 4$. Let $M = \{x, y, u, v\}$, where $x, y \in X$ and $u, v \in Y$. Then M is a odm_c – set of G so that $odm_c(G) = 4$.

Theorem 3.3. If $G = W_n = K_1 + C_{n-1}$ is the wheel graph $(n \ge 4)$, then $odm_c(G) = \begin{cases} 4 & ifn = 4,5 \\ 5 & ifn = 6 \\ 6 & ifn \ge 7 \end{cases}$

Proof.Let $V(K_1) = x$ and $V(C_{n-1}) = \{v_1, v_2, ..., v_{n-1}\}$. If n = 4, then $G = K_4$, by Observation 2.3 (vi), $odm_c(G) = 4$.

For n = 5, it can be easily seen that $M = \{v_1, v_2, v_3, v_4\}$ is an dm_c -set of G, $dm_c(G) = 4$. Let $n \ge 6$. Since $d_m(G - x) \ge 3$, by Observation 2.3(v), x is a detour mono-phonic simplicial vertex of G and so x contains every odm_c -set of G. Let $M_1 = \{x, v_1, v_2, v_3, v_4\}$ is a odm_c -set of G, $odm_c(G) \ge 5$. Let $n \ge 7$, every odm_c - of G contains minimum five vertices from $V(C_{n-1})$ and so $odm_c(G) \ge 6$. Let $M_2 = \{x, v_1, v_3, v_{n-2}, v_n\}$ is an odm_c -set of G, $odm_c(G) = 5$. **Theorem 3.4**.If $G = L_n = K_2 \times P_n$ is the ladder graph

$$(n \ge 3)$$
, then $odm_c(G) = n + 2$.

Proof.Let $V(G) = \{v_{11}, v_{21}, ..., v_{n1}\} \cup \{v_{12}, v_{22}, ..., v_{n2}\}$. Then $M = \{v_{11}, v_{21}, ..., v_{n1}\} \cup \{v_{12}, v_{n2}\}$ is a odm_c -set of $G, odm_c(G) \le n + 2$. To show that $odm_c(G) = n + 2$. Suppose, assume that $odm_c(G) \le n + 1$. Then there is an odm_c -set M' such that $|M'| \le n + 1$. Let $z \in M$ and $z \notin M$. If $M' \subset M$, then G[M'] so that $z \notin M$. If $M' \subset M$, then G[M'] is not connected. Therefore $M' \notin M$. Since $|M'| \le n + 1$, M is not an odm_c -set of G, which is impossible. Hence $odm_c(G) = n + 2$.

Theorem 3.5.If $G = H_n = K_1 \circ W_n$ is the helm graph $(n \ge 3)$, then $odm_c(G) = \begin{cases} 2nifn = 3,4,5,6\\ 2n+1 \ ifn \ge 7 \end{cases}$

Proof.Let H_n contains a central vertex, say x. For n = 3, 4, 5, 6. It can be easily proved that $odm_c(G) = 2n$. So let $n \ge 7$.Let the set S be cut vertices and end vertices of G and M be an odm_c - set of G. Then $S \subseteq M$. Since $x \notin J_{dm}(M)$, M is not an odm_c - set of G and so $odm_c(G) \le 2n + 1$. Hence M = V(G) is the unique odm_c -set of G such that $odm_c(G) = 2n + 1$.

Theorem 3.6.If $G = F_n = K_1 + P_{n-1}$ is the fan graph $(n \ge 5)$, then $odm_c(G) = 3$.

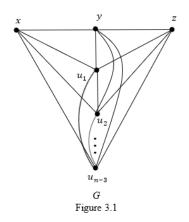
Proof.Let $V(K_1) = x$ and $V(P_{n-1}) = \{v_1, v_2, \dots, v_{n-1}\}$. Then $M = \{x, v_1, v_{n-1}\}$ is a set of all detourmono-phonicsimplicial vertices of G and so $odm_c(G) \ge 3$. Since G[M] is connected. Mis an odm_c -set of G and $odm_c(G) = 3$.

Theorem 3.7. For a connected graph G. Let k, n be positive integers with $3 \le k \le n$, then there is an integer n such that $odm_c(G) = k$.

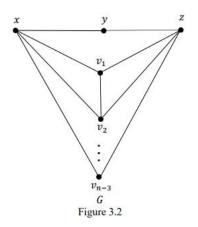
Proof.Case(i) Suppose k = 3. Let $V(P) = \{x, y, z\}$. Let *P* be a path on 3 vertices. Let G beconstructed from *P* by introducing new vertices $u_1, u_2, ..., u_{n-3}$ and join *x*, *y* and *z* with each *u*, $(1 \le i \le n-3)$ and introduce the edge $u_{i-1}u_i$,

 $(1 \le i \le n-3)$ and isoshown in Figure 3.1.

Let $Y = \{x, z\}$ be the detour*mono-phonic simplicial* vertices of *G*, then $Y \subseteq odm_c$ -set of *G*such that G[Y] is disconnected and so $odm(G) \ge 3$. Hence $M = \{x, y, z\}$ is *minimum* odm_c -set of $G, odm_c(G) = 3$.



