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Abstract 

In different single crystals doped with Cu2+ ion, the g-anisotropy has been estimated using spin-Hamiltonian 

parameters obtained from Electron Paramagnetic Resonance studies. The ground state wave functions of Cu2+ 

are also calculated. The some other microscopic parameters were determined from the calculation of ground 

state wave functions. The calculated g-anisotropies are compared with the experimental results. A good 

agreement is found between the calculated and experimental g-anisotropies. The ground state is 

predominantly 22 yx   but in some crystals it is found to be 223 rz  . In the present study also, the ground 

state wave functions of Cu2+ are predominantly 22 yx  , but for some crystals like Laccase, Oxalate and 

Citrate it is found to be 223 rz  . 
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INTRODUCTION 
After the discovery of Electron Paramagnetic 

Resonance (EPR), this process has been widely 

studied this process has been widely studied using 

d9 ions mainly Cu2+ as doping host lattice for 

investigation [1]. EPR is a powerful tool to 

provide us huge information about the ground 

state of paramagnetic impurity doped in system 

like single crystals. In many studies, the local 

symmetry of d9 ion is D4h or very close to it. The 

explanation of the experimental spin-Hamiltonian 

for d9 ions in D4h symmetry was guided by crystal 

field approximation (CFA) based theories. 

However for low symmetry ligand field, the 

magnetic hole system is favored to get detail 

knowledge about wave functions of electron [2]. 

The Cu2+ ion has been used extensively to 

understand the nature of the crystalline electric 

field symmetry produced due to the ligands 

surrounding the central metal ion [3-7] Because of 

these reasons the studies of transition metal 

systems for 3d9 arrangements have been the 

subject of our interest. If the anisotropy in g and A 

parameters are exactly known then the exact 

ground state wave functions are easily calculated. 

In the present work, the author has estimated the 

ground state wave functions of Cu2+ ion in a large 

number of different lattices [8-13] with the help of 

spin –Hamiltonian parameters taken from 

experimental data of earlier research work. The 

relevant crystal field may be obtained mixing the 

wave functions. The crystal field theory is applied 

to find out the anisotropy in g-value. Now a 

comparison is made between calculated and 

experimental g-anisotropy. In all the single 

crystals spin exchange polarization parameter K 

may be estimated quantitatively with the help of 

data obtained from experimental work [8-13]. In 

order to ensure a good agreement between the 

calculated and experimental results, an attempt 

was made to obtain gy-gx values for Cu2+ ion each 

system. This paper deals with the calculations of 

Cu2+ doped in the different diamagnetic hosts at 

the room temperature. 

 

THEORY 
The Cu2+ ion in tetragonal symmetry related to 

extended octahedron yields the ground state 

predominantly
22 yx   while in the case of the 

tetragonal symmetry for compressed octahedron it 

is mostly 
223 rz  [14-17]. In lower crystal field 

symmetry like rhombic and orthorhombic above 

prediction is entirely different. For these cases 

zyx ggg   and A x  A yAz, the ground state 

was predicted as the linear combination [16-17] of 

the two orbitals 22 yx  and 223 rz  . It will take 

either the form 2222 3 rzyx    or 

22223 yxrz   . Where  is very close to 

one and  is very small in comparison to one 

( 1 and 1  ). 

 

In the present work two types of crystals are 

studied, it is observed that in most of the systems 

the symmetry for electric field around Cu2+ ion is 

rhombic while in few crystals symmetry is 

orthorhombic. In study it is also seen that in 

almost all the cases 
2

yx

z

gg
g


 and in some 

crystals like Laccase, Oxalate and Citrate it 

is yxz ggg , . In systems for which
2

yx

z

gg
g


 , the 

ground state wave functions is estimated as 
2222 3 rzyx   [14] thereafter this case 

