

Energy and spectrum of $\boldsymbol{G}_{\boldsymbol{m}, \boldsymbol{n}}{ }^{M}$ graph

L.Eswaramma ${ }^{1}$ and Dr.D.Venkata Lakshmi
${ }^{1}$ Department of Mathematics, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India.
${ }^{2}$ School of Computer Science and Engineering, VIT-AP, Andhra Pradesh, India.

Abstract

The notation of an undirected simple graph $G_{m, n}{ }^{M}=(V, E)$ on a finite subset of natural numbers $m, n \in N$, where the vertex set $V=\{1,2, \ldots . n\}$ and any two distinct vertices $u, v \in V$ are adjacent if and only if $u \neq v$ and $u . v$ is not divisible by m. The energy of the graph is the summation of the absolute values of all eigen values of the adjacency matrix of a graph G.Matrix energy is the summation of all absolute singular values of graph G. In this paper, the computation of energy, matrix energy of the graph $G_{m, n}{ }^{M}$ are discussed and the results are obtained.

Key words: Spectrum of a graph, Energy of a graph, Matrix energy of a graph.

DOI: 10.48047/ecb/2023.12.2.032

1. Introduction

The energy of the graph is introduced by Gutman[1] in 1978, π-electron energy is determined to identify the inside the Hückel atomic orbital approximation [2, 3] by the calculation of graph energy. The adjacency matrix of a graph G is denoted by $A(G)$ and is defined as $A(G)=\left\{\begin{array}{cc}1, \text { if } v_{i}, v_{j} \text { are adjacent in } G \\ 0, & \text { otherwise }\end{array}\right\}$. The eigen values of $A(G)$ of G are denoted by $\omega_{1}, \omega_{2, \ldots .} \omega_{n}$ where $\omega_{1} \geq \omega_{2} \geq \cdots \geq \omega_{n}$. The spectral radius of ω_{1} of G is the highest eigen value of G. The spectrum of the graph G is the collection of eigen values with their multiplicities of an adjacency matrix $A(G)$ is $\left(\begin{array}{ccc}\omega_{1} & \ldots . & \omega_{n} \\ m_{1} & \ldots . & m_{n}\end{array}\right)$. The energy of a graph G is the sum of absolute eigen values of $\mathrm{A}(\mathrm{G})$ of G. i.e. $E(G)=\sum_{i=1}^{n}\left|\omega_{i}\right|$. The applications of graph spectra was presented by D. Cvetkovi'c et al[4]. The matrix energy of G by observing the relationship between eigen values and singular values of an adjacency matrix of a G is extended by Nikiforov [5]. The undirected graph $G_{m, n}{ }^{M}$ is introduced by Ivy Chakrabarthy et al[6] and proved some basic properties of $G_{m, n}{ }^{M}$.

Motivated by the above work the authors studied the concepts of energy, matrix energy of $G_{m, n}{ }^{M}$ graph at various values of n. The notations and terminology used in this paper found in [7].

2. $G_{m, n}{ }^{M}$ Graph and its properties

Definition: The Undirected simple graph $G_{m, n}{ }^{M}=(V, E)$ on a finite subset of natural numbers $m, n \in N$, where the vertex set $V=\{1,2, \ldots . n\}$ and two distinct vertices $u, v \in V$ are adjacent if and only if $u \neq v$ and $u . v$ is not divisible by m.

Lemma 2.1: Let $m=1$ then the graph $G_{m, n}{ }^{M}$ is a null graph with n vertices.
Lemma 2.2: For $1<m \leq n$, the graph $G_{m, n}{ }^{M}$ is disconnected.
Lemma 2.3: For $m>n$, the graph $G_{m, n}{ }^{M}$ is connected.
Lemma 2.4: The Maximum degree of the graph $G_{m, n}{ }^{M}$ is $n-1$.

