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Abstract: 

Nanomedicine is a developing discipline that is constantly evolving and differentiating. Liposomal preparation 

has an important role in nanomedicine as a novel platform. QbD involves drug formulation and advancement 

of a pharmaceutical medicament, including understanding of product quality and formulation steps, 

processing, and implementing controls to establish the product quality maintained by QbD. Primarily, drug and 

medicament governing bodies, including the USA and FDA, enhance product quality. Liposomal 

formulations and optimisation involve dependent and independent variables, requiring experience in 

optimisation. QbD is a risk-based approach used early in the pharmaceutical process to improve product quality 

and efficacy. Please shorten the given text so that it is more concise. QbD speeds up product development 

and ensures consistent, safe drug formulation in complex systems. In QbD, steps flow as adding variables 

related to CMAs, CPPs, and design places responsible for quality attributes for the final liposomal product 

preparation. QbD has recently been proposed as a tool for obtaining higher-quality liposomal nanocarriers. 

The broader structure of this research discusses the involvement of QbD as recent approach including their 

different parameters. Overall, lastly, the current practices that employ QbD in the optimisation and 

formulation of doxorubicin (DOX), by the using thin film-hydration extrusion technique primarily. DOX is 

antitumor class drug with a brand (Doxil®) loaded liposomal with TNF receptor as nanocarrier optimisation 

and formulation. 
 

Keywords: Quality by Design (QbD); Advance Drug delivery; nano-techniques; liposomes; chemotherapy; 
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1. Introduction: 

The advanced approach to developing 

pharmaceuticals, known as Quality by Design 

(QbD), involves creating products and procedures 

based on a comprehensive comprehension of the 

product's intended use and crucial quality features 

(CQAs). QbD has been widely adopted in the 

pharmaceutical industry over the past few decades 

and has led to significant advancements in drug 

development. One of the key advancements in 

QbD has been the use of risk-based approaches to 

product and process design. QbD emphasises the 

importance of identifying and assessing risks 

throughout the development process, and using 

this information to inform decisions about design 

and control strategies [1]. This has led to the 

development of tools and methods for risk 

assessment and management, such as failure 

mode and effects analysis (FMEA) and hazard 

analysis and critical control points (HACCP). 

Another important advancement in QbD has been 

the use of process analytical technology (PAT) to 

monitor and control manufacturing processes in 

real time. PAT involves the use of sensors and 

other analytical tools to measure and control 

critical process parameters (CPPs) during 

manufacturing, with the goal of ensuring that the 

final product meets its intended quality attributes. 

This has led to increased process understanding, 

reduced variability, and improved product 

quality. QbD has been instrumental in improving 

the efficiency and effectiveness of pharmaceutical 

development and manufacturing, and has helped 

to maintain the quality, effectiveness, and 

stability of drug and medicament products [1, 2]. 

 

The advancement in the growing interest in the 

use of nanomedicine and therapeutics based on 

nanoparticles, both at the academic and industrial 

levels, QBD is a regulatory requirement in the 

pharmaceutical industry and is governed by 

guidelines issued by regulatory agencies such as 

the US Food and Drug Administration (FDA). 

Liposomes consist of a phospholipid bilayer 

 

forming a spherical shape around a watery core 

[2]. Liposomes have been utilised as a vehicle for 

administering various types of nanomedicines. 

 

Doxorubicin, an anticancer drug, is incorporated 

into liposomes to enhance therapeutic benefits and 

minimise negative side effects [4]. Furthermore, it 

has been extensively studied as a vehicle for 

nucleic acid-derived remedies like DNA and 

siRNA, enhancing targeted cell delivery, and 

safeguarding drugs from degradation [5]. It's 

noteworthy to mention that the initial COVID-19 

mRNA vaccine has received FDA approval in 

2020 and employs lipid-based nanocarriers as a 

means of delivery [6]. Liposomes pose challenges 

for production and development due to their 

complex formulations. The complexity of 

nanofabrication is due to intriguing material 

science and the techniques employed at the 

nanoscale. This involves numerous factors, which 

are required for comprehension and enhancement 

[7]. 

 

Nano preparations and manufacturing suffer from 

sensitivity and poor reproducibility due to a lack 

of understanding and optimisation. Undoubtedly, 

a beneficial technique for such systems is an 

innovative advancement that enables the 

recognition of significant factors and assists in 

comprehending their impact on the final product's 

attributes and excellence. In order to achieve this 

objective, different industries and regulatory 

organisations have suggested and endorsed 

quality by design (QbD) as a viable solution [8, 

9]. The principle of quality by design (QbD) 

initially involves the recognition of the quality 

target product profile (QTPP). The QTPP can be 

comprehended as a concise summation of the 

quality attributes (QA) intrinsic to the end 

product. The objective of establishing the QTPP is 

to guarantee the effectiveness and safety of the 

product in question. Critical material attributes 

(CMA) and process parameters (CPP) influence 

quality assurance [10]. 