will be represented by Case A while in  crystals 

Laccase, Oxalate and Citrate (for which 

yxz ggg , ) expression used as 

22223 yxrz   , this is denoted by Case 

B. Since the value of  is very near to unity and 

that of  is much less than unity, the Case A deals 

with the system having predominantly ground 

state as  
22 yx  for Cu2+ ion and other Case B 

governs with mostly ground state  223 rz  for 

same impurity Cu2+ ion. By applying Bleaney et 

al. theory [16] so many workers have calculated 

the ground state wave functions of Cu2+ ion in 

different diamagnetic hosts. Sroubek and Zdansky 

[15] have studied Cadmium and Magnesium 

tungstates for determination of ground state wave 

function after doping Cu2+ ion. In same way 

Sastry and Sastry [14] also estimated the ground 

state wave functions of Cu2+ ion in K2CO 

(SO4)2.6H2O and other Tutton salts. In present 

study for all the lattices, the ground state wave 

function is not purely 22 yx  or 223 rz   state 

but an admixture of 22 yx  and 223 rz  . As 

the value of  is greater than, the Cu2+ is found 

to have a rhombic distorted shape. The ground 

state wave function and various molecular orbital 

coefficients have been estimated for Cu2+ ion by 

Misra and Kripal [18]. By using the same theory 

[16] several workers [3, 19-24] have obtained 

similar type of expressions in different lattices. 

The expressions used for determination of 

different parameters in terms spin-Hamiltonian 

constants contain unknown parameters ( , , K 
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and P, where K is Fermi contact term/spin-

exchange polarization parameter, P is hyperfine 

interaction parameter and  ,   are in plane - 

bonding and out-of-plane  bonding coefficients, 

respectively. These parameters are used for best fit 

[25-26] to determine g  value by using measured 

values of spin-Hamiltonian parameters [14].Now 

the ground state function, P and K can be easily 

calculated. The calculated value of calg  is 

compared with the experimental value expg . The 

same method has been used in this paper. 

 

I Expression for Ground State Wave Function: 

Case A: If 
2

yx

z

gg
g


 , then crystal field symmetry 

will be either rhombic or orthorhombic. In this 

case the ground state wave function of Cu2+ ion 

can be expressed as: 

 
2222 3 rzyx                                       (1) 

 

where 1 and 1  . 

 

Bleaney [16] predicted the ground state wave 

function of Cu2+ ion for crystal field with low 

symmetry as: 

 

  ))((5
2

1 2222
1

czbyaxrf                                 (2) 

 

Satisfying the following conditions- 

 

a+ b+ c=0 

a2+b2+c2= 6                                                         (3) 

 

With the help of Equations (1) and (2) and 

conditions (3) the values of a, b and c can be 

easily calculated as: 







2

),3(

),3(







c

b

a

                                                   (4) 

 

By applying theory of Bleaney [16] and taking 

approximation [14], it can be obtained: 












  222

7

34

7

2

14

y

xfix

g
gKp , 












  222

7

34

7

2

14

x
yfiy

g
gKp ,   (5) 







 22

7

4
)(

14

1
 yxzfiz gggKp  

 

The symbols of above Eqns. have their significant 

meaning [14]. In case of free Cu2+ the value of  

fip  (fi=free ion) is used as 0.036 cm-1. The 

measured value of expp can be estimated by 

multiplying fip  by the electrons being found in 

the 2D state around the Cu2+ ion i.e. 

 

fipp 2

exp                                                       (6) 

 

If signs of i  are not exactly known then z  is 

assumed to be negative with x  and y  are 

chosen in such way to get best fit of theoretical 

value of xy gg  . The other possible set for sign 

of x , y and z  are useless. The various 

microscopic parameters may be easily calculated 

by putting the experimental values of xg , yg , zg  

and x , y , z in eqn. (5). The values of these 

parameters K, expp  and g are given in Table 1. 

 

Case B: In orthorhombic crystal field 

symmetry yxz ggg , , the ground state wave 

function [15] of Cu2+ ion can be expressed as: 

 
22223 yxrz                                   (7) 

 

where 1 and 1  . 

If we compare Equations (7) and (2) and using 

conditions (3) then the values of a, b and c is 

obtained easily as: 

)31( a , 

),31( b                                                 (8) 

2c  

x , y  and z  are given by- 

,
7

34

7

2

14

222












 

y

xfix

g
gK

 












  222

7

34

7

2

14

x
yfiy

g
gK ,    (9) 







 22

7

4
)(

14

1
 yxzfiz gggK  

 

In present study, for Case B three crystals are 

available namely, Laccase, Oxalate and Citrate. 