3. Energy and Matrix Energy of $\boldsymbol{G}_{\boldsymbol{m}, \boldsymbol{n}}{ }^{\boldsymbol{M}}$ graph

Let $G_{m, n}{ }^{M}$ be a simple graph with n vertices.Let $A\left(G_{m, n}{ }^{M}\right)$ be the adjacency matrix of the graph $G_{m, n}{ }^{M}$ is defined as $A\left(G_{m, n}{ }^{M}\right)=\left\{\begin{array}{c}1, \text { if } v_{i}, v_{j} \text { are adjacent in } G_{m, n}{ }^{M} \\ 0,\end{array}\right\}$ otherwise $\omega_{1}, \omega_{2, \ldots} \omega_{n}$ are the eigenvalues of $A\left(G_{m, n}{ }^{M}\right)$ where $\omega_{1} \geq \omega_{2} \geq \cdots \geq \omega_{n}$. The spectra of the graph $G_{m, n}{ }^{M}$ is the eigen values with their corresponding multiplicities of $A\left(G_{m, n}{ }^{M}\right)$ of the graph $G_{m, n}{ }^{M}$ is $\left(\begin{array}{ccc}\omega_{1} & \ldots . & \omega_{n} \\ m_{1} & \ldots . & m_{n}\end{array}\right)$. The energy of the graph $G_{m, n}{ }^{M}$ is the sum of absolute eigen values of an adjacency matrix $A\left(G_{m, n}{ }^{M}\right)$ of a graph $G_{m, n}{ }^{M}$.That is $E\left(G_{m, n}{ }^{M}\right)=\sum_{i=1}^{n}\left|\omega_{i}\right|$.

Let $A\left(G_{m, n}{ }^{M}\right) A\left(G_{m, n}{ }^{M}\right)^{\prime}$ 'is a positive semi definite matrix where $A\left(G_{m, n}{ }^{M}\right)^{\prime}$ is the transpose of $A\left(G_{m, n}{ }^{M}\right)$. Let $\mu_{1}, \mu_{2, \ldots} \mu_{n}$ are the singular values of $A\left(G_{m, n}{ }^{M}\right)$ and these are the square root values of eigen values of $A\left(G_{m, n}{ }^{M}\right) A\left(G_{m, n}{ }^{M}\right)^{\prime}$ where $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}$. Now the summation of absolute singular values of $A\left(G_{m, n}{ }^{M}\right)$ is defined as the matrix energy of the graph $G_{m, n}{ }^{M}$. That is $E_{m}\left(G_{m, n}{ }^{M}\right)=\sum_{i=1}^{n}\left|\mu_{i}\right|$.

Theorem 3.1: The energy of the graph $G_{m, n}{ }^{M}$ when $n=2 p, p$ is prime, $m>n, m$ is prime is $2(2 p-1)$.

Proof: By the definition of the graph $G_{m, n}{ }^{M}$, the vertex set V is defined as $\{1,2, \ldots . n\}$ when $n=2 p, m>n, m, p$ are prime. Then the adjacency matrix of the graph $G_{m, n}{ }^{M}$ is

$$
A\left(G_{m, 2 p}{ }^{M}\right)=\left(\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \\
1 & 0 & 1 & \ldots & 1 \\
1 & 1 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 0
\end{array}\right)_{2 p \times 2 p}
$$

The Characteristic Equation of $A\left(G_{m, 2 p}{ }^{M}\right)$ of the graph $G_{m, 2 p}{ }^{M}$ is $(\omega+1)^{2 p-1}(\omega-$ $(2 p-1))=0$.

Then -1 and $(2 p-1)$ are the eigen values of $A\left(G_{m, 2 p}{ }^{M}\right)$ and their corresponding multiplicities are $(2 p-1)$ and 1 . Hence the spectrum of the graph $G_{m, 2 p}{ }^{M}$ is $\left(\begin{array}{cc}-1 & 2 p-1 \\ 2 p-1 & 1\end{array}\right)$.

The energy of the graph $G_{m, 2 p}{ }^{M}$ is $E\left(G_{m, 2 p}{ }^{M}\right)=|-1|(2 p-1)+|2 p-1|(1)=2(2 p-1)$.
Theorem 3.2: The matrix energy of the graph $G_{m, n}{ }^{M}$ when $n=2 p, p$ is prime, $m>n, m$ is prime is $2(2 p-1)$.

Proof: From the Theorem 3.1, the adjacency matrix of the graph $G_{m, 2 p}{ }^{M}$ is

$$
A\left(G_{m, 2 p}{ }^{M}\right)=\left(\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \\
1 & 0 & 1 & \ldots & 1 \\
1 & 1 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 0
\end{array}\right)_{2 p \times 2 p}
$$

Then $A\left(G_{m, 2 p}{ }^{M}\right) A\left(G_{m, 2 p}{ }^{M}\right)^{\prime}=\left(\begin{array}{ll}T & U \\ U & T\end{array}\right)_{2 p \times 2 p}$
Where $T=\left(\begin{array}{ccccc}2 p-1 & 2 p-2 & 2 p-2 & \ldots & 2 p-2 \\ 2 p-2 & 2 p-1 & 2 p-2 & \ldots & 2 p-2 \\ 2 p-2 & 2 p-2 & 2 p-1 & \ldots & 2 p-2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2 p-2 & 2 p-2 & 2 p-2 & \ldots & 2 p-1\end{array}\right)_{p \times p}$ and

$$
U=(2 p-2)\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & 1 & 1 & \ldots & 1 \\
1 & 1 & 1 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 1
\end{array}\right)_{p \times p}
$$

The Characteristic Equation of $A\left(G_{m, 2 p}{ }^{M}\right) A\left(G_{m, 2 p}{ }^{M}\right)^{\prime}$ of the graph $G_{m, 2 p}{ }^{M}$ is
$(\omega-1)^{2 p-1}\left(\omega-(2 p-1)^{2}\right)=0$.
Then $1,(2 p-1)$ are the singular values of $A\left(G_{m, 2 p}{ }^{M}\right)$ and their corresponding multiplicities are $(2 p-1)$ and 1 . Hence the spectrum of the graph $G_{m, 2 p}{ }^{M}$ is $\left(\begin{array}{cc}1 & 2 p-1 \\ 2 p-1 & 1\end{array}\right)$.

The matrix energy of the graph $G_{m, 2 p}{ }^{M}$ is $E\left(G_{m, 2 p}{ }^{M}\right)=|1|(2 p-1)+|2 p-1|(1)=$ $2(2 p-1)$.

Theorem 3.3: The energy of the graph $G_{m, n}{ }^{M}$ when $m>n, m$ is prime, n is prime is $2(n-1)$.
Proof: By the definition of the graph $G_{m, n}{ }^{M}$, the vertex set V is defined as when m and n are primes and $m>n$ is $V=\{1,2, \ldots . n\}$.

Then the adjacency matrix of the graph $G_{m, n}{ }^{M}$ is

$$
A\left(G_{m, n}{ }^{M}\right)=\left(\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \\
1 & 0 & 1 & \ldots & 1 \\
1 & 1 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 0
\end{array}\right)_{n \times n}
$$

The Characteristic Equation of $A\left(G_{m, n}{ }^{M}\right)$ of the graph $G_{m, n}{ }^{M}$ is $(\omega+1)^{\mathrm{n}-1}(\omega-(n-1))=0$. Then $-1,(n-1)$ are the eigen values of $A\left(G_{m, n}{ }^{M}\right)$ and their corresponding multiplicities are $(n-1)$ and 1 . Hence the spectrum of the graph $G_{m, n}{ }^{M}$ is $\left(\begin{array}{cc}-1 & n-1 \\ n-1 & 1\end{array}\right)$.

The energy of the graph $G_{m, n}{ }^{M}$ is $E\left(G_{m, n}{ }^{M}\right)=|-1|(n-1)+|n-1|(1)=2(n-1)$.
Theorem 3.4: The matrix energy of the graph $G_{m, n}{ }^{M}$ when $m>n, m$ is prime, n is prime is $2(n-1)$.

Proof: By the definition of the graph $G_{m, n}{ }^{M}$, the vertex set V is defined as $\{1,2, \ldots . n\}$, when m and n are primes and $m>n$.

From Theorem 3.3 the adjacency matrix of the graph $G_{m, n}{ }^{M}$ is

$$
A\left(G_{m, n}{ }^{M}\right)=\left(\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \\
1 & 0 & 1 & \ldots & 1 \\
1 & 1 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 0
\end{array}\right)_{n \times n}
$$

Then $A\left(G_{m, n}{ }^{M}\right) A\left(G_{m, n}{ }^{M}\right)^{\prime}=\left(\begin{array}{ll}T & U \\ U & T\end{array}\right)_{n \times n}$
where $T=\left(\begin{array}{ccccc}n-1 & n-2 & n-2 & \ldots & n-2 \\ n-2 & n-1 & n-2 & \ldots & n-2 \\ n-2 & n-2 & n-1 & \ldots & n-2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n-2 & n-2 & n-2 & \ldots & n-1\end{array}\right)_{\frac{n}{2} \times \frac{n}{2}} \quad$ and $\quad U=(n-2)\left(\begin{array}{ccccc}1 & 1 & 1 & \ldots & 1 \\ 1 & 1 & 1 & \ldots & 1 \\ 1 & 1 & 1 & \ldots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \ldots & 1\end{array}\right)_{\frac{n}{2} \times \frac{n}{2}}$

The Characteristic Equation of $A\left(G_{m, n}{ }^{M}\right) A\left(G_{m, n}{ }^{M}\right)^{\prime}$ of the graph $G_{m, n}{ }^{M}$ is $(\omega-1)^{\mathrm{n}-1}\left(\omega-(n-1)^{2}\right)=0$.