 

QbD identifies and optimises CMA and CPP, 

setting target specs for QA and QTPP of the final 

product [9, 11]. By applying appropriate 

experimental techniques, critical material 

attributes and CPP are correlated to quality 

assurance [8, 12], which then leads to the creation 

of precise requirements for materials, procedures, 

and the final output. Additionally, Quality by 

Design will facilitate a comprehensive evaluation 

of the collective consequences of various factors 

on the Quality Target Product Profile 

simultaneously. Risk management is utilised for 

the purpose of prioritising quality assurance 

measures [13]. Liposomes as drug delivery 

systems are in high demand for their clinical and 

preclinical applications, emphasising the need for 

their advancement. This would facilitate the 

enhanced therapeutic efficacy of loaded therapies. 

 

Although there is literature on QbD involvement 

in liposomal drug delivery, we still need to 

expand our knowledge of QbD developments in 
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liposomal formulation. This knowledge ensures 

liposomal drug delivery with improved 

therapeutic effects and potential for industry use. 

As a result, this study focuses on the optimisation 

and formulations of doxorubicin-loaded 

liposomes, which are commonly employed in 

chemotherapy treatment. 

 

2. Quality by Design (QbD): 

2.1. Quality by Design Involve in Medical 

Commodities: 

The primary objective of the medical industry is 

to produce high-quality medical commodities 

[14]. All aspects that can affect the health of 

patients and their prescribed products must be 

considered in maintaining the quality of 

pharmaceutical products. Earlier, the quality by 

testing process (QbT) was the same process to 

ensure the standard of the output. Quality by 

testing is dependent upon process checking of 

input matter (excipients), intermediaries, and final 

output [15]. The medical industry seeks a new 

approach that guarantees quality in advance of 

production, while still upholding essential QbT 

control testing. Pharmaceutical companies and 

regulatory bodies are now adopting the QbD 

approach, which guarantees the advancement and 

manufacturing of pharmaceutical products 

according to predetermined quality testing 

parameters. This is anticipated to reduce 

extensive testing during or after production, and 

enhance consistency, production efficiency, 

effectiveness, and safety [16]. The quality 

development of pharmaceutical products is used 

in QbD in pharmaceutical industries such as (Fig. 

1) below. 

 

 
Figure. 01 Quality designing in pharmaceutical products using QbD 

 

QbD can be described as a forward-looking 

approach to enhance the quality of a product [17]. 

The key elements of QbD have been extensively 

outlined by ICH, US FDA, and some other 

government body ensure the steadfastness of 

superior pharmaceutical products (Figure. 01), 

Different regulatory bodies from around the 

world have consistently shown interest in the 

implementation of Quality by Design (QbD) 

[16,18]. 

2.2. Various Appliances and Key aspects 

involving in QbD: Normally, the key aspects of 

the QbD are divided into 4 parts: The various 

elements such as QTPP, CQAs, CMAs, and CPPs 

are all interrelated and essential components in 

ensuring the quality of a product [19,20]. All the 

elements in (Fig. 2) as follows: 

 

 

 

 

Figure. 02 The various elements involving in QbD Designing of API 

 

All elements which collaborate to establish 

QbD framework. There are lots of key factors 

needed for experimental design and numerical 

inspection (Fig. 2) [16,21]. 

 

ICH guideline mainly defined QTP such 

involving “a prospective summary of the quality 

characteristics of a drug product that ideally will 

be achieved to ensure the desired quality, taking 

into account safety and efficiency of the drug 

product” [18,19]. Additionally, producer must 

evaluate complicated shifter such as drug 

pharmacokinetic characteristics, commodity 

steadiness, sterility, and medicament liberation 
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while identifying QTPPs and defining the needed 

effects of the output [20-22]. CQAs are defined by 

ICH as attributes that must be within appropriate 

limits to ensure desired product quality. 

