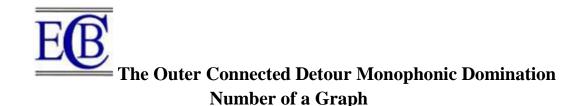
The Outer Connected Detour Monophonic Domination Number of a Graph

Section A-Research paper



¹N.E. Johnwin Beaula and ²S. Joseph Robin, ¹Register Number.20123162092018, Research Scholar. Scott Christian College (Autonomous), Nagercoil – 629003, India beaulajohnwin@gmail.com ²Department of Mathematics Scott Christian College (Autonomous), Nagercoil – 629003, India Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India

Abstract

If $M \subseteq V$ is both an outer connected detour monophonic set and a dominating set of *G*, it is referred to as an *outer connected detour monophonic dominating set* of *G*. The *outer connected detour monophonic domination number* of *G*, which is represented by the symbol $\gamma_{ocdm}(G)$ is the minimum cardinality of an outer connected detour monophonic dominating number of *G* for some standard graphs is determined.

Keywords: detour monophonic path, detour monophonic number, outer connected detour monophonic number , outer connected detour monophonic domination number.

AMS Subject Classification: 05C38, 05C69.

1. Introduction

A finite, undirected connected graph with no loops or many edges is referred to as a graph G = (V, E). By *n* and *m*, respectively, we indicate the order and size of *G*. We refer to [1] for the fundamental terms used in graph theory. If *uv* is an edge of *G*, then two vertices *u* and *v* are said to be *adjacent*. If two edges of *G* share a vertex, they are said to be *adjacent*. 1721 Eur. Chem. Bull. 2023, 12(Special Issue 7), 1721-1731

The Outer Connected Detour Monophonic Domination Number of a Graph

Let $M \subset V$ be any subset of vertices of *G*. Then the graph with *M* as its vertex set and all of its edges in *E* having both of their end points in *M* is the *induced subgraph G*[*M*]. A vertex *v* is an *extreme vertex* of a graph *G* if the subgraph induced by its neighbors is complete.

The length of the shortest path in a connected graph G is equal to the *distance* d(u, v) between two vertices u and v. An u - v geodesic is a u - v path with length d(u, v). An edge that connects two non-adjacent vertices of a path P is called the *chord* of P. A chordless u - v path is referred to as a *monophonic path*. The *monophonic distance* $d_m(u, v)$ for two vertices u and v in a connected graph G is the length of a longest u - v monophonic path in G. An u - v detour monophonic path is one that has a length of $d_m(u, v)$. These concepts were studied in [2-7, 9,11, 13,14, 17,23].

The closed interval $J_{dm}[u, v]$ for two vertices u and v is consists of all the vertices along an u - v detour monophonic path, including the vertices u and v. If $v \in E$, then $J_{dm}[u, v] = \{u, v\}$. For a set M of vertices, let $J_{dm}[M] = \bigcup_{u,v \in M} J[u, v]$. Then certainly $M \subseteq J_{dm}[M]$. If $J_{dm}[M] = V$, a set $M \subseteq V(G)$ is referred to as a *detour monophonic set* of G. The *detour monophonic* number dm(G) of G is the minimum order of its detour monophonic sets. Any detour monophonic set of order dm(G) is referred to as an *dm*-set of G. If M = V or the subgraph G[V - M] is connected, then a detour monophonic set M of a connected graph G is said to be an *outer connected detour monophonic set* of G. The *outer connected detour monophonic number* of G, indicated by the symbol $ocd_m(G)$, is the minimum cardinality of an outer connected detour monophonic set of G. These concepts were studied in [19, 22].