For such system z  is taken to be positive with 

x  and y  are taken in such way that to get best 

fit of theoretical value of xy gg  . The other 
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combinations of signs for x , y and z  are 

useless as they gave absurd value of  ,  , K, 

expp as in Case A. The estimated values of these 

microscopic parameters are given in Table 1. 

 

II Calculation of (gy-gx) 

( xy gg  ) is the difference between yg and xg ,
 

xy ggg exp , 

 

The value of expg  is compared with calculated 

value calg , which is caused by the contributions 

[15]: 

(i)
 

1

calg :  this factor is due to mixing of 

orbital
22 yx  with the

223 rz   orbital. 

(ii)
2

calg  : this is due to energy splitting of xz  

and yz states. 

(iii)
3

calg : this contribution is because of different 

covalency of  xz  and yz states, and 

(iv)
4

calg : this term is due to mixing of the 

yz orbital with the xz  orbital of the first 

excited state; it   has the same effect as
3

calg  . 

 

These contributions can play important role in 

discussion of both the cases viz. Case A of 

rhombic and orthorhombic crystal field symmetry 

(
2

yx

z

gg
g


 ) and Case for orthorhombic B 

crystal field symmetry ( yxz ggg , ).  It can be 

shown easily that the orthorhombic (six-fold 

coordination) crystalline field will be equivalent to 

the rhombic crystalline field [2]. 

 

In rhombic symmetry the crystalline electric field 

is expressed by: 

 

termshigherCzByAxV .222          (10) 

 

In six-fold coordination) crystalline field is given 

by 

 

   2

2

2

23

3

3

2

0

23

3

3

2

3

1

2

11
6

2

1112
2

1 
















 YY

aa
Y

aaa
cV  (11) 

 

Putting the values of
0

2Y , 
2

2Y  and 
2

2

Y  from [27] 

in Eqn. (11) - 

 

   
....

8

3

4

53

4

1

4

5
2

2

2

2

12

22

12 





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





















 



















 


r

iyx

r

iyx
B

r

rz
ACV



   (12) 

1A and 1B  are some arbitrary constants
 

 

Putting the value of  2C  [28-29] we get:
 

 

   2222

1

22

1
8

3

4

5
3

4

1

4

5
yxyxbBrzbAV 

















+higher terms   (13) 

 

   22

1

223 yxCrzDV  +higher terms 

 

   222222

1 3 zyxDDzyxC  +higher 

terms 

 

    termshigherDzyDCxDC .2 22

1

2

1    (14) 

 

termshigherCzByAxV .222          (15) 

 

Where ,1 ADC    BDC 1 and CD 2  

It is clear that both Equations (10) and (15) are 

similar, therefore by taking into account 

contributions (ii), (iii) and (iv) the expressions will 

be same for both the Cases A and B. Therefore it 

is convenient to discuss contribution due to (i) for 

both case A and B separately. 

 

Contribution (i) Case A:   If the splitting of 

states xz  and yz is neglected then the 

expressions for 

xg  and yg  is expressed as [16] : 

 22'0023.2 cbAgx   

 2'0023.2 acAg y                                (16) 

 

Where 
'A is constant. Using eqn. (4) and 

substituting the values of a, b and c in above eqn. 

(16) we get- 

 yx gg  =6
'A  

 

 yxxycal ggggg   321
          (17) 

 

If expg is positive   will be negative and   will 

be positive for negative value of expg . 

 

Case B:      Using (8) and (16) we get- 

 yxxycal ggggg  
3

21             (18) 

Contribution (II): Let us start with Equation (10) 
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termshigherCzByAxV .222              

(10) 

 

Neglecting higher order terms and taking integral 

z2 to be zero we get- 

 

 
1

222222 13
E

rzByAxyx        (19) 

So, 

     drzByAxyxE
v

222222

1 33    (20) 

 

Here 3  22 yx   and (
223 rz  ) are the wave 

functions for
22 yx   and 

223 rz  states 

respectively [29]. In spherical polar coordinates 

(20) will be expressed as (21): 

 

        







     

n n

ddrdrBddrdrAE
0

2

0 0

2

0

2522

0

27252

0

227

1 1cos3sinsincossin31cos3.sin)sin(coscos31

  



                              (21) 

 

Therefore   can be written as: 

)(
32

1

ABN
E

                                      (22) 

Where










105

2.8 n
N , 1E  is energy difference 

between states 
22 yx   and

223 rz  . 