 

Based on this explanation, the CQAs are 

determined through the QTPP, governmental 

mandates, or existing composition-based 

comprehension. As a result, the selection of the 

drug product's dosage form, excipients, and 

manufacturing process is based on its critical 

quality attributes (CQA) and QTPP [23]. The 

combinations of ICH Guidelines in the 

formulation and optimisation of liposomes, which 

are doxorubicin (DOX)-loaded liposomes, with 

the following QbD steps all are briefly described 

in the (Fig. 3) in below section: 

 

 
Figure. 03. The pharmaceutical development using of QbD for high-quality pharmaceutical products 

development under follows ICH, US FDA and EMA 

 

Critical process parameters process involving 

magnitude which substantially influence the 

Quality target product profile [16]. Further, 

identification of CPPs, involving CMAs and CPPs 

to CQAs guarantee quality products will be 

obtained [24]. The particular function of each step 

involving in the QbD designing defined in the 

(Fig. 4) for the explanation of designing 

involving in QbD. 

 

 
Figure. 04 Steps of QbD in drug designing with their functions 

 

Additionally, CPPs and critical material attributes 

are mainly detailed in the act as "a material or 

process whose variability has an impact on a 

critical quality attribute and should be monitored 

or controlled to ensure the desired drug product 

quality" [21, 24]. CMAs cover input materials 

(excipients, in-process material), while CQAs 

only focus on the product's quality. It is crucial to 

conduct risk management after analysing the 

impact of certain traits on critical quality 

attributes in order to pinpoint any formulations, 

substances, or procedure limitations that can vary 

CQAs. Moreover, qualitative as well as 

quantitative gauges have been employed in the 

evaluation of risk management level, with every 

determined factor pertaining to the preferred 

CQAs. 

 

As a result, a risk management scale mainly 

based upon instability or predictability involving 
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severity and impact on efficacy and safety must 

be developed for products. The identification of 

CQAs can be accomplished through the use of 

sequel inspection and the defect in the system. 

Subsequent to undertaking the chance assessment 

procedure, certain factors emerge as potentially 

pivotal for the critical material attributes (CMAs), 

necessitating particular characteristics and a 

selection within a tolerable scope to safeguard the 

critical quality attributes (CQAs) of the final 

product [25, 26]. The processes in the QbD 

employed in optimisation and formulation are 

depicted in (Fig. 5). 

 

 
Fig. 5. Key aspects of the QbD roadmap, as well as the QTPP and CQAs 

 

2.3. QbD in Liposomal Formulation: 

The contents, preparation, characteristics, and 

manufacturing variables all have an impact on the 

quality of liposomal pharmaceutical products. 

Hence, QbD includes planning the ultimate 

liposomal items by improving input fabric and 

fabricating forms to obtain a medicinal item 

alongside predominant standards [27]. 

Furthermore, QbD categorizes and convey vital 

metrics and prime shifter in order to develop a 

elevated-standards medication matching a high 

standards [28]. In fact, as summarized in, various 

liposomal products have been produced using the 

QbD technique (Table. 01). 

 

 

Table 1. The various examples of liposomes formulation by using QbD 
Drug QTTPs CMAs/CPPs/CQAs Refs. 

Cefoperazone Dry powder, pulmonary route of 

administration, particle size, PDI, 

entrapment efficiency. 

CQAs: Particle size, PDI, entrapment 

efficiency (EE%). 

CPPs: Hydration time, sonication time 

 

[30] 

Pravastatin Systemic administration, tumour 

accumulation, enhanced stability and 

efficient process. 

CQAs: Average particle size, encapsulated 

solute retention, zeta- potential, residual 

moisture content and kinetic stability. 

 

[32-34] 

Azacitidine 

(Azadine-O®) 

Particle shape and size and % 

entrapment efficiency (%EE). 

CPPs: Concentration of Lipids (mg), 

concentration of cholesterol (mg) and 

sonication time (min). 

 

[35] 

Salbutamol Cholesterol concentration, 

Phospholipid concentration and 

Hydration time. 

CPPs: Drug-lipid ratio, drug entrapment 

efficiency (%EE), sonication time and 

hydration time. 

CQAs: Vesicle size, zeta potential and 

drug encapsulation efficiency. 

 

 

[36] 

Doxorubicin* 

Curcumin 

Decreasing doxorubicin (DOX) 

toxicity, enhancing curcumin (CUR) 

solubility, stability improvement. 

CQAs: The size, surface charge/ 

morphology, drug loading, %EE and zeta 

potential. CPPs: pH  and 

temperature, phospholipid concentration, 

the phospholipids to cholesterol ratio and 

the extrusion temperature. 

 

 

 

[37] 
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The selection of QTPP is essential to guarantee 

that the final pharmaceutical product meets the 

desired quality standards [27]. Typically, QTPP is 

established through the correlation of scientific 

research data and significant in-vivo testing [25]. 