Then $1,(n-1)$ are the singular values of $A\left(G_{m, n}{ }^{M}\right)$ and their corresponding multiplicities are $(n-1)$ and 1. Hence the spectrum of the graph $G_{m, n}{ }^{M}$ is $\left(\begin{array}{cc}1 & n-1 \\ n-1 & 1\end{array}\right)$.
The matrix energy of the graph $G_{m, n}{ }^{M}$ is $E_{m}\left(G_{m, n}{ }^{M}\right)=|1|(n-1)+|n-1|(1)=2(n-1)$.
Theorem 3.5: The energy of the graph $G_{m, n}{ }^{M}$ where $m=n, m>1$ is prime and n prime is $2(n-1)$.

Proof: By the definition of the graph $G_{m, n}{ }^{M}$, the vertex set V is defined as $\{1,2, \ldots . n\}$, when m and n are primes and $m>1$.

Then the adjacency matrix of the graph $G_{m, n}{ }^{M}$ is $A\left(G_{m, n}{ }^{M}\right)=\left(\begin{array}{lll}R & S & 0 \\ S & R & 0 \\ 0 & 0 & 0\end{array}\right)_{n \times n}$

Where $R=\left(\begin{array}{ccccc}0 & 1 & 1 & \ldots & 1 \\ 1 & 0 & 1 & \ldots & 1 \\ 1 & 1 & 0 & \ldots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \ldots & 0\end{array}\right)_{\frac{n-1}{2} \times \frac{n-1}{2}}$ and $S=\left(\begin{array}{ccccc}1 & 1 & 1 & \ldots & 1 \\ 1 & 1 & 1 & \ldots & 1 \\ 1 & 1 & 1 & \ldots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \ldots & 1\end{array}\right)_{\frac{n-1}{2} \times \frac{n-1}{2}}$
The Characteristic Equation of $A\left(G_{m, n}{ }^{M}\right)$ of $G_{m, n}{ }^{M}$ is $\omega(\omega+1)^{\mathrm{n}-1}(\omega-(n-1))=0$.
Then $0,-1,(n-1)$ are the eigen values of $A\left(G_{m, n}{ }^{M}\right)$ and their corresponding multiplicities are
$1,(n-1)$ and 1. Hence the spectrum of the graph $G_{m, n}{ }^{M}$ is $\left(\begin{array}{ccc}0 & -1 & n-1 \\ 1 & n-1 & 1\end{array}\right)$.
The energy of the graph $G_{m, n}{ }^{M}$ is $E\left(G_{m, n}{ }^{M}\right)=|0|(1)+|-1|(n-1)+|n-1|(1)=2(n-1)$.
Theorem 3.6: The matrix energy of the graph $G_{m, n}{ }^{M}$ where $m=n, m>1$ is prime and n prime is $2(n-1)$.

Proof: By the definition of the graph $G_{m, n}{ }^{M}$, the vertex set V is defined as $\{1,2, \ldots . n\}$, when m and n are primes and $m>1$.

From Theorem 3.5, the adjacency matrix of the graph $G_{m, n}{ }^{M}$ is $A\left(G_{m, n}{ }^{M}\right)=\left(\begin{array}{lll}R & S & 0 \\ S & R & 0 \\ 0 & 0 & 0\end{array}\right)_{n \times n}$
Where $R=\left(\begin{array}{ccccc}0 & 1 & 1 & \ldots & 1 \\ 1 & 0 & 1 & \ldots & 1 \\ 1 & 1 & 0 & \ldots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \ldots & 0\end{array}\right)_{\frac{n-1}{2} \times \frac{n-1}{2}}$ and $S=\left(\begin{array}{ccccc}1 & 1 & 1 & \ldots & 1 \\ 1 & 1 & 1 & \ldots & 1 \\ 1 & 1 & 1 & \ldots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \ldots & 1\end{array}\right)_{\frac{n-1}{2} \times \frac{n-1}{2}}$
Then $A\left(G_{m, n}{ }^{M}\right) A\left(G_{m, n}{ }^{M}\right)^{\prime}=\left(\begin{array}{lll}T & U & 0 \\ U & T & 0 \\ 0 & 0 & 0\end{array}\right)_{n \times n}$
Where $T=\left(\begin{array}{ccccc}n-2 & n-3 & n-3 & \ldots & n-3 \\ n-3 & n-2 & n-3 & \ldots & n-3 \\ n-3 & n-3 & n-2 & \ldots & n-3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n-3 & n-3 & n-3 & \ldots & n-2\end{array}\right)_{\frac{n-1}{2} \times \frac{n-1}{2}} \quad$ and $U=(n-3)\left(\begin{array}{ccccc}1 & 1 & 1 & \ldots & 1 \\ 1 & 1 & 1 & \ldots & 1 \\ 1 & 1 & 1 & \ldots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \ldots & 1\end{array}\right)_{\frac{n-1}{2} \times \frac{n-1}{2}}$