 

n=constant, d =elementary volume element. 

If E  is energy splitting for states xz  and yz , 

then E  will be: 

 

    xzByAxxzyzByAxyzE 2222 


















   

v v
v

v

dzxydzyyBdzxxdzxyA  222222222222 1212  (23) 

In spherical polar coordinates E  can be written as: 
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
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+ 
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

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
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2
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2

0

2522

0

7254

0

7 cossincossincossinsin12

  

            (24) 

 

Integrating the above eqn. one can obtain easily- 

 

 ABNE  6                                              (25) 

 

From eqn. (15) and (25): 

 

 3E 1E                                                (26) 

 

In g- factor anisotropy [15] can be expressed as: 

   EE

K

EE

K
ggg xycal





2

1

2

1
11

2







  













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




11 E

E

E

K 
(Here K some arbitrary constant) 

 

= g 3                                                    (27) 

 

2

calg   3
2

1
yx gg                          (28) 

Contribution (III):  In this section the 

contribution because of different covalency of  

xz  and yz states will be discussed 

qualitatively. For discussion LCAO method will 

be adopted. This method is mostly used to 

construct orbitals by linear combination [8, 30-

31]. 

 

  i

i

il                                            (29) 

Here    is a wave function for the central atom 

transforming in molecular point group as the 

irreducible representation  and i

i

il is linear 

combination of ligand wave functions 

transforming like . 
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Two anti-bonding orbitals can be expressed with 

the help of LCAO method [8, 30-31]. 

  ),( 1
2

1

1 xzxzxz mM  


 

   yzyzyz mM  2
2

1

2 


                           (30) 

 

In above eqn. xz  and yz are dt wave functions 

for Cu2+ ion, xz and yz  are linear combinations 

of ligand atomic orbitals, 1M and 2M are 

normalization constants. In LCAO approach im  

and 
iM

l are approximated [32-33] by Equation 

(30a) 

2E
q

m jz
i                                                      (30a) 

 

where pdt EEE 2  

 yxj ,  

 

dtE =energy level of single dt electron for Cu2+ 

ion 

pE =energy level for p electron on the 

attached ligand ion 

jzq = resonance integral between dt and p  

electrons 

2

2

2

)(
1

1

11
E

q

E
qM

jz

jzi





                    (30b) 

Now E can be expressed as- 

 











22 E

q

E

q
E

yzxz                                           (31) 

 

Here the sign of E  is opposite to that of eqn. 

(26) for evaluation of electron energy level. 

Using MO method [34-36] g can be written as- 

 


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    (32) 

 

Where K  being a constant. Equations (30a), 

(30b) and (31) give the value of g  











21

11

EE
Egg                                      (33) 

 

The first term in the above equation shows the 

splitting in energy and second term gives the 

effect for covalent distortion. By taking energy 

splitting due to only the covalency effect, the first 

term is already calculated. The second term will 

be given by equation (34) or (35). 

 

2

3

E

E
ggcal


                                                (34) 
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
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2

13 3
2

1
E

E
ggg yxcal                (35) 

Contribution(IV): This contribution has same 

effect as discussed in contribution (III). Therefore 

the expression has not been estimated. 

 

RESULTS AND DISCUSSION 
In the present study with the help of experimental 

EPR data g-anisotropy for Cu2+ in large number of 

single crystals has been estimated from various 

microscopic parameters obtained from the 

evaluation of ground state wave functions. It is 

observed that there is a good agreement between 

the calculated and experimental g values in most 

of the system studied. In some crystals the value 

of calg is slightly larger than expg . Therefore it 

is clear that in such cases contribution due to point 

(iii) must be dominated. In 1-10 Phenanthroline 

there is a poor agreement between calg and 

expg .One can find a good agreement between 

them by adding the contribution [18] II and III 

above. However, the actual contribution III could 

not be done as energy E2 was not exactly known 

but using expression one can predict approximate 

value of calg . In Acetyl- acetonate [8] 
1

calg  

than expg therefore it is clear that contribution III 

will be important factor .By adding III term this 

has given a good agreement with expg . For 

Histidine calg is very smaller than expg . This 

indicates that after taking contribution II and III 

one can obtains good agreement with expg  but 

best agreement can be obtained at lower 

temperature probably at LNT (liquid nitrogen 

temperature). By knowing E1 and E2 and 

evaluating 
3

calg  one can have good agreement 

between calg and expg in other systems also. 