 

In order to identify the quality attributes that may 

affect the liposomal product's critical process 

parameters (CPPs) and Quality Target Product 

Profile (QTPP), it is imperative to initially 

enhance and recognize the common CQAs such 

as particle shape and size, distribution, zeta 

potential, drug content involving, In-Vivo 

stability, and drug release In-Vitro among others 

[25,38]. 

 

Although including the numerous advantages to 

applied QbD to the preparation of liposomal- 

contained products, there are numerous obstacles 

which prevent this. Benefits and difficulties are 

listed in (Table 2). 

 

Table 2. The advantages and difficulties of implementing QbD principles in the production of liposomal 

products. 

Functional Benefits: A Recent QbD Approach 
▪ Improving the knowledge of how the compatibility of liposomes' constituents affects the production process. 

▪ Delivering an improved liposomal product model with minimal challenges encountered during formulation 

and manufacturing. 

▪ Facilitating progressive enhancements in the development and production processes of liposomal 

formulations. 

▪ Consistent liposomal formulations can be achieved by comprehending the related risks. 

▪ Making decisions based on efficient designs rather than relying on observational evidence. 

▪ Integrating clinical testing with design by linking liposomal formulations and manufacturing. 

▪ The FDA's approval process can be expedited by reducing the number of post-approval modifications, thus 

minimizing the overall expense of developing a liposomal formulation. 

 

There are parcels of challenges with the QbD 

planning of burrowed medicaments counting 

parts of challenges within the given (Table 3) 

as taking after underneath portrayal: 

 

Table 3. List of different challenges in QbD for drug designing 

Various Challenges Involving in QbD 

➢ The cost and duration of research and development have risen. 

➢ The considerable expense associated with initiating the production, analysis, and design of liposomal 

products. 

➢ Difficulties in maintaining consistent medication forms and concerns regarding adherence to regulations and 

technical specifications. 

➢ The number of experiments has risen as a result of an increase in the characterization factors of liposomes. 

➢ The challenge lies in determining the impact of variables that may obscure or influence the results. 

 

2.4. QbD involving key specification for 

Liposomal based Products formulations: 

2.4.1. Lipid Category and Content: 

The lipid composition is a significant determinant 

of the solidity and integrity of liposomes. Lipids 

containing unsaturated fatty acids are prone to 

degradation through either hydrolysis or oxidation, 

whereas those containing saturated fatty acids are 

more stable and possess a greater transition 

temperature (Tm) [39]. Additionally, the lipid type 

and the liposome consist of lipidic compositions 

that have an impact on the fluidity, permeability, 

and surface charge of liposomes [40]. Such as 

cholesterol and phospholipids, classically 

alleviate liposome steadiness but should be 

improved and should not surpass 50% [41]. 

 

In general, the carbon series extent of prepared 

lipids may influence drug encapsulation 

efficiency for hydrophilic as well as hydrophobic 

medicines [40]. 

 

At instance, short fatty acid lipids can be used to 

create a big aqueous core, which enables an 

elevated inner volume in water-loving 

(hydrophilic) medicines. 

 

In comparison, large carbon series lipids are 

highly capable to entrap the water-hating 

(hydrophobic) medicine inside the water-hating 

(hydrophobic) lipid bi-layer [42,43]. The 

composition of DOX medicament loaded 

liposomes is primarily illustrated using the 

following representation diagram (Fig. 6): 
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Figure. 06 Representation of DOX loaded liposome and their composition [A]. Formulation of Liposome of 

DOX; [B]. Composition of Liposome 

 
Moreover, the morphology of the API particles is 

significantly affected by the composition of the 

material used in the formulations. The structure 

of lipidic-based particles transforms from 

multilamellar to electron-dense morphology with 

the variation in nucleic acid concentration during 

design [44]. 

 

Liposomes have been utilised for specifically 

integrating foreign RNA into cells since 1978 

[45]. Numerous liposomes have been refined and 

manufactured to enclose genetic material with 

minimal harm and maximum efficacy [46]. Yet, 

ionizable lipids, mostly cationic lipids, are more 

preferred in this situation [47, 48]. Sadly, cationic 

lipids cause changes in a variety of proteins and 

the cell, including protein kinase C and cytoplasm 

vacuoles, cell shrinkage, and a decrease in 

mitoses [49, 50]. In contrast to viral vectors 

utilised in gene delivery, cation- containing lipids 

are easier to create, have a basic structure, and are 

less likely to trigger an immune response [51]. 

 

Both hydrophobic and hydrophilic combinations 

of cationic lipids are dangