

Energy and spectrum of $G_{m,n}^{M}$ graph

L.Eswaramma¹ and Dr.D.Venkata Lakshmi

¹Department of Mathematics, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India. ²School of Computer Science and Engineering, VIT-AP, Andhra Pradesh, India.

Abstract: The notation of an undirected simple graph $G_{m,n}^{M} = (V, E)$ on a finite subset of natural numbers $m, n \in N$, where the vertex set $V = \{1, 2, ..., n\}$ and any two distinct vertices $u, v \in V$ are adjacent if and only if $u \neq v$ and u.v is not divisible by m. The energy of the graph is the summation of the absolute values of all eigen values of the adjacency matrix of a graph G. Matrix energy is the summation of all absolute singular values of graph G. In this paper, the computation of energy, matrix energy of the graph $G_{m,n}^{M}$ are discussed and the results are obtained.

Key words: Spectrum of a graph, Energy of a graph, Matrix energy of a graph.

DOI: 10.48047/ecb/2023.12.2.032

1. Introduction

The energy of the graph is introduced by Gutman[1] in 1978, π -electron energy is determined to identify the inside the Hückel atomic orbital approximation [2, 3] by the calculation of graph energy. The adjacency matrix of a graph G is denoted by A(G) and is defined as $A(G) = \begin{cases} 1, & if \ v_i, v_j \ are \ adjacent \ in G \\ 0, & otherwise \end{cases}$. The eigen values of A(G) of G are denoted by $\omega_1, \omega_2, \ldots, \omega_n$ where $\omega_1 \ge \omega_2 \ge \cdots \ge \omega_n$. The spectral radius of ω_1 of G is the highest eigen value of G. The spectrum of the graph G is the collection of eigen values with their multiplicities of an adjacency matrix A(G) is $\begin{pmatrix} \omega_1 & \dots & \omega_n \\ m_1 & \dots & m_n \end{pmatrix}$. The energy of a graph G is the sum of absolute eigen values of A(G) of G. i.e. $E(G) = \sum_{i=1}^{n} |\omega_i|$. The applications of graph spectra was presented by D. Cvetkovi'c et al[4]. The matrix energy of G by observing the relationship between eigen values and singular values of an adjacency matrix of a G is extended by Nikiforov [5]. The undirected graph $G_{m,n}^M$ is introduced by Ivy Chakrabarthy et al[6] and proved some basic properties of $G_{m,n}^M$.

Motivated by the above work the authors studied the concepts of energy, matrix energy of $G_{m,n}^{M}$ graph at various values of *n*. The notations and terminology used in this paper found in [7].

2. $G_{m,n}^{M}$ Graph and its properties

Definition: The Undirected simple graph $G_{m,n}^M = (V, E)$ on a finite subset of natural numbers $m, n \in N$, where the vertex set $V = \{1, 2, ..., n\}$ and two distinct vertices $u, v \in V$ are adjacent if and only if $u \neq v$ and u, v is not divisible by m.

Lemma 2.1: Let m = 1 then the graph $G_{m,n}^{M}$ is a null graph with *n* vertices.

Lemma 2.2: For $1 < m \le n$, the graph $G_{m,n}^{M}$ is disconnected.

Lemma 2.3: For m > n, the graph $G_{m,n}^{M}$ is connected.

Lemma 2.4: The Maximum degree of the graph $G_{m,n}^{M}$ is n-1.

3. Energy and Matrix Energy of $G_{m,n}^{M}$ graph

Let $G_{m,n}{}^{M}$ be a simple graph with *n* vertices.Let $A(G_{m,n}{}^{M})$ be the adjacency matrix of the graph $G_{m,n}{}^{M}$ is defined as $A(G_{m,n}{}^{M}) = \begin{cases} 1, & \text{if } v_i, v_j \text{ are adjacent in } G_{m,n}{}^{M} \\ 0, & \text{otherwise} \end{cases}$ and $\omega_1, \omega_2, \dots, \omega_n$ are the eigenvalues of $A(G_{m,n}{}^{M})$ where $\omega_1 \ge \omega_2 \ge \dots \ge \omega_n$. The spectra of the graph $G_{m,n}{}^{M}$ is the eigen values with their corresponding multiplicities of $A(G_{m,n}{}^{M})$ of the graph $G_{m,n}{}^{M}$ is $\binom{\omega_1 \dots \omega_n}{m_1 \dots m_n}$. The energy of the graph $G_{m,n}{}^{M}$ is the sum of absolute eigen values of an adjacency matrix $A(G_{m,n}{}^{M})$ of a graph $G_{m,n}{}^{M}$. That is $E(G_{m,n}{}^{M}) = \sum_{i=1}^{n} |\omega_i|$.

