THE LATTICE OF CONVEX SUBLATTICE OF $\boldsymbol{S}\left(\boldsymbol{S}\left(B_{n}\right)\right)$

Aaswin. \mathbf{J}^{1}, Dr. A. Vethamanickam ${ }^{2}$
1 Research Scholar, (Reg. No.19211172092013),
PG and Research Department of Mathematics,
Rani Anna Government College For Women, Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012.
2 Former Associate Professor, PG and Research Department of Mathematics, Rani Anna Government College For Women, Tirunelveli-627008.

Corresponding Author E.mail: aaswinj1996@gmail.com

Abstract

Subbarayan.R and Vethamanickam.A[15] have proved in their paper that $\operatorname{CS}\left(B_{n}\right)$ the lattice of convex sublattices of a Boolean algebra B_{n}, of rank n , with respect to the set inclusion relation, is a dual simplicial Eulerian lattice. Subsequently, Sheeba Merlin.G and Vethamanickam.A[8] have proved in their paper that $C S\left[S\left(B_{n}\right)\right]$ is an Eulerian lattice under the set inclusion relation which is neither simplicial nor dual simplicial. In this paper, we prove that $C S\left[S\left(S\left(B_{n}\right)\right)\right]$ is an Eulerian lattice under the set inclusion relation and it is neither simplicial nor dual simplicial, if $n>1$.

Keywords: Convex sublattice; Simplicial Eulerian lattice; Dual simplicial.
2010 Mathematics Subject Classification: 03G05, 05A19, 06D50.

DOI: 10.48047/ecb/2023.12.Si6.725

1 Introduction

The study of lattice of convex sublattices of a lattice was started by K. M. Koh[3], in the year 1972. He had investigated the internal structure of a lattice L, in relation to $C S(L)$, like so many other authors for various algebraic structures such as groups, Boolean algebras, directed graphs and so on. A construction of a new Eulerian lattice $S\left(B_{n}\right)$ from a Boolean algebra B_{n} of rank n is found in the thesis of V. K. Santhi[12] in 1992.

In 2012, R.Subbarayan and A.Vethamanickam[15] have proved in their paper that the lattice of convex sublattices of a Boolean algebra B_{n}, of rank $n, \operatorname{CS}\left(B_{n}\right)$ with respect to the set inclusion relation is a dual simplicial Eulerian lattice. In 2017, Sheeba Merlin.G and Vethamanickam.A[8] proved in their paper that $C S\left(S\left(B _n\right)\right.$ is an Eulerian lattice under the set inclusion relation which is neither simplicial nor dual simplicial. In this paper, we are going to look at the structure of
$C S\left(S\left(S\left(B_{n}\right)\right)\right)$ and prove it to be Eulerian under ' $\subseteq{ }^{\prime}$ relation. $S\left(B_{3}\right)$ is shown in figure 1 . We note that $S\left(B_{3}\right)$ contains three copies of B_{3}, we call them left copy, right copy and middle copy of $S\left(B_{3}\right)$.

2 Preliminaries

Throughout this section $\operatorname{CS}(L)$, the collection of all convex sublattices of a lattice L including empty set is equipped with the partial order of set inclusion relation.

Definition 2.1 Möbius function

The Möbius function μ on a finite graded poset P is an integer-valued function defined on $P \times P$
by the formulae: $\mu(x, y)=\left\{\begin{array}{c}1, \text { if } x=y ; \\ 0, \text { if } x<y ; \\ \sum_{-x \leq z<y} \mu(x, z), \text { if } x<y\end{array}\right\}$
An equivalent definition for an Eulerian poset is as follows:

Definition 2.2 Eulerian poset

A finite graded poset P is said to be Eulerian if its Möbius function assumes the value

$$
\mu(x, y)=(-1)^{r(y)-r(x)} \forall x \leq y \text { in } P
$$

Lemma 2.3 [8]

A finite graded poset P is Eulerian if and only if all intervals $[x, y]$ of length \boldsymbol{P} contain an equal number of elements of odd and even rank.

Definition 2.5 Simplicial

A poset P is called Simplicial if for all $t \neq 1$ in $P,[0, t]$ is a Boolean algebra and P is called Dual Simplicial if for all $t \neq 0$ in $P,[t, 1]$ is a Boolean algebra.

Lemma 2.6[1]

Let L and K be any two lattices. Then $C S(L \times K) \cong[(C S(L)-\phi \times(C S(K)-\phi)] \cup \phi$.
Lemma 2.7 [15]
Let B_{n} be a Boolean lattice of rank n. Then $\operatorname{CS}\left(B_{n}\right)$ is a dual simplicial Eulerian lattice.
We note that any interval of an Eulerian lattice is Eulerian and an Eulerian lattice cannot contain a three element chain as an interval. For any undefined term we refer to[2], [11] and [12].