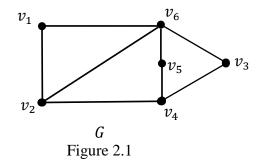
A set of vertices M in a graph G is a *dominating set* if each vertex of G is dominated by some vertex of M. The *domination number* $\gamma(G)$ of G is the minimum cardinality of a 1722 Eur. Chem. Bull. 2023, 12(Special Issue 7), 1721-1731 dominating set of G. These concepts were studied in [1, 10, 12, 14-16, 18,20]. The following theorems used in sequel.

Theorem 1.1. [19] Each extreme vertex of a connected graph G belongs to every detour monophonic set of G.

2. The Outer Connected Detour Monophonic Domination Number of a Graph

Definition 2.1. If $M \subseteq V$ is both an outer connected detour monophonic set and a dominating set of *G*, it is referred to as an *outer connected detour monophonic dominating set* of G. The *outer connected detour monophonic domination number of G*, which is represented by the symbol $\gamma_{ocdm}(G)$ is the minimum cardinality of an outer connected detour monophonic dominating set of *G*. A γ_{ocdm} - set of *G* is an outer connected detour monophonic dominating set of cardinality $\gamma_{ocdm}(G)$.

Example 2.2. $M = \{v_1, v_3, v_5\}$ is a minimum outer connected detour monophonic dominating set of the graph G shown in figure 2. 1, resulting in $\gamma_{ocdm}(G) = 3$.



Remark 2.3. There can be more than one γ_{ocdm} - set of *G*, for the graph *G* given in figure 2.1 $M' = \{v_1, v_3, v_4\}$ is another γ_{ocdm} - set of *G*. **Theorem 2.4.** Every outer connected detour monophonic dominating set of a graph G contains every extreme vertex that belongs to that graph.

Proof. Because every outer connected detour monophonic dominating set is a monophonic set, the conclusion comes from Theorem 1.1 .

Corollary 2.5. For the complete graph $K_n (n \ge 2)$, $\gamma_{ocdm}(K_n) = n$.

Proof. The vertex set of $K_n (n \ge 2)$ is the unique outer connected detour monophonic dominating set of K_n because every vertex of the complete graph $K_n (n \ge 2)$ is an extreme vertex. Hence $\gamma_{ocdm}(K_n) = n$.

Theorem 2.6. For the path $G = P_n (n \ge 4)$, $\gamma_{ocdm}(G) = n - 2$.

Proof. Let $P_n: v_1, v_2, v_3, ..., v_n$. Let $M = \{v_1, v_4, v_5, ..., v_n\}$. Then M is an outer connected detour monophonic dominating set of G such that $\gamma_{ocdm}(G) \le n-2$. We demonstrate that $\gamma_{ocdm}(G) = n-2$. Contrarily, consider that $\gamma_{ocdm}(G) \le n-3$. Then $|M'| \le n-3$, there exists a γ_{ocdm} -set M'. When G[V - M'] is connected, M' is not a dominating set of G. There is a contradiction if G[V - M'] is not connected since then M' cannot be an outer connected detour monophonic set of G. Hence M' is not a detour monophonic dominating set of G, Therefore, $\gamma_{ocdm}(P_n) = n-2$.

Theorem 2.7. For the cycle $C_n (n \ge 5)$, $\gamma_{ocdm}(G) = n - 2$.

Proof: Let $v_1, v_2, v_3 \dots, v_n, v_1$ be the cycle C_n . Let $M = \{v_1, v_4, v_5, \dots, v_n, v_1\}$. Then M is an outer connected detour monophonic dominating set of G such that $\gamma_{ocdm}(G) \le n - 2$. We prove that $\gamma_{ocdm}(G) = n - 2$. Contrarily, consider that $\gamma_{ocdm}(G) \le n - 3$. Then there exists a γ_{ocdm} -set M' such that $|M'| \le n - 3$. If G[V - M'] is connected, then M' is not a 1724 Eur. Chem. Bull. 2023, 12(Special Issue 7), 1721-1731

dominating set of *G* if G[V - M'] is disconnected, then *M'* is not an outer connected detour monophonic set of *G*, which is a contradiction. Therefore *M'* is not an outer connected detour monophonic dominating set of *G*. Hence $\gamma_{ocdm}(G) = n - 2$.

Theorem2.8.For the complete bipartite graph $G = K_{r,s} (1 \le r \le s)$,

$$\gamma_{ocdm}(G) = \begin{cases} s, & if \ r = 1, s \ge 2\\ 3, & if \ r = s = 2\\ s+1, & if \ r = 2, s \ge 2\\ 4, & otherwise. \end{cases}$$

.**Proof.** Let $X = \{x_1, x_2, ..., x_r\}, Y = \{y_1, y_2, ..., y_s\}$ be a bipartition of *G*. Let $G = K_{r,s}$ be a star with r end vertices when r = 1 and $s \ge 2$. After that $\gamma_{ocdm}(G) = r$. $G = K_{2,2}$ is the cycle C_4 for r = s = 2. As a result, $M = V - \{v\}$ is a γ_{ocdm} - set of G, and $\gamma_{ocdm}(G) = 3$. $M = \{x_1\} \cup Y$ is an outer connected detour monophonic dominating set of G, for $r = 2, s \ge 1$ 3, and as a result, $\gamma_{ocdm}(G) \leq s + 1$. We show that $\gamma_{ocdm}(G) = s + 1$. Assume that $\gamma_{ocdm}(G) \leq s$. Then, a γ_{ocdm} - set M'exists such that |M'| < s. If $M' \subseteq Y$, then either G[V - M'] is disconnected or M' is not a dominating set of G, which is a contradiction. If $M' \subseteq X \cup Y$, then G[V - M'] is disconnected. As a result, $\gamma_{ocdm}(G) = s + 1$. Now let $3 \le m \le n$. Let G be bipartitioned into $X = \{x_1, x_2, \dots, x_r\}, Y = \{y_1, y_2, \dots, y_s\}$ Then $M = \{x_i, x_j, y_r, y_s\}$, where $i \neq j, r \neq s$ is the G minimal detour monophonic dominating set. M is a minimum outer connected detour monophonic dominating set of G, since the subgraph G[V - M] is connected. So $\gamma_{ocdm}(G) \leq 4$. We demonstrate that $\gamma_{ocdm}(G) = 4$. Assume that $\gamma_{ocdm}(G) \leq 3$. A γ_{ocdm} -set M_1 of G exists, and it has the property $|M_1| \leq 3$. If $M_1 \subseteq X$, the connection between M_1 and V is broken. $M_1 \subseteq Y$ indicates that $G[V - M_1]$ is unconnected. Consequently, $M_1 \subseteq X \cup Y$. Then $x \in G$ has a vertex such that $J[M_1] \neq V$ exists. Because of this contradiction, M_1 cannot be an outer connected detour monophonic

dominating set of G. As a result $\gamma_{ocdm}(G) = 4$

Theorem 2.9. For the wheel $G = W_n = K_1 + C_{n-1}$, $(n \ge 5)$,

$$\gamma_{ocdm}(G) = \begin{cases} 2, & \text{if } 4 \le n \le 6\\ 3, & \text{if } 7 \le n \le 8\\ 4, & \text{if } n \ge 9. \end{cases}$$

Proof. Let C_{n-1} be the cycle with $v_1, v_2, \dots, v_{n-1}, v_1$. Let $4 \le n \le 6$, consider two nonadjacent vertices of G, x and y. So that $\gamma_{ocdm}(G) = 2$, $M = \{x, y\}$ is an outer connected detour monophonic dominating set of G. Let $7 \le n \le 8$. It is simple to demonstrate that $\gamma_{ocdm}(G) = 3$. Thus, let $n \ge 9$, it is simple to demonstrate that $|M| \le 3$ and M do not form an outer connected detour monophonic dominating set. Let $M_1 = \{v_1, v_2, v_{n-1}, x\}$. So that $\gamma_{ocdm}(G) = 4 M_1$ is an outer connected detour monophonic dominating set of G.