Let $A(G_{m,n}{}^{M})A(G_{m,n}{}^{M})$ 'is a positive semi definite matrix where $A(G_{m,n}{}^{M})$ 'is the transpose of $A(G_{m,n}{}^{M})$. Let $\mu_1, \mu_2, \dots, \mu_n$ are the singular values of $A(G_{m,n}{}^{M})$ and these are the square root values of eigen values of $A(G_{m,n}{}^{M})A(G_{m,n}{}^{M})$ 'where $\mu_1 \ge \mu_2 \ge \dots \ge \mu_n$. Now the summation of absolute singular values of $A(G_{m,n}{}^{M})$ is defined as the matrix energy of the graph $G_{m,n}{}^{M}$. That is $E_m(G_{m,n}{}^{M}) = \sum_{i=1}^n |\mu_i|$.

Theorem 3.1: The energy of the graph $G_{m,n}^{M}$ when n = 2p, p is prime, m > n, m is prime is 2(2p-1).

Proof: By the definition of the graph $G_{m,n}^{M}$, the vertex set *V* is defined as $\{1, 2, ..., n\}$ when n = 2p, m > n, m, p are prime. Then the adjacency matrix of the graph $G_{m,n}^{M}$ is

$$A(G_{m,2p}{}^{M}) = \begin{pmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 0 \end{pmatrix}_{2p \times 2p}$$

The Characteristic Equation of $A(G_{m,2p}^{M})$ of the graph $G_{m,2p}^{M}$ is $(\omega + 1)^{2p-1}(\omega - (2p-1)) = 0$.

Then -1 and (2p - 1) are the eigen values of $A(G_{m,2p}^{M})$ and their corresponding multiplicities are (2p - 1) and 1. Hence the spectrum of the graph $G_{m,2p}^{M}$ is $\begin{pmatrix} -1 & 2p - 1 \\ 2p - 1 & 1 \end{pmatrix}$.

The energy of the graph $G_{m,2p}^{M}$ is $E(G_{m,2p}^{M}) = |-1|(2p-1) + |2p-1|(1) = 2(2p-1).$

Theorem 3.2: The matrix energy of the graph $G_{m,n}^{M}$ when n = 2p, p is prime, m > n, m is prime is 2(2p - 1).

Proof: From the Theorem 3.1, the adjacency matrix of the graph $G_{m,2p}^{M}$ is

$$A(G_{m,2p}{}^{M}) = \begin{pmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 0 \end{pmatrix}_{2p \times 2p}$$

Then $A(G_{m,2p}{}^{M})A(G_{m,2p}{}^{M})' = \begin{pmatrix} T & U \\ U & T \end{pmatrix}_{2p \times 2p}$

Where
$$T = \begin{pmatrix} 2p-1 & 2p-2 & 2p-2 & \dots & 2p-2 \\ 2p-2 & 2p-1 & 2p-2 & \dots & 2p-2 \\ 2p-2 & 2p-2 & 2p-1 & \dots & 2p-2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2p-2 & 2p-2 & 2p-2 & \dots & 2p-1 \end{pmatrix}_{p \times p}$$
 and

$$U = (2p-2) \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix}_{p \times p}$$

The Characteristic Equation of $A(G_{m,2p}^{M})A(G_{m,2p}^{M})'$ of the graph $G_{m,2p}^{M}$ is

$$(\omega - 1)^{2p-1}(\omega - (2p - 1)^2) = 0.$$

Then 1, (2p - 1) are the singular values of $A(G_{m,2p}^{M})$ and their corresponding multiplicities are (2p - 1) and 1. Hence the spectrum of the graph $G_{m,2p}^{M}$ is $\begin{pmatrix} 1 & 2p - 1 \\ 2p - 1 & 1 \end{pmatrix}$.

The matrix energy of the graph $G_{m,2p}^{M}$ is $E(G_{m,2p}^{M}) = |1|(2p-1) + |2p-1|(1) = 2(2p-1)$.