3 The Eulerian property of the lattice $\operatorname{CS}\left(S\left(S\left(B_{n}\right)\right)\right.$

Lemma

For $n \geq 1$, we have

$$
1+\left[\binom{n}{1}+2\right]+\left[2\binom{n}{1}+\binom{n}{2}\right]+\left[2\binom{n}{2}+\binom{n}{3}\right]+\cdots+2\binom{n}{n-2}+\binom{n}{n-1}+2\binom{n}{n-1}+1=
$$ $3.2^{n}-2$.

Theorem

$\operatorname{CS}\left[S\left(S\left(B_{n}\right)\right)\right]$, the lattice of convex sublattices of $S\left(S\left(B_{n}\right)\right)$ with respect to the set inclusion relation is an Eulerian lattice.

Proof.
We first note that, the number of elements of ranks $0,1,2, \cdots, n+1$ in $S\left(B_{n}\right)$ are, $1,2+$ $\left.\left.\binom{n}{1}, 2\binom{n}{1}+\binom{n}{2}, 2\binom{n}{2}+\binom{n}{3}\right\}, \cdots, 2\binom{n}{n-2}+\binom{n}{n-1}\right\}, 2\binom{n}{n-1}, 1$ respectively.

The number of elements of ranks $0,1,2, \cdots, n+2$ in $S\left[S\left(B_{n}\right)\right]$ are, $1,2+\binom{n}{1}, 2+\binom{n}{1}+$ $\left.2,2\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}, 2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}, 2\left[2\binom{n}{2}+\binom{n}{3}\right]+2\binom{n}{3}+$ $\binom{n}{4}, \cdots, 2\left[2\binom{n}{n-2}+\binom{n}{n-12}\right]+2\binom{n}{n-1}, 2\left[2\binom{n}{n-1}\right], 1$ respectively.
It is clear that the rank of $C S\left[S\left(S\left(B_{n}\right)\right)\right]$, is $n+3$.
We are going to prove that $C S\left[S\left(S\left(B_{n}\right)\right)\right]$ is Eulerian.
That is, to prove that this interval $\left[\phi, S\left(S\left(B_{n}\right)\right)\right]$ has the same number of elements of odd and even rank.

Let A_{i} be the number of elements of rank i in $\operatorname{CS}\left[S\left(S\left(B_{n}\right)\right)\right], i=1,2, \cdots, n+2$.
$A_{1}=$ The number of singleton convex sublattices of $S\left[S\left(B_{n}\right)\right]$
$\left.=1+2+\binom{n}{1},+2+\binom{n}{1}+2+2\binom{n}{1}+2\right]+2\binom{n}{1}+\binom{n}{2}+2\left[2\binom{n}{1}+\binom{n}{2}\right]+2\binom{n}{2}+\binom{n}{3}+$ $2\left[2\binom{n}{2}+\binom{n}{3}\right]+2\binom{n}{3}+\binom{n}{4}+\cdots+2\left[2\binom{n}{n-2}+\binom{n}{n-12}\right]+2\binom{n}{n-1}+2\left[2\binom{n}{n-1}\right]+1$
$A_{2}=$ The number of elements of rank 2 in $S\left[S\left(B_{n}\right)\right]$
$=$ The number of edges in $S\left[S\left(B_{n}\right)\right]$
$=$ The number of edges containing $0+$ number of edges with an atom at the bottom + the number of edges from the rank 2 elements $+\cdots+$ the number of edges with a coatom of $S\left[S\left(B_{n}\right)\right]$ at the bottom.

Number of edges containing 0 is $2+\binom{n}{1}+2$
Number of edges with an extreme atom at the bottom $=\binom{n}{1}+2$ There are 2 extreme atoms, therefore total number of such edges $=2\left[\binom{n}{1}+2\right]$.
From the atom of the left copy of middle copy, the number of edges $=2\left[\binom{n}{1}+2\right]$. There are totally $2\left[\binom{n}{1}+2\right]$ edges from the extreme atoms of the middle copy.

Now, to find the number of edges from an atom of the middle of the middle copy.
Let x be an atom in the middle copy, then $\quad[x, 1] \simeq S\left[S\left(B_{\{n-1\}}\right)\right]$

Therefore, the total number of edges from an atom at the middle copy $=2+\binom{n-1}{1}+2$. There are totally $\binom{n}{1}$ atoms in the middle of the middle copy.