 

For comparison, the ground state functions and 

various microscopic parameters of Cu2+ ion in 

other lattices are also given Table 2. It can be 

concluded easily from Table 2 that spin-

Hamiltonian parameters and other parameters 

estimated in the present work are almost very 
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close to the result of earlier researchers. The best 

agreement between calg and expg can be seen at 

still lower temperature [2]. The low temperature 

studies of Cu2+ in systems giving larger difference 

between calg and expg value, are in progress and 

the best fit results will be published later in 

reputed international journal. 

 

CONCLUSIONS 
In the present theoretical work g-anisotropy for 

Cu2+ ion in different lattices are estimated. The 

ground state wave functions have been also 

constructed in systems used in study. The various 

microscopic parameters are also calculated. Using 

these microscopic parameters and spin-

Hamiltonian parameters taken from experimental 

EPR studies, g-anisotropy has been determined in 

each system. The hyperfine interaction 

parameter expp , Fermi contact term K,
 

)31;(  
i

i

calcal igg  and expg are also obtained. 

The theoretical analysis shows that in most of the 

crystals ground sate wave for Cu2+ ion is 

predominantly 
22 yx  .In Laccase, Oxalate and 

citrate it is found to be 223 rz  . After comparison 

of the ground state of Cu2+ ion in the present work 

with the lattices studied by earlier researchers [19-

22] it is clear that for fourteen crystals of Table 1 

the ground state wave function is similar to that of 

Lithium Potassium Sulphate, Sodium Citrate, Bis 

(L-asparaginato II), Cadmium (II) formate 

dihydrate and complexes I and III of DADT [3], 

while for Laccase, Oxalate and citrate it is found 

to be similar with complex II of DADT. The value 

of K and expp , in present paper is almost similar to 

that of earlier works [3, 19-22]. The g-anisotropy 

calg  in each system is calculated and these 

values are compared with the experimental 

values expg . There is a good agreement between 

calg and expg in most of the systems (Table 1). 

There is huge difference between calg and 

expg value for some systems like Histidine, 1-10 

Phenanthroline, Oxalate and Phthalocyanine. The 

best agreement between calg and expg  may be 

obtained at still lower temperature. 
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Table1. Ground State wave functions and Microscopic parameters for Cu2+ ion in different single crystals at 

RT. (Present Study) 
S.         

No. 

Single Crystals Ground state wave function  

 14

exp

0  cm

p

 

1

calg
x
 

2

calg
 

y
 

3

calg
 

z
 

calg
 

(x+y+z)
 expg  

Ref. 

1. Acetyl- acetonate 2222 3)223.0(913.0 rzyx 

 

0.384 262.8 +0.156 - -0.011 +0.1552 +0.140 [8] 

2. Salicylalde 

hydeimine 

2222 3)033.0(866.0 rzyx 

 

0.391 270.2 +0.011 +0.003 +0.0002 +0.0142 0.0178 [8] 

3. Phthalocyanine 2222 3)333.0(944.0 rzyx 

 

0.433 251.2 -0.064 -0.0155 +0.0033 -0.0762 -0.0755 [9] 

4. Phthalocyanine 2222 3)411.0(799.0 rzyx 

 

0.445 307.2 +0.212 +0.111 - +0.3242 0.0660 [10] 

5. Laccase 2222 3)855.0(333.0 rzyx   0.268 304.0 +0.101 +0.011 +0.0006 +0.203 +0.1990 [11] 

6. Ceruloplasmin 2222 3)243.0(805.0 rzyx 

 