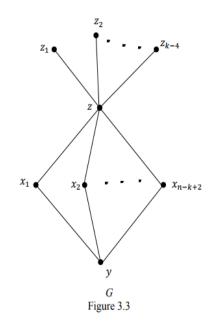
Case(ii)Suppose k = 4. Let P: u, v, w be a path on 3 vertices. Let the graph G can be constructed from path P by introducing new vertices $v_1, v_2, \ldots, v_{n-3}$ and join u and wwith each $v_i, (1 \le i \le n-3)$ and introduce the edge $v_{i-1}v_i$ and is given in Figure 3.2.



*G*has no detourmono-phonicsimplicial vertices and so by Observaton 2.3(ii) $odm_c(G) \ge 3$. Clearly G has no three element *subset* of V(G) is a odm_c -set of G. It is easily verified that $M = \{u, v, w, v_i\}, (1 \le i \le n-3)$ is a minimum odm_c - set of G, $odm_c(G) = 4$.

Case (iii) Suppose $k \ge 5$. Let $V(K_1) = \{y, z\}$ and $V(K_{n-k+2}) =$

 $\{x_1, x_2, \dots, x_{n-k+2}\}$. Let the graph G constructed from K_2 and K_{n-k+2} and introducing the vertices y_1, y_2, \dots, y_{k-4} and join z with each $y_i, (i = 1, 2, 3, \dots, k-4)$ and $x_j (j = 1, 2, 3, \dots, n-k+2)$ and the edges yx_j are introduced which is shown in Figure 3.3.



The set of all detour mono-phonic simplifical vertex of G is $Y = \{y_1, y_2, ..., y_{k-4}\}$ Because $Y \subseteq$ of every connected open detour mono-phonic set of G. Y is not an odm_c -set of G since $J_{dm}(Y) \neq V$. $Y \cup X$ where $|X| \leq 3$ is not a connected open detourmono – phonic set of G, therefore $odm_c(G) \geq k$. Allow $M = Y \cup \{y, z, x_1, x_2\}$. M is therefore an odm_c -set of G with $odm_c(G) = k$.

Theorem 3.8.Let v be a *cut* – *vertex* and n the order of connected graph G.

(i) If each branch of G - v is complete, then $odm_c(G) = n$.

(ii) If r branches of G is a copy of $K_p - \{e\}$, p = 4 and the remaining branches are complete, then odmc(G) = n - r.

Proof. If v is a cut-vertex of G. Then by Theorem 2.4, v belongs to each odm_c -set of G.

(i) If G - v is complete, $V(G) - \{v\}$ is the set of all detourmono-phonicsimplicial vertices of G. Therefore M = V(G) is the unique odm_c -set of G, $odm_c(G) = n$.

(ii) Let $K_{P_i} - \{e\}(1 \le i \le r)$ be a copy of $K_p - \{e\}$ and $e = x_i y_i$. Let $x_i, z_i y_i$ $(1 \le i \le r)$ be a detourmono-phonic path in $K_p - \{e\}$. Then the set $M = V(G) - \{z_1, z_2, ..., z_r\}$ is the detour mono-phonic simplicial vertices of G. Since M is a subset of all odm_c -set of G so that $odm_c(G) \ge n - r$. Since M is an odm_c -set of G, odmc(G) = n - r.

Theorem 3.9.Let *G* be a connected graph. For every positive integers $n \ge 4$, there exists an integer n with $odm(G) = odm_c(G) = 4$.

Proof.Let $K_2 = \{x, y\}$ and $K_{n-2} = \{v_1, v_2, ..., v_{n-2}\}$.Let $G = K_2 + K_{n-2}$. Since G has no detourmonophonic simplicial vertices $odm_c(G) \ge 3$. Clearly no three element subset of vertices of G is a *odm*-set of G. It is verified that $M = \{x, y, v_1, v_2\}$ is a *minimumodm*-set of G and so odm(G) = 4. Since G[M] is connected, $odm_c(G) = 4$.

REFERENCES

- 1. G. Chartrand and P.Zhang, Introduction to Graph Theory, Tata McGraw Hill (2006).
- 2. J. John, P. Arul Paul Sudhahar and A. Vijayan, The connected mono-phonic number of a graph, International Journal of Combinatorial Graph Theory and Applications, 5(1),(2012), 83-90.
- 3. K.Krishna Kumari, S. Kavitha and D. Nidha, On the upper open detourMono-phonic number of a graph, Malaya Journal of Matematik, 9(1),765-769, 2021.
- 4. M. Mohammed Abdul Khayyoom1 and P. Arul Paul Sudhahar, Connected detour Mono-phonic Domination Number of a Graph, Global Journal of Pure and Applied Mathematics 13(5), (2017), 241-249.
- 5. A. P. Santhakumaran and M. Mahendran, The Connected Open Mono-phonicNumber of a Graph, International Journal of Computer Applications, (0975 8887), 80(1), (2013), 39-42.
- 6. A. P. Santhakumaran and M. Mahendran, The open mono-phonic number of a graph, International Journal of Scientific Engineering Research,5(2), (2014), 1644-49.
- 7. P. Titus, A.P. Santhakumaran and K. Ganesamoorthy, The connected detourmono-phonic number of a graph, TWMS J. App. Eng. Math.6,(1), (2016), 75-86.