Theorem 3.3: The energy of the graph $G_{m,n}^{M}$ when m > n, m is prime, *n* is prime is 2(n-1).

Proof: By the definition of the graph $G_{m,n}^{M}$, the vertex set V is defined as when m and n are primes and m > n is $V = \{1, 2, ..., n\}$.

Then the adjacency matrix of the graph $G_{m,n}^{M}$ is

$$A(G_{m,n}{}^{M}) = \begin{pmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 0 \end{pmatrix}_{n \times n}$$

The Characteristic Equation of $A(G_{m,n}{}^M)$ of the graph $G_{m,n}{}^M$ is $(\omega + 1)^{n-1}(\omega - (n-1)) = 0$. Then -1, (n-1) are the eigen values of $A(G_{m,n}{}^M)$ and their corresponding multiplicities are (n-1) and 1. Hence the spectrum of the graph $G_{m,n}{}^M$ is $\begin{pmatrix} -1 & n-1 \\ n-1 & 1 \end{pmatrix}$.

The energy of the graph $G_{m,n}^{M}$ is $E(G_{m,n}^{M}) = |-1|(n-1) + |n-1|(1) = 2(n-1)$.

Theorem 3.4: The matrix energy of the graph $G_{m,n}^{M}$ when m > n, m is prime, n is prime is 2(n-1).

Section A-Research paper

Proof: By the definition of the graph $G_{m,n}^{M}$, the vertex set V is defined as $\{1, 2, ..., n\}$, when m and n are primes and m > n.

From Theorem 3.3 the adjacency matrix of the graph $G_{m,n}^{M}$ is

$$A(G_{m,n}{}^{M}) = \begin{pmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 0 \end{pmatrix}_{n \times n}$$

Then $A(G_{m,n}^{M})A(G_{m,n}^{M})' = \begin{pmatrix} T & U \\ U & T \end{pmatrix}_{n \times n}$

where
$$T = \begin{pmatrix} n-1 & n-2 & n-2 & \dots & n-2 \\ n-2 & n-1 & n-2 & \dots & n-2 \\ n-2 & n-2 & n-1 & \dots & n-2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n-2 & n-2 & n-2 & \dots & n-1 \end{pmatrix}_{\frac{n}{2} \times \frac{n}{2}}$$
 and $U = (n-2) \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix}_{\frac{n}{2} \times \frac{n}{2}}$

The Characteristic Equation of $A(G_{m,n}^{M})A(G_{m,n}^{M})'$ of the graph $G_{m,n}^{M}$ is

 $(\omega - 1)^{n-1}(\omega - (n-1)^2) = 0.$

Then 1, (n-1) are the singular values of $A(G_{m,n}^{M})$ and their corresponding multiplicities are (n-1) and 1. Hence the spectrum of the graph $G_{m,n}^{M}$ is $\begin{pmatrix} 1 & n-1 \\ n-1 & 1 \end{pmatrix}$.

The matrix energy of the graph $G_{m,n}^{M}$ is $E_m(G_{m,n}^{M}) = |1|(n-1) + |n-1|(1) = 2(n-1).$

Theorem 3.5: The energy of the graph $G_{m,n}^{M}$ where m = n, m > 1 is prime and n prime is 2(n-1).

Proof: By the definition of the graph $G_{m,n}^{M}$, the vertex set V is defined as $\{1, 2, ..., n\}$, when m and n are primes and m > 1.

Then the adjacency matrix of the graph $G_{m,n}^{M}$ is $A(G_{m,n}^{M}) = \begin{pmatrix} R & S & 0 \\ S & R & 0 \\ 0 & 0 & 0 \end{pmatrix}_{n \times n}$

Where
$$R = \begin{pmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 0 \end{pmatrix}_{\frac{n-1}{2} \times \frac{n-1}{2}}$$
 and $S = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix}_{\frac{n-1}{2} \times \frac{n-1}{2}}$

The Characteristic Equation of $A(G_{m,n}^{M})$ of $G_{m,n}^{M}$ is $\omega(\omega + 1)^{n-1}(\omega - (n-1)) = 0$.

Then 0, -1, (n - 1) are the eigen values of $A(G_{m,n}^{M})$ and their corresponding multiplicities are 1, (n - 1) and 1. Hence the spectrum of the graph $G_{m,n}^{M}$ is $\begin{pmatrix} 0 & -1 & n - 1 \\ 1 & n - 1 & 1 \end{pmatrix}$.