Therefore, the number of edges with an atom at the bottom in the middle of the middle $\operatorname{copy}\binom{n}{1}\left[2+\binom{n-1}{1}+2\right]$.
Hence, the number of edges with an atom at the bottom is $2\left[\binom{n}{1}+2\right]+2\left[\binom{n}{1}+2\right]+$ $\binom{n}{1}\left[2+\binom{n-1}{1}+2\right]$.
Now to find, the number of edges with an element of rank 2 at the bottom.
Let x be a rank 2 element in the left copy. Then $[x, 1] \simeq$
$\left\{\begin{array}{c}B_{n} \text { if } x \in \text { extreme copies of left copy of } S\left(S\left(B_{n}\right)\right) \\ S\left(B_{\{n-1\}}\right) \text { if } x \in \text { middle copy of left copy of } S\left(S\left(B_{n}\right)\right)\end{array}\right.$
If $[x, 1] \simeq B_{n}$, There are $\binom{n}{1}$ edges in both extreme copies. Totally, $2\binom{n}{1}$ edges are there.
If $[x, 1] \simeq S\left(B_{\{n-1\}}\right)$, the number of edges from x is $\binom{n-1}{1}+2$.There $\operatorname{are}\binom{n}{1}$ such elements, therefore, totally $\binom{n}{1}\left[\binom{n-1}{1}+2\right]$ edges in the middle of the left copy of $S\left(S\left(B_{n}\right)\right)$.Therefore, the number of edges with an element of rank 2 at the bottom in the left copy $=2\binom{n}{1}+\binom{n}{1}\left[\binom{n-1}{1}+\right.$ 2].Similarly, the number of edges with an element of rank 2 at the bottom in the right copy $=$ $2\binom{n}{1}+\binom{n}{1}\left[\binom{n-1}{1}+2\right]$.
Let x be a rank 2 element in the middle copy.
Then, $[x, 1] \simeq\left\{\begin{array}{c}S\left(B_{\{n-1\}}\right) \text { if } x \in \text { extreme copies of middle copy of } S\left(S\left(B_{n}\right)\right) \\ S\left(S\left(B_{\{n-2\}}\right) \text { if } x \in \text { middle copy of middle copy of } S\left(S\left(B_{n}\right)\right)\right.\end{array}\right.$
If $[x, 1] \simeq S\left(B_{\{n-1\}}\right)$, the number of edges from x is $\binom{n-1}{1}+2$. There are $2\binom{n}{1}$ such elements in both extreme copies. Totally, $2\binom{n}{1}\left[\binom{n-1}{1}+2\right]$ edges.

If $[x, 1] \simeq S\left(S\left(B_{\{n-2\}}\right)\right)$, the number of edges from x is $2+\binom{n-2}{1}+2$. There are $\binom{n}{2}$ such elements, therefore, totally $\binom{n}{2}\left[2+\binom{n-2}{1}+2\right]$ edges in the middle of the middle copy of $S\left(S\left(B_{n}\right)\right)$. Therefore, the number of edges with an element of rank 2 at the bottom in the middle copy is $\left.2\left[\binom{n}{1}\binom{n-1}{1}+1\right)\right]+\binom{n}{2}\left[2+\binom{n-2}{1}+2\right]$ edges.
Hence, total number of edges from a rank 2 element is $2\left[2\binom{n}{1}+\binom{n}{1}\left[\binom{n-1}{1}+2\right]\right]+$ $2\binom{n}{1}\left[\binom{n-1}{1}+2\right]+\binom{n}{2}\left[2+\binom{n-2}{1}+2\right]$.
Now to find, the number of edges with an element of rank 3 at the bottom.
Let x be a rank 3 element in the extreme copies in the left copy of $S\left(S\left(B_{n}\right)\right)$.
$[x, 1] \simeq\left\{\begin{array}{l}B_{n-1} \text { if } x \in \text { extreme copies of left copy of } S\left(S\left(B_{n}\right)\right) \\ S\left(B_{\{n-2\}}\right) \text { if } x \in \text { middle copy of left copy of } S\left(S\left(B_{n}\right)\right)\end{array}\right.$

If $[x, 1] \simeq B_{\{n-1\}}$, the number of edges from x is $\binom{n-1}{1}$. There are $2\binom{n}{1}$ such x 's in both extreme copies.Totally, $2\binom{n}{1}\left(\binom{n-1}{1}\right)$ edges from such x 's in the extreme copies of left copy.
If $[x, 1] \simeq S\left(B_{\{n-2\}}\right)$, then the number of edges from x is $\binom{n-2}{1}+2$
There are $\binom{n}{2}$ such elements x, therefore, totally $\binom{n}{2}\left[\binom{n-2}{1}+2\right]$ edges from x 's in middle of the left copy of $S\left(S\left(B_{n}\right)\right)$. Therefore, the number of edges with an element of rank 3 at the bottom in the left copy is, $2\binom{n}{1}\binom{n-1}{1}+\binom{n}{2}\left[\binom{n-2}{1}+2\right]$. Similarly, the total number of edges from a rank 3 element in the right copy is $2\binom{n}{1}\binom{n-1}{1}+\binom{n}{2}\left[\binom{n-2}{1}+2\right]$.

Let x be a rank 3 element in the middle copy of $\left(S\left(B_{n}\right)\right)$.

$$
[x, 1] \simeq\left\{\begin{array}{c}
S\left(B_{\{n-2\}}\right) \text { if } x \in \text { extreme copies of middle copy of } S\left(S\left(B_{n}\right)\right) \\
S\left(S\left(B_{\{n-3\}}\right) \text { if } x \in \text { middle copy of middle copy of } S\left(S\left(B_{n}\right)\right)\right.
\end{array}\right.
$$

If $[x, 1] \simeq S\left(B_{\{n-2\}}\right)$, the number of edges from x is $\binom{n-2}{1}+2$. There are $2\binom{n}{2}$ such elements in both extreme copies. Totally, $\left.2\binom{n}{2}\left[\begin{array}{c}n-1 \\ 1\end{array}\right)+2\right]$ edges.
If $[x, 1] \simeq S\left(S\left(B_{\{n-2\}}\right)\right)$,the number of edges from x is $2+\binom{n-3}{1}+2$. There are $\binom{n}{3}$ such elements, therefore, totally $\binom{n}{3}\left[2+\binom{n-3}{1}+2\right]$ edges in the middle of the middle copy of $S\left(S\left(B_{n}\right)\right)$. Therefore, the number of edges with an element of rank 3 at the bottom in the middle copy is $\left.2\left[\binom{n}{2}\binom{n-2}{1}+1\right)\right]+\binom{n}{3}\left[2+\binom{n-3}{1}+2\right]$ edges.
Hence, total number of edges from a rank 3 element is $2\left\{2\binom{n}{1}\binom{n-1}{1}+\binom{n}{2}\left[\binom{n-2}{1}+2\right]\right\}+$ $2\left[\binom{n}{2}\left(\binom{n-2}{1}+1\right)\right]+\binom{n}{3}\left[2+\binom{n-3}{1}+2\right]$.

Let x be a rank 4 element in the extreme copies in the left copy of $S\left(S\left(B_{n}\right)\right)$.
$[x, 1] \simeq\left\{\begin{array}{l}B_{n-2} \text { if } x \in \text { extreme copies of left copy of } S\left(S\left(B_{n}\right)\right) \\ S\left(B_{\{n-3\}}\right) \text { if } x \in \text { middle copy of left copy of } S\left(S\left(B_{n}\right)\right)\end{array}\right.$
If $[x, 1] \simeq B_{\{n-2\}}$, the number of edges from x is $\binom{n-2}{1}$. There are $2\binom{n}{2}$ such x 's in both extreme copies.Totally, $2\binom{n}{2}\binom{n-2}{1}$) edges from such x 's in the extreme copies of left copy.

If $[x, 1] \simeq S\left(B_{\{n-3\}}\right)$, then the number of edges from x is $\binom{n-3}{1}+2$
There are $\binom{n}{3}$ such elements x, therefore, totally $\binom{n}{3}\left[\binom{n-3}{1}+2\right]$ edges from x 's in middle of the left copy of $S\left(S\left(B_{n}\right)\right)$. Therefore, the number of edges with an element of rank 3 at the bottom in the left copy is, $2\binom{n}{2}\left(\binom{n-2}{1}\right)+\binom{n}{3}\left[\binom{n-3}{1}+2\right]$. Similarly, the total number of edges from a rank 3 element in the right copy is $\left.2\binom{n}{2}\binom{n-2}{1}\right)+\binom{n}{3}\left[\binom{n-3}{1}+2\right]$.

Let x be a rank 4 element in the middle copy of $\left(S\left(B_{n}\right)\right)$. $[x, 1] \simeq\left\{\begin{array}{c}S\left(B_{\{n-3\}}\right) \text { if } x \in \text { extreme copies of middle copy of } S\left(S\left(B_{n}\right)\right) \\ S\left(S\left(B_{\{n-4\}}\right) \text { if } x \in \text { middle copy of middle copy of } S\left(S\left(B_{n}\right)\right)\right.\end{array}\right.$

If $[x, 1] \simeq S\left(B_{\{n-3\}}\right)$, the number of edges from x is $\binom{n-3}{1}+2$. There are $2\binom{n}{3}$ such elements in both extreme copies. Totally, $\left.2\binom{n}{3}\left[\begin{array}{c}n-3 \\ 1\end{array}\right)+2\right]$ edges.
If $[x, 1] \simeq S\left(S\left(B_{\{n-4\}}\right)\right)$, the number of edges from x is $2+\binom{n-4}{1}+2$. There are $\binom{n}{4}$ such elements, therefore, totally $\binom{n}{4}\left[2+\binom{n-4}{1}+2\right]$ edges in the middle of the middle copy of $S\left(S\left(B_{n}\right)\right)$. Therefore, the number of edges with an element of rank 4 at the bottom in the middle copy is $2\binom{n}{3}\left[\binom{n-3}{1}+2\right]+\binom{n}{4}\left[2+\binom{n-4}{1}+2\right]$ edges.
Hence, total number of edges from a rank 4 element is $\left.2\left\{2\binom{n}{2}\binom{n-2}{1}\right)+\binom{n}{3}\left[\binom{n-3}{1}+2\right]\right\}+$ $2\binom{n}{3}\left[\binom{n-3}{1}+2\right]+\binom{n}{4}\left[2+\binom{n-4}{1}+2\right]$.