0.188 283.2 +0.044 +0.011 +0.0022 +0.0572 +0.0541 [11] 

7. Denatured 

Laccase 

2222 3)103.0(886.0 rzyx 
 

0.407 233.0 -0.112 -0.010 -0.0012 -0.1232 -0.1191 [11] 

8. Denatured 

Ceruloplasmin 

2222 3)363.0(905.0 rzyx 

 

0.412 278.0 +0.038 +0.070 +0.001 +0.109 +0.114 [11] 

9. Histidine 2222 3)233.0(805.0 rzyx   0.332 284.5 +0.136 - - +0.136 +0.2290 [11] 

10. Imidazole 2222 3)037.0(923.0 rzyx 

 

0.325 286.9 -0.056 -0.0122 +0.0022 -0.056 -0.059 [11] 

11. 2-2’ Dipyridyl 2222 3)023.0(877.0 rzyx 

 

0.382 222.9 -0.117 -0.016 +0.0010 -0.1320 -0.677 [11] 
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12. 1-10 

Phenanthroline 

2222 3)013.0(899.0 rzyx 
 0.377 296.9 +0.046 +0.005 - +0.051 +0.175 [11] 

13. Oxalate 2222 3)789.0(293.0 rzyx   0.166 343.2 +0.113 +0.008 +0.0001 +0.1211 +0.033 [11] 

14. EDTA 2222 3)113.0(879.0 rzyx 
 

0.351 340.9 -0.036 -0.008 +0.0006 -0.0434 -0.0399 [11] 

15. Citrate 2222 3)822.0(269.0 rzyx 

 

0.188 277.7 +0.126 +0.005 +0.0001 +0.1311 +0.1122 [11] 

16. Etioporphyrin II 2222 3)243.0(933.0 rzyx 

 

0.338 269.7 -0.044 -0.022 +0.0033 -0.0627 -0.0571 [12] 

17. t-phenylporphin 2222 3)143.0(911.0 rzyx 
 0.366 279.8 +0.055 +0.004 +0.0003 +0.0593 +0.164 [13] 

 

Table2. Ground State wave functions and Microscopic parameters for Cu2+ ion in some other single crystals 

at Room Temperature 
S.         

No
. 

Single Crystals Ground state wave function  
 14

exp

0 



cm

 

1

calg
 

2

calg
 

calg
 

expg
 

Ref. 

1. Lithium Potassium 
Sulphate 

 

Site I 
 

2222 3)285.0(880.0 rzyx   0.437 270.0 -0.227 -0.056 -0.283 0.049 [19] 

Site II 

 

2222 3)289.0(885.0 rzyx   0.441 289.0 -0.233 -0.058 -0.292 0.078  

2. Sodium Citrate 

 

2222 3)027.0(878.0 rzyx   0.262 280.0 -0.021 -0.005 -0.026 0.021 [20] 

3. Bis (L-asparaginato II) 

 

2222 3)018.0(931.0 rzyx   0.168 310.0 -0.006 -0.001 -0.007 0.031 [21] 

4. Cadmium(II) 

formate dihydrate 

Site I 

 

2222 3)443.0(973.0 rzyx   0.417 340.0 0.313 0.078 0.391 0.025 [22] 

Site II 

 

2222 3)419.0(998.0 rzyx   0.405 360.0 0.267 0.067 0.334 0.020  

5.  

 

 
 

 
DADT 

Complex 

I 

 

Site I 

 

2222 3)073.0(873.0 rzyx   0.310 299.0 0.050 0.008 0.058 0.035  

Site I 

 

2222 3)022.0(799.0 rzyx   0.316 311.0 0.034 0.011 0.045 0.020  

Complex 

II 

Site I 

 

2222 3)716.0(303.0 rzyx   0.372 353.0 0.052 0.008 0.060 0.058 [3] 

Site II 

 

2222 3)723.0(297.0 rzyx   0.385 372.0 0.051 0.005 0.056 0.054  

Complex 

III 

Site I 

 

2222 3)081.0(845.0 rzyx   0.470 285.0 0.039 0.003 0.042 0.032  

Site II 

 

2222 3)119.0(894.0 rzyx   0.366 274.0 0.049 0.008 0.057 0.050  
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