The energy of the graph $G_{m,n}^{M}$ is $E(G_{m,n}^{M}) = |0|(1) + |-1|(n-1) + |n-1|(1) = 2(n-1).$

Theorem 3.6: The matrix energy of the graph $G_{m,n}^{M}$ where m = n, m > 1 is prime and n prime is 2(n-1).

Proof: By the definition of the graph $G_{m,n}^{M}$, the vertex set V is defined as $\{1, 2, ..., n\}$, when m and n are primes and m > 1.

From Theorem 3.5, the adjacency matrix of the graph $G_{m,n}^{M}$ is $A(G_{m,n}^{M}) = \begin{pmatrix} R & S & 0 \\ S & R & 0 \\ 0 & 0 & 0 \end{pmatrix}_{n \times n}$

Where
$$R = \begin{pmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 0 \end{pmatrix}_{\frac{n-1}{2} \times \frac{n-1}{2}}^{n-1}$$
 and $S = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix}_{\frac{n-1}{2} \times \frac{n-1}{2}}^{n-1}$
Then $A(G_{m,n}^{M})A(G_{m,n}^{M})' = \begin{pmatrix} T & U & 0 \\ U & T & 0 \\ 0 & 0 & 0 \end{pmatrix}_{n \times n}$
Where $T = \begin{pmatrix} n-2 & n-3 & n-3 & \dots & n-3 \\ n-3 & n-2 & n-3 & \dots & n-3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n-3 & n-3 & n-3 & \dots & n-2 \end{pmatrix}_{\frac{n-1}{2} \times \frac{n-1}{2}}$ and $U = (n-3) \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix}_{\frac{n-1}{2} \times \frac{n-1}{2}}$

The Characteristic Equation of $A(G_{m,n}^{M})A(G_{m,n}^{M})'$ of the graph $G_{m,n}^{M}$ is $\omega(\omega - 1)^{n-2}(\omega - (n-2)^2) = 0$.

Then 0,1, (n-2) are the singular values of $A(G_{m,n}^{M})$ and their corresponding multiplicities are 1, (n-2) and 1. Hence the spectrum of the graph $G_{m,n}^{M}$ is $\begin{pmatrix} 0 & 1 & n-2 \\ 1 & n-2 & 1 \end{pmatrix}$.

The matrix energy of the graph $G_{m,n}^{M}$ is $E_m(G_{m,n}^{M}) = |0|(1) + |1|(n-2) + |n-2|(1) = 2(n-2).$

Theorem 3.7: The energy of the graph $G_{m,n}^{M}$ where is $n = 2^{\alpha}, \alpha > 1, m > n$ and m prime is 2(n-1).

Proof: Proof: By the definition of the graph $G_{m,n}^{M}$, the vertex set V is defined as when m is prime and m > n, $n = 2^{\alpha}$ is $V = \{1, 2, ..., n\}$.

Then the adjacency matrix of the graph
$$G_{m,2^{\alpha}}{}^M$$
 is $A(G_{m,2^{\alpha}}{}^M) = \begin{pmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 0 \end{pmatrix}_{2^{\alpha} \times 2^{\alpha}}$

The Characteristic Equation of $A(G_{m,2}\alpha^M)$ of $G_{m,2}\alpha^M$ is $(\omega + 1)^{2^{\alpha}-1}(\omega - (2^{\alpha} - 1)) = 0$.

Then -1, $(2^{\alpha} - 1)$ are the eigen values of $A(G_{m,2^{\alpha}}{}^{M})$ and their corresponding multiplicities are $(2^{\alpha} - 1)$ and 1. Hence the spectrum of the graph $G_{m,2^{\alpha}}{}^{M}$ is $\begin{pmatrix} -1 & 2^{\alpha} - 1 \\ 2^{\alpha} - 1 & 1 \end{pmatrix}$.

The energy of the graph $G_{m,2}\alpha^{M}$ is $E(G_{m,2}\alpha^{M}) = |-1|(2^{\alpha}-1) + |2^{\alpha}-1|(1) = 2(2^{\alpha}-1).$

Theorem 3.8: The matrix energy of the graph $G_{m,n}^{M}$ where is $n = 2^{\alpha}, \alpha > 1, m > n$ and m prime is 2(n-1).