The Characteristic Equation of $A\left(G_{m, n}{ }^{M}\right) A\left(G_{m, n}{ }^{M}\right)^{\prime}$ of the graph $G_{m, n}{ }^{M}$ is $\omega(\omega-1)^{\mathrm{n}-2}(\omega-$ $\left.(n-2)^{2}\right)=0$.

Then $0,1,(n-2)$ are the singular values of $A\left(G_{m, n}{ }^{M}\right)$ and their corresponding multiplicities are $1,(n-2)$ and 1. Hence the spectrum of the graph $G_{m, n}{ }^{M}$ is $\left(\begin{array}{ccc}0 & 1 & n-2 \\ 1 & n-2 & 1\end{array}\right)$.

The matrix energy of the graph $G_{m, n}{ }^{M}$ is $E_{m}\left(G_{m, n}{ }^{M}\right)=|0|(1)+|1|(n-2)+|n-2|(1)=$ $2(n-2)$.

Theorem 3.7: The energy of the graph $G_{m, n}{ }^{M}$ where is $n=2^{\alpha}, \alpha>1, m>n$ and m prime is $2(n-1)$.

Proof: Proof: By the definition of the graph $G_{m, n}{ }^{M}$,the vertex set V is defined as when m is prime and $m>n, n=2^{\alpha}$ is $V=\{1,2, \ldots . n\}$.

Then the adjacency matrix of the graph $G_{m, 2^{\alpha^{M}}}$ is $A\left(G_{m, 2^{\alpha}}{ }^{M}\right)=\left(\begin{array}{ccccc}0 & 1 & 1 & \ldots & 1 \\ 1 & 0 & 1 & \ldots & 1 \\ 1 & 1 & 0 & \ldots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \ldots & 0\end{array}\right)_{2^{\alpha} \times 2^{\alpha}}$
The Characteristic Equation of $A\left(G_{m, 2^{\alpha}}{ }^{M}\right)$ of $G_{m, 2^{\alpha}}{ }^{M}$ is $(\omega+1)^{2^{\alpha}-1}\left(\omega-\left(2^{\alpha}-1\right)=0\right.$.
Then $-1,\left(2^{\alpha}-1\right)$ are the eigen values of $A\left(G_{m, 2^{\alpha}}{ }^{M}\right)$ and their corresponding multiplicities are $\left(2^{\alpha}-1\right)$ and 1. Hence the spectrum of the graph $G_{m, 2^{\alpha}}{ }^{M}$ is $\left(\begin{array}{cc}-1 & 2^{\alpha}-1 \\ 2^{\alpha}-1 & 1\end{array}\right)$.

The energy of the graph $G_{m, 2^{\alpha}}{ }^{M}$ is $E\left(G_{m, 2^{\alpha}}{ }^{M}\right)=|-1|\left(2^{\alpha}-1\right)+\left|2^{\alpha}-1\right|(1)=2\left(2^{\alpha}-1\right)$.
Theorem 3.8: The matrix energy of the graph $G_{m, n}{ }^{M}$ where is $n=2^{\alpha}, \alpha>1, m>n$ and m prime is $\quad 2(n-1)$.

Proof: By the definition of the graph $G_{m, n}{ }^{M}$, the vertex set V is defined as $\{1,2, \ldots . n\}$, when m is prime and $m>n, n=2^{\alpha}$.