Theorem 2.10. For a connected graph G of order n, then $2 \le ocd_m(G) \le \gamma_{ocdm}(G) \le n$

Proof. Any outer connected detour monophonic set requires a minimum of two vertices , and so does $ocd_m(G) \ge 2$. Every outer connected detour monophonic dominating set is likewise an outer connected detour monophonic set, therefore $ocd_m(G) \le \gamma_{ocdm}(G)$. Additionally, it is evident that $\gamma_{ocdm}(G) \le n$ because V(G) is an outer connected detour monophonic dominating set, Consequently $2 \le ocd_m(G) \le \gamma_{ocdm}(G) \le n$.

Remark 2.11. Theorem 2.10 has precise bounds. The set of two end vertices of $G = P_4$ is the unique outer connected detour monophonic set of G ,resulting in $ocd_m(P_n) = 2$. For the cycle $G = C_4$, $ocd_m(G) = \gamma_{ocdm}(G) = 3$. For the complete graph $G = K_n$, $\gamma_{ocdm}(G) = n$. For the graph G shown in figure 2.1. the inequalities in Theorem 2.10 can also be strict.

 $G = W_9, ocd_m(G) = 3, \gamma_{ocdm}(G) = 4$ and p = 9 for the wheel. Consequently, $2 < ocd_m(G) < \gamma_{ocdm}(G) < n$.

Theorem 2.12. $\gamma_{ocdm}(G) = 3$ for the graph $G = K_1 + P_{n-1}$ $(n \ge 5)$

Proof. Suppose that P_{n-1} is v_1, v_2, \dots, v_{n-1} and $V(K_1) = x$. Then, the only two extreme vertices of *G* are v_1 and v_{n-1} . A ocd_m -set of *G* is $M = \{v_1, v_{n-1}\}$. However, *M* is not a set that dominates *G*, therefore $\gamma_{ocdm}(G) \ge 3$. Let $M_1 = M \cup \{x\}$. Following that, M_1 is an ocd_m -set of *G* such that $\gamma_{ocdm}(G) = 3$.

Theorem 2.13. Suppose $G = \overline{K}_2 + P_{n-2}$ $(n \ge 5)$. Then, $\gamma_{ocdm}(G) = 2$.

Proof. Let's say $V(\overline{R}_2) = \{x, y\}$. Then $V(\overline{R}_2)$ is a dominating set of *G* as well as an outer connected detour monophonic set . Therefore $\gamma_{ocdm}(G) = 2$.

Theorem 2.14. $G = K_{n_1} + K_{n_2}$ where $n_1, n_2 \ge 2$, $\gamma_{ocdm}(G) = n_1 + n_2$.

Proof. We know that $G = K_{n_1} + K_{n_2}$ is the complete graph $G = K_{n_1+n_2}$. Then M = V(G) is the unique γ_{ocdm} -set of G and $\gamma_{ocdm}(G) = n_1 + n_2$ as a result

Theorem 2.15. Let $G = P_{n_1} + P_{n_2}$, where $n_1 \ge 3$ and $n_2 \ge 3$. Therefore, $\gamma_{ocdm}(G) = 4$.

Proof. Let P_{n_1} and P_{n_2} be v_1, v_2, \dots, v_{n_1} and u_1, u_2, \dots, u_{n_2} , respectively. Then $M = \{v_1, v_{n_1}, u_1, u_{n_2}\}$ is an outer connected detour monophonic dominating set of G. And so $\gamma_{ocdm}(G) \leq 4$. We prove that $\gamma_{ocdm}(G) = 4$. On the contrary suppose that $\gamma_{ocdm}(G) \leq 3$. Then there exists a γ_{ocdm} -set M' such that |M'| < 3. Then $J_{dm}[G] \neq V(G)$, which is a contradiction. Therefore $\gamma_{ocdm}(G) = 4$.

Theorem 2.16. Let $G = C_{p_1} + C_{p_2}$ where $p_1 \ge 4$ and $p_2 \ge 4$. Then $\gamma_{ocdm}(G) = 3$.

Proof. Let x be a vertex of C_{p_1} and y be a vertex of C_{p_2} . Then there exists a vertex x_1 in G such that $x_1 \notin J_{dm}[x, y]$ and so $\gamma_{ocdm}(G) \ge 3$, Let $M = \{x, y_1, x_1\}$. Then M is a γ_{ocdm} -set of G.So that $\gamma_{ocdm}(G) = 3$.

Theorem 2.17. $G = P_{n_1} + C_{n_2}, n_1 \ge 3, n_2 \ge 4$. When this happens

$$\gamma_{ocdm}(G) = \begin{cases} n_1 = 3, n_2 = 4 \\ or \\ 2, & n_1 = 3, n_2 = 5 \\ or \\ n_1 = 4, n_2 = 5 \\ 3, & n_1 \ge 4, n_2 \ge 6 \end{cases}$$

Proof. Suppose P_{n_1} is $v_1, v_2, ..., v_{n_1}$ and C_{n_2} , is $u_1, u_2, ..., u_{n_2}$.

Case (i): n = 3 and m = 4. Let $M = \{u_1, u_3\}$. So that $\gamma_{ocdm}(G) = 2$, M is an outer connected detour monophonic dominating set of G.

Case (ii): n = 3 and m = 5. Let $M = \{u_1, u_4\}$. So that $\gamma_{ocdm}(G) = 2$, M is an outer connected detour monophonic dominating set of G.

Case (iii): n = 4 and m = 5 Let $M = \{u_1, u_3\}$. So that $\gamma_{ocdm}(G) = 2$, M is an outer connected detour monophonic dominating set of G.

Case (iv): Let $M = \{v_1, v_{p_1}, u_1\}$. So that $\gamma_{ocdm}(G) \leq 3$, M is an outer connected detour monophonic dominating set of G. We establish that $\gamma_{ocdm}(G) = 3$. Assume that $\gamma_{ocdm}(G) = 2$. When this occurs, a γ_{ocdm} -set M_1 exists such that $|M_1| = 2$. If $M_1 \subseteq V(P_1)$, then since $p_1 \geq 4$, none of the items in P_1 are completely dominated by M_1 elements. If $M_1 \subseteq V(C_{p_2})$, Since $p_2 \geq 6$, the elements of C_2 are not dominated by M_1 if $M_1 \subseteq V(C_{p_2})$, A contradiction results if $M_1 \subseteq [V(P_{n_1}) \cup V(C_{n_2})]$, then M_1 is a chord. Therefore, $\gamma_{ocdm}(G) = 3$.

Theorem 2.18. Let G be a connected graph with $n \ge 3$ nodes. Then $\gamma_{ocdm}(G) = 2$ if and only if there exists a γ_{ocdm} – set $M = \{u, v\}$ such that $d_m(u, v) \le 3$.

Proof. Consider that $\gamma_{ocdm}(G) = 2$. Suppose that $M = \{u, v\}$ is a γ_{ocdm} –set of *G*. Assume that $d_m(u, v) \ge 4$. Consequently, the monophonic diametral path has a minimum of three internal vertices. Hence, $\gamma_{ocdm}(G) \ge 3$, which is inconsistent. Thus, $d_m(u, v) \le 3$. The converse is obvious.

Conclusion

This article established a novel detour monophonic distance parameter called the outer connected detour monophonic domination number of a graph. We will develop this concept to incorporate more distance considerations in a subsequent investigation.