Proof: By the definition of the graph $G_{m,n}^{M}$, the vertex set V is defined as $\{1, 2, ..., n\}$, when m is prime and m > n, $n = 2^{\alpha}$.

From Theorem 3.7, the adjacency matrix of the graph $G_{m,2}\alpha^M$ is

$$A(G_{m,2}\alpha^{M}) = \begin{pmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 0 \end{pmatrix}_{2^{\alpha} \times 2^{\alpha}}$$

Then
$$A(G_{m,2}\alpha^M)A(G_{m,2}\alpha^M)' = \begin{pmatrix} T & U \\ U & T \end{pmatrix}_{2^{\alpha}\times 2^{\alpha}}$$

Where
$$T = \begin{pmatrix} 2^{\alpha} - 1 & 2^{\alpha} - 2 & 2^{\alpha} - 2 & \dots & 2^{\alpha} - 2 \\ 2^{\alpha} - 2 & 2^{\alpha} - 1 & 2^{\alpha} - 2 & \dots & 2^{\alpha} - 2 \\ 2^{\alpha} - 2 & 2^{\alpha} - 2 & 2^{\alpha} - 1 & \dots & 2^{\alpha} - 2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2^{\alpha} - 2 & 2^{\alpha} - 2 & 2^{\alpha} - 2 & \dots & 2^{\alpha} - 1 \end{pmatrix}_{2^{\alpha - 1} \times 2^{\alpha - 1}}$$
$$U = (2^{\alpha} - 2) \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix}_{2^{\alpha - 1} \times 2^{\alpha - 1}}$$

The Characteristic Equation of $A(G_{m,2}\alpha^M)$ of $G_{m,2}\alpha^M$ is $(\omega - 1)^{2^{\alpha}-1}(\omega - (2^{\alpha} - 1)^2) = 0$.

Then 1, $(2^{\alpha} - 1)$ are the singular values of $A(G_{m,2^{\alpha}}{}^{M})$ and their corresponding multiplicities are $(2^{\alpha} - 1)$ and 1. Hence the spectrum of the graph $G_{m,2^{\alpha}}{}^{M}$ is $\begin{pmatrix} 1 & 2^{\alpha} - 1 \\ 2^{\alpha} - 1 & 1 \end{pmatrix}$.

The energy of the graph $G_{m,2^{\alpha}}{}^{M}$ is $E_m(G_{m,2^{\alpha}}{}^{M}) = |1|(2^{\alpha}-1) + |2^{\alpha}-1|(1) = 2(2^{\alpha}-1).$

4. References

[1] I. Gutman, Acyclic systems with extremal Hückel π -electron energy, Theoret. Chim. Acta 45 (1977), 79-87.

[2] I. Gutman, The energy of a graph, Ber. Math-Satist. Sekt. Forschungsz, Graz 103 (1978), 1-22.

[3] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin (1986).

[4] D. Cvetkovi´c, M. Doob, H. Sachs, Spectra of Graphs – Theory and Application, Academic Press, New York, 1995.

[5] V. Nikiforov, The energy of a Graphs and matrices, J. Math. Appl, 326 (2007), 1472-1475.

[6] I. Chakrabarty, J. V. Kureethara, M. Acharya, the $G_{m,n}^{M}$ graph on a finite subset of natural numbers, proceedings of IAM, V.10, N.1, 2021, pp.45-59

[7] Andries E. Brouwer and Willem H. Haemers, Spectra of graphs, Springer, (2011).

[8] Prameela Rani. C and Siva Parvathi. M - *Characterization of the set of Involutory elements of* $(Z_n, \bigoplus_n, \odot_n)$, Advances in Mathematics: Scientific Journal 10(2021), no.1, 583–588.

[9] M. Venkata Anusha, M. Siva Parvathi and S. Uma Maheswari - Energy and Spectrum of an Undirected Graph $G_{m,n}$ – *Journal of Computer and Mathematical Sciences*, Vol 10(7), 1395-1400, July 2019.

[10] Venkata Anusha, M., Siva Parvathi, M. - *Properties of the Involutory Cayley graph of* $(Z_n, \bigoplus_n, \odot_n)$, AIP Conference Proceedings 2246, 020065 (2020).