From Theorem 3.7, the adjacency matrix of the graph $G_{m, 2^{\alpha}}{ }^{M}$ is

$$
A\left(G_{m, 2^{\alpha}}{ }^{M}\right)=\left(\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \\
1 & 0 & 1 & \ldots & 1 \\
1 & 1 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 0
\end{array}\right)_{2^{\alpha} \times 2^{\alpha}}
$$

Then $A\left(G_{m, 2^{\alpha}}{ }^{M}\right) A\left(G_{m, 2^{\alpha}}\right)^{\prime}=\left(\begin{array}{ll}T & U \\ U & T\end{array}\right)_{2^{\alpha} \times 2^{\alpha}}$
Where $T=\left(\begin{array}{ccccc}2^{\alpha}-1 & 2^{\alpha}-2 & 2^{\alpha}-2 & \ldots & 2^{\alpha}-2 \\ 2^{\alpha}-2 & 2^{\alpha}-1 & 2^{\alpha}-2 & \ldots & 2^{\alpha}-2 \\ 2^{\alpha}-2 & 2^{\alpha}-2 & 2^{\alpha}-1 & \ldots & 2^{\alpha}-2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2^{\alpha}-2 & 2^{\alpha}-2 & 2^{\alpha}-2 & \ldots & 2^{\alpha}-1\end{array}\right)_{2^{\alpha-1} \times 2^{\alpha-1}}$

$$
U=\left(2^{\alpha}-2\right)\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & 1 & 1 & \ldots & 1 \\
1 & 1 & 1 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 1
\end{array}\right)_{2^{\alpha-1} \times 2^{\alpha-1}}
$$

The Characteristic Equation of $A\left(G_{m, 2^{\alpha}}{ }^{M}\right)$ of $G_{m, 2^{\alpha}}{ }^{M}$ is $(\omega-1)^{2^{\alpha}-1}\left(\omega-\left(2^{\alpha}-1\right)^{2}\right)=0$.
Then 1, $\left(2^{\alpha}-1\right)$ are the singular values of $A\left(G_{m, 2^{\alpha}}{ }^{M}\right)$ and their corresponding multiplicities are $\left(2^{\alpha}-1\right)$ and 1 . Hence the spectrum of the graph $G_{m, 2^{\alpha}}{ }^{M}$ is $\left(\begin{array}{cc}1 & 2^{\alpha}-1 \\ 2^{\alpha}-1 & 1\end{array}\right)$.

The energy of the graph $G_{m, 2^{\alpha}}{ }^{M}$ is $E_{m}\left(G_{m, 2^{\alpha}}{ }^{M}\right)=|1|\left(2^{\alpha}-1\right)+\left|2^{\alpha}-1\right|(1)=2\left(2^{\alpha}-1\right)$.

4. References

[1] I. Gutman, Acyclic systems with extremal Hückel π-electron energy, Theoret. Chim. Acta 45 (1977), 79-87.
[2] I. Gutman, The energy of a graph, Ber. Math-Satist. Sekt. Forschungsz, Graz 103 (1978), 122.
[3] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin (1986).
[4] D. Cvetkovi'c, M. Doob, H. Sachs, Spectra of Graphs - Theory and Application, Academic Press, New York, 1995.
[5] V. Nikiforov, The energy of a Graphs and matrices, J. Math. Appl, 326 (2007), 1472-1475.
[6] I. Chakrabarty , J. V. Kureethara, M. Acharya, the $G_{m, n}{ }^{M}$ graph on a finite subset of natural numbers, proceedings of IAM, V.10, N.1, 2021, pp.45-59
[7] Andries E. Brouwer and Willem H. Haemers, Spectra of graphs, Springer, (2011).
[8] Prameela Rani. C and Siva Parvathi. M - Characterization of the set of Involutory elements of $\left(\mathrm{Z}_{\mathrm{n}}, \oplus_{\mathrm{n}}, \bigodot_{\mathrm{n}}\right)$, Advances in Mathematics: Scientific Journal 10(2021), no.1, 583-588.
[9] M. Venkata Anusha, M. Siva Parvathi and S. Uma Maheswari - Energy and Spectrum of an Undirected Graph $\mathrm{G}_{\mathrm{m}, \mathrm{n}}$ - Journal of Computer and Mathematical Sciences, Vol 10(7), 13951400, July 2019.
[10] Venkata Anusha, M., Siva Parvathi, M. - Properties of the Involutory Cayley graph of $\left(\mathrm{Z}_{\mathrm{n}}, \oplus_{\mathrm{n}}, \bigodot_{\mathrm{n}}\right)$, AIP Conference Proceedings 2246, 020065 (2020).