References

- T. W. Haynes, S. T. Hedetniemi and P. J, Slater, Fundamentals of domination in Graphs, Marcel Dekker, New York, (1998).
- [2] J. John and S. Panchali, The upper monophonic number of a graph, *Int. J. Math. Combin.* 4, (2010), 46 52.
- [3] J. John and S. Panchali, The forcing monophonic number of a graph, *International Journal*

of Mathemametical Archive, (3)(3),(2012), 935-938.

[4] J. John and P.Arul Paul Sudhahar, The monophonic domination number of a graph, Proceeding of the International conference on Mathematics and Business Management,

1,

(2012), 142-145.

[5] J. John and P. Arul Paul Sudhahar and A. Vijayan, The connected edge monophonic number

of a graph, 3(2), (2012), 132-136.

Eur. Chem. Bull. 2023, 12(Special Issue 7), 1721-1731

1729

[6] J. John, P.Arul Paul Sudhahar, and A.Vijayan, The connected monophonic number of a graph, International Journal of Combinatorial graph theory and applications.5(1), (2012),

41-48.

- [7] J. John and P. Arul Paul Sudhahar, The upper connected monophonic number and forcing connected monophonic number of a graph, International Journal of Mathematics Trends and Technology 3 (1), (2012), 29-33.
- [8] J. John, G. Edwin and P. Arul Paul Sudhahar, The Steiner domination number of a graph, International Journal of Mathematics and Computer Applications Research, 3(3), (2013), 37 - 42.

[9] J. John and P. Arul Paul Sudhahar, The upper edge vertex monophonic number of a graph,

International Journal of Mathematics and Computer Applications Research 3 (1),(2013), 291-296.

- [10] J. John and N. Arianayagam, The detour domination number of a graph, Discrete Mathematics Algorithms and Applications, 09, 01,(2017), 1750006.
- [11] J John and K. Uma Samundesvari, Total and forcing total edge-to-vertex monophonic number of a graph, Journal of Combinatorial Optimization 35, (2018), 134-147.
- [12] J. John, P. Arul Paul Sudhahar, and D. Stalin, On the (M.D) Number of a graph *Proyecciones Journal of Mathematics*, 38(2), (2019), 255-266.
- [13] J.John, The forcing monophonic and the forcing geodetic numbers of a graph, Indonesian Journal of Combinatorics .4(2) (2020) 114-125.
- [14] J. John, On the vertex monophonic, vertex geodetic and vertex Steiner numbers of graphs,
- Asian-European Journal of Mathematics 14 (10), (2021), 2150171.
- [15] J. John, and V. Sujin Flower, The edge-to-edge geodetic domination number of a graph, Proyecciones Journal of Mathematics, 40(3), (2021), 635-658.
- [16] J. John and M.S. Malchijah, The forcing non-split domination number of a graph, Korean journal of mathematics, 29(1), (2021), 1-12.

- [17] J. John, On the vertex monophonic, vertex geodetic and vertex Steiner numbers of graphs,Asian-European Journal of Mathematics 14 (10), (2021), 2150171.
- [18] J.John, and V. Sujin Flower, On the forcing domination and the forcing total domination numbers of a graph, Graphs and Combinatorics, 38, (2022), 142.
- [19] N.E. Johnwin Beaula and S. Joseph Robin, The outer connected detour monophonic number of a graph, Ratio Mathematica 44, (2022), 325 – 331.
- [20] S.Kavitha, S.Chellathurai and J.John, On the forcing connected domination number of a graph, Journal of Discrete Mathematical Sciences and Cryptography, 3(20) (2017) 611-624.
- [21] A.P.Santhakumaran P.Titus, Monophonic distance in Graphs, Discrete Mathematics Algorithms and Applications (3) ,(2011),159.
- [22] P. Titus, K. Ganesamoorthy and P. Balakrishnan, The detour monophonic number of a graph. J. Combin. Math. Combin. Comput., (84), (2013),179-188.
- [23] K. Uma Samundesvari and J. John, The edge fixing edge-to-vertex monophonic number of a graph, Applied Mathematics E-Notes 15, (2015), 261-275.