Hence, we get, the total number of edges in $S\left(S\left(B_{n}\right)\right)$ is, $A_{2}=2+\binom{n}{1}+2+2\left[\binom{n}{1}+2\right]+$ $2\left[\binom{n}{1}+2\right]+\binom{n}{1}\left[2+\binom{n-1}{1}+2\right]+2\left[2\binom{n}{1}+\binom{n}{1}\left[\binom{n-1}{1}+2\right]\right]+2\binom{n}{1}\left[\binom{n-1}{1}+2\right]+$ $\binom{n}{2}\left[2+\binom{n-2}{1}+2\right]+2\left\{2\binom{n}{1}\binom{n-1}{1}+\binom{n}{2}\left[\binom{n-2}{1}+2\right]\right\}+2\left[\binom{n}{2}\left(\binom{n-2}{1}+1\right)\right]+\binom{n}{3}[2+$ $\left.\binom{n-3}{1}+2\right]+2\left\{2\binom{n}{2}\left(\binom{n-2}{1}\right)+\binom{n}{3}\left[\binom{n-3}{1}+2\right]\right\}+2\binom{n}{3}\left[\binom{n-3}{1}+2\right]+\binom{n}{4}\left[2+\binom{n-4}{1}+2\right]+$ $\cdots+2\left\{2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}\right\}+4\binom{n}{n-1}$
$A_{3}=$ The number of 4 element convex sublattices in $S\left[S\left(B_{n}\right)\right]$
$=$ The number of B_{2} 's in $S\left[S\left(B_{n}\right)\right]$
$=$ The number of 4 element convex sublattices containing $0+$ number of 4 element convex sublattices containing an atom at the bottom + the number of 4 element convex sublattices containing a rank 2 element at the bottom $+\cdots+$ The number of 4 element convex sublattices containing a rank n element at the bottom in $S\left(S\left(B_{n}\right)\right)$.
The number of 4 element convex sublattices in $S\left(S\left(B_{n}\right)\right)$ containing 0 as the bottom element is, $2\left(\binom{n}{1}+2\right)+2\binom{n}{1}+\binom{n}{2}$.

Next, we find the number of 4 element convex sublattices containing an atom as the bottom element.
Fix an atom $\in S\left(S\left(B_{n}\right)\right)$, If x is the bottom element of the left copy of $S\left(S\left(B_{n}\right)\right)$, then $[x, 1] \simeq$ $S\left(B_{n}\right)$.
Therefore, the number of B_{2} 's containing x at the bottom is $2\binom{n}{1}+\binom{n}{2}$. Similarly, The number of B_{2} 's containing the bottom element of the right copy is $2\binom{n}{1}+\binom{n}{2}$.

Let x be an atom in the middle copy, then $\quad[x, 1] \simeq$ $\left\{\begin{array}{c}S\left(B_{n}\right) \text { if } x \in \text { extreme copies of middle copy of } S\left(S\left(B_{n}\right)\right) \\ S\left(S\left(B_{\{n-1\}}\right)\right) \text { if } x \in \text { middle copy of middle copy of } S\left(S\left(B_{n}\right)\right)\end{array}\right.$
If $[x, 1] \simeq S\left(B_{\{n\}}\right)$, the number of B_{2} 's from an atom at the middle copy $=2\binom{n}{1}+\binom{n}{2}$. There are 2 extreme copies. Totally, $2\left(2\binom{n}{1}+\binom{n}{2}\right) . B_{2}{ }^{\prime} s$.

If $[x, 1] \simeq S\left(S\left(B_{\{n-1\}}\right)\right)$, the number of B_{2} 's from x is $2\left[\binom{n-2}{1}+2\right]+2\binom{n-2}{1}+\binom{n-2}{2}$.
There are $\binom{n}{1}$ such elements, therefore, totally $\binom{n}{1}\left[2\left[\binom{n-2}{1}+2\right]+2\binom{n-2}{1}+\binom{n-2}{2}\right]$ edges in the middle of the middle copy of $S\left(S\left(B_{n}\right)\right)$.

Therefore, the total number of B_{2} 's from an atom at the bottom $=2\left\{2\binom{n}{1}+\binom{n}{2}\right\}+\binom{n}{1}$ $\left[2\left[\binom{n-2}{1}+2\right]+2\binom{n-2}{1}+\binom{n-2}{2}\right]$. Totally, $2\left\{2\binom{n}{1}+\binom{n}{2}\right\}+2\left\{2\binom{n}{1}+\binom{n}{2}\right\}+\binom{n}{1}\left[2\left[\binom{n-2}{1}+\right.\right.$ $\left.2]+2\binom{n-2}{1}+\binom{n-2}{2}\right] \quad B_{2}{ }^{\prime} s$.

Now to find, the number of B_{2} 's s with an element of rank 2 at the bottom.
Let x be a rank 2 element in the left copy. Then $[x, 1] \simeq$
$\left\{\begin{array}{c}B_{n} \text { if } x \in \text { extreme copies of left copy of } S\left(S\left(B_{n}\right)\right) \\ S\left(B_{\{n-1\}}\right) \text { if } x \in \text { middle copy of left copy of } S\left(S\left(B_{n}\right)\right)\end{array}\right.$
If $[x, 1] \simeq B_{n}$, There are $\binom{n}{2} B_{2}$'s in both extreme copies. Totally, $2\binom{n}{2} B_{2}$'s are there.
If $[x, 1] \simeq S\left(B_{\{n-1\}}\right)$, the number of B_{2} 's from x is $2\binom{n-1}{1}+\binom{n-1}{2}$.There are $\binom{n}{1}$ such elements, therefore, totally $\binom{n}{1}\left[2\binom{n-1}{1}+\binom{n-1}{2}\right] B_{2}$'s in the middle of the left copy of $S\left(S\left(B_{n}\right)\right)$.

Therefore, the number of B_{2} 's with an element of rank 2 at the bottom in the left copy $=2\binom{n}{2}+$ $\binom{n}{1}\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]$.Similarly, the number of B_{2} 's with an element of rank 2 at the bottom in the right copy $=2\binom{n}{2}+\binom{n}{1}\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]$.

Let x be a rank 2 element in the middle copy.
Then, $[x, 1] \simeq\left\{\begin{array}{c}S\left(B_{\{n-1\}}\right) \text { if } x \in \text { extreme copies of middle copy of } S\left(S\left(B_{n}\right)\right) \\ S\left(S\left(B_{\{n-2\}}\right) \text { if } x \in \text { middle copy of middle copy of } S\left(S\left(B_{n}\right)\right)\right.\end{array}\right.$
If $[x, 1] \simeq S\left(B_{\{n-1\}}\right)$, the number of B_{2} 's from x is $2\binom{n-1}{1}+\binom{n-1}{2}$. There are 2 such extreme copies. Totally, $2\left\{\binom{n}{1}\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]\right.$ \}edges.

If $[x, 1] \simeq S\left(S\left(B_{\{n-2\}}\right)\right)$,the number of B_{2} 's from x is $2\binom{n-2}{1}+2+2\binom{n-2}{1}+\binom{n-1}{1}$. There are $\binom{n}{2}$ such elements, therefore, totally $\binom{n}{2}\left[2\binom{n-2}{1}+2+2\binom{n-2}{1}+\binom{n-1}{1}\right]$ edges in the middle of the middle copy of $S\left(S\left(B_{n}\right)\right.$). Therefore, the number of B_{2} 's with an element of rank 2 at the bottom in the middle copy is $2\left\{\binom{n}{1}\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]\right\}+\binom{n}{2}\left[2\binom{n-2}{1}+2+2\binom{n-2}{1}+\binom{n-1}{1}\right]$ edges.

Hence, total number of B_{2} 's from a rank 2 element is $2\left[2\binom{n}{2}+\binom{n}{1}\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]\right]+$ $2\left\{\binom{n}{1}\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]\right\}+\binom{n}{2}\left[2\binom{n-2}{1}+2+2\binom{n-2}{1}+\binom{n-1}{1}\right]$.
Now to find, the number of B_{2} 's with an element of rank 3 at the bottom.
Let x be a rank 3 element in the extreme copies in the left copy of $S\left(S\left(B_{n}\right)\right)$.
$[x, 1] \simeq\left\{\begin{array}{l}B_{n-1} \text { if } x \in \text { extreme copies of left copy of } S\left(S\left(B_{n}\right)\right) \\ S\left(B_{\{n-2\}}\right) \text { if } x \in \text { middle copy of left copy of } S\left(S\left(B_{n}\right)\right)\end{array}\right.$
If $[x, 1] \simeq B_{\{n-1\}}$, the number of B_{2} 's from x is $\binom{n-1}{2}$. There are $2\binom{n-1}{2}$ such x 's in both extreme copies.Totally, $2\binom{n-1}{2} B_{2}$'s from such x 's in the extreme copies of left copy.

If $[x, 1] \simeq S\left(B_{\{n-2\}}\right)$, then the number of B_{2} 's from x is $2\binom{n-2}{1}+\binom{n-2}{2}$
There are $\binom{n}{2}$ such elements x, therefore, totally $\binom{n}{2}\left[2\binom{n-2}{1}+\binom{n-2}{2}\right] B_{2}$'s from x 's in middle of the left copy of $S\left(S\left(B_{n}\right)\right)$. Therefore, the number of B_{2} 's with an element of rank 3 at the bottom in the left copy is, $2\binom{n}{1}\binom{n-1}{2}+\binom{n}{2}\left[2\binom{n-2}{1}+\binom{n-2}{2}\right]$. Similarly, the total number of B_{2} 's from a rank 3 element in the right copy is $2\binom{n}{1}\binom{n-1}{2}+\binom{n}{2}\left[2\binom{n-2}{1}+\binom{n-2}{2}\right]$.

Let x be a rank 3 element in the middle copy of $\left(S\left(B_{n}\right)\right)$.

$$
[x, 1] \simeq\left\{\begin{array}{c}
S\left(B_{\{n-2\}}\right) \text { if } x \in \text { extreme copies of middle copy of } S\left(S\left(B_{n}\right)\right) \\
S\left(S\left(B_{\{n-3\}}\right) \text { if } x \in \text { middle copy of middle copy of } S\left(S\left(B_{n}\right)\right)\right.
\end{array}\right.
$$

If $[x, 1] \simeq S\left(B_{\{n-2\}}\right)$, the number of B_{2} 's from x is $2\binom{n-2}{1}+\binom{n-2}{2}$. There are $2\binom{n}{2}$ such elements in both extreme copies. Totally, $2\left\{\binom{n}{2}\left[2\binom{n-2}{1}+\binom{n-2}{2}\right]\right\}$ edges.
If $[x, 1] \simeq S\left(S\left(B_{\{n-2\}}\right)\right.$), the number of B_{2} 's s from x is $2\left[\binom{n-3}{1}+2\right]+2\binom{n-3}{1}+\binom{n-3}{2}$. There are $\binom{n}{3}$ such elements, therefore, totally $\binom{n}{3}\left[2\left[\binom{n-3}{1}+2\right]+2\binom{n-3}{1}+\binom{n-3}{2}\right]$ edges in the middle of the middle copy of $S\left(S\left(B_{n}\right)\right.$). Therefore, the number of B_{2} 's with an element of rank 3 at the bottom in the middle copy is $2\left\{\binom{n}{2}\left[2\binom{n-2}{1}+\binom{n-2}{2}\right]\right\}+\binom{n}{3}\left[2\left[\binom{n-3}{1}+2\right]+2\binom{n-3}{1}+\right.$ $\binom{n-3}{2}$] edges.

Hence, total number of B_{2} 's from a rank 3 element is $\left.2\left\{2\binom{n}{1}\binom{n-1}{2}+\binom{n}{2}\left[\begin{array}{c}n-2 \\ 1\end{array}\right)+\binom{n-2}{2}\right]\right\}+$ $2\left\{\binom{n}{2}\left[2\binom{n-2}{1}+\binom{n-2}{2}\right]\right\}+\binom{n}{3}\left[2\left[\binom{n-3}{1}+2\right]+2\binom{n-3}{1}+\binom{n-3}{2}\right]$.
Hence, $A_{3}=2\left(\binom{n}{1}+2\right)+2\binom{n}{1}+\binom{n}{2}+2\left\{2\binom{n}{1}+\binom{n}{2}\right\}+\binom{n}{1}\left[2\left[\binom{n-2}{1}+2\right]+2\binom{n-2}{1}+\right.$
$\left.\binom{n-2}{2}\right]+2\left\{2\binom{n}{1}+\binom{n}{2}\right\}+2\left\{2\binom{n}{1}+\binom{n}{2}\right\}+\binom{n}{1}\left[2\left[\binom{n-2}{1}+2\right]+2\binom{n-2}{1}+\binom{n-2}{2}\right]+$
$2\left[2\binom{n}{2}+\binom{n}{1}\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]\right]+2\left\{\binom{n}{1}\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]\right\}+\binom{n}{2}\left[\begin{array}{c}n-2 \\ 1\end{array}\right)+2+2\binom{n-2}{1}+$ $\left.\binom{n-1}{1}\right]+2\left\{2\binom{n}{1}\binom{n-1}{2}+\binom{n}{2}\left[2\binom{n-2}{1}+\binom{n-2}{2}\right]\right\}+2\left\{\binom{n}{2}\left[2\binom{n-2}{1}+\binom{n-2}{2}\right]\right\}+\binom{n}{3}\left[2\left[\binom{n-3}{1}+\right.\right.$ $\left.2]+2\binom{n-3}{1}+\binom{n-3}{2}\right]+\cdots+2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+2\binom{n}{n-1}$.
Similar argument will give, $A_{4}=2\left(2\binom{n}{1}+\binom{n}{2}\right)+2\binom{n}{2}+\binom{n}{3}+2\left\{2\binom{n}{2}+\binom{n}{3}\right\}+$ $\binom{n}{1}\left[2\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]+2\binom{n-1}{2}+\binom{n-1}{3}\right]+2\left\{2\binom{n}{3}+\binom{n}{2}\right\}\left[2\left[\binom{n-2}{1}+2\right]+2\binom{n-2}{1}+\binom{n-2}{2}\right]+$ $2\left[2\binom{n}{2}+\binom{n}{1}\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]\right]+2\left\{\binom{n}{1}\left[2\binom{n-1}{1}+\binom{n-1}{2}\right]\right\}+\binom{n}{2}\left[2\binom{n-2}{1}+2+2\binom{n-2}{1}+\right.$ $\left.\binom{n-1}{1}\right]+2\left\{2\binom{n}{1}\binom{n-1}{2}+\binom{n}{2}\left[2\binom{n-2}{1}+\binom{n-2}{2}\right]\right\}+2\left\{\binom{n}{2}\left[2\binom{n-2}{1}+\binom{n-2}{2}\right]\right\}+\binom{n}{3}\left[2\left[\binom{n-3}{1}+\right.\right.$ 2] $\left.+2\binom{n-3}{1}+\binom{n-3}{2}\right]+\cdots+2\left[2\binom{n}{n-2}+\binom{n}{n-1}\right]+\binom{n}{n-1}$ and so on.

Finally, we get $A_{n+2}=2\left(2\binom{n}{n-1}\right)+2+\binom{n}{1}+2$
Case (i): Suppose that n is even.
Therefore, $n+3$ is odd. $A_{1}-A_{2}+A_{3}-\cdots-A_{n}+A_{\{n+1\}}-A_{\{n+2\}}+0$

Case(ii):

Suppose that n is odd,
Therefore, $n+3$ is even.

$$
A_{1}-A_{2}+A_{3}-\cdots+A_{n}-A_{\{n+1\}}+A_{\{n+2\}}=2 .
$$

Though in the above theorem we have proved that $C S\left[S\left(S\left(B_{n}\right)\right)\right]$ is Eulerian, it is neither Simplicial nor dual simplicial.
$\operatorname{CS}\left[S\left(S\left(B_{n}\right)\right)\right]$ is not dual simplicial since, the upper interval $\left[1, S\left(S\left(B_{n}\right)\right)\right]$ in $C S\left[S\left(S\left(B_{n}\right)\right)\right]$ contains $4\binom{n}{n-1}$ number of atoms which is greater than $n+2$, the rank of $\left[1, S\left(S\left(B_{n}\right)\right)\right]$, implying that $\left[1, S\left(S\left(B_{n}\right)\right)\right]$, is not Boolean.
$\operatorname{CS}\left[S\left(S\left(B_{n}\right)\right)\right]$ is not simplicial since, the lower interval $\left[\phi,\left[l_{1}, 1\right]\right]$ where l_{1} is the left extreme atom of $S\left(S\left(B_{n}\right)\right)$ contains $3.2^{n}-2$ number of atoms by Lemma 3.1, which cannot be equal to $n+2$, the rank of $\left[\phi,\left[l_{1}, 1\right]\right]$, implying that $\left[\phi,\left[l_{1}, 1\right]\right]$ is not Boolean.

Conclusions

In this paper, we have proved that $C S\left[S\left(S\left(B_{n}\right)\right)\right]$ is an Eulerian lattice under the set inclusion relation which is neither simplicial nor dual simplicial, if $n>1$. We strongly believe that the result proved in this paper, can be extended to more general Eulerian lattices and any other general lattices.

Acknowledgements

We are thankful to the referee for his helpful comments and suggestions while revising this paper.

References

[1] Chen C. K., Koh K. M., On the lattice of convex sublattices of a finite lattice, Nanta Math., 5 (1972), 92-95.
[2] Gratzer G., General Lattice Theory, Birkhauser Verlag, Basel, 1978.
[3] Koh K. M., On the lattice of convex sublattices of a finite lattice, Nanta Math., 5 (1972), 18-37.
[4] Lavanya S., Parameshwara Bhatta S., A new approach to the lattice of convex sublattices of a lattice,Algebra Univ., 35 (1996), 63-71.
[5] Paffenholz A., Constructions for Posets, Lattices and Polytopes, Doctoral Dissertation, School of Mathematics and Natural Sciences, Technical University of Berlin,(2005).
[6] Ramana Murty P. V., On the lattice of convex sublattices of a lattice,Southeast Asian Bulletin of Mathematics, 26 (2002), 51-55.
[7] Rota G. C., On the foundations of Combinatorial theory I, Theory of Mobius functions, Z. Wahrschainlichkeitstheorie, 2 (1964), 340-368.
[8] Sheeba Merlin and Vethamanickam. A., On the Lattice of Convex Sublattices of $S\left(B_{n}\right)$ and $S\left(C_{n}\right)$, European journal of pure and applied Mathematics., Vol. 10, No. 4, 2017, 916-928.
[9] Stanley R.P., Some aspects of groups acting on finite posets, J. Combinatoria theory, A. 32 (1982), 131-161.
[10] Stanley R.P., A survey of Eulerian posets, Polytops: abstract, convex and computational, Kluwer Acad. Publi., Dordrecht, (1994), 301-333.
[11] Stanley R.P., Enumerative Combinatorics, Woodsworth and Brooks, Cole, Vol 1, 1986.
[12] Santhi V. K., Topics in Commutative Algebra,Ph. D thesis, Madurai Kamaraj University, 1992.
[13] Vethamanickam A., Topics in Universal Algebra, Ph. D thesis, Madurai Kamaraj University, 1994.
[14] Vethamanickam A., Subbarayan R., Some simple extensions of Eulerian lattices, Acta Math. Univ., Comenianae, 79(1) (2010), 47-54.
[15] Vethamanickam A., Subbarayan R., On the lattice of convex sublattices, Elixir Dis.Math., Comenianae, 50 (2012), 10471-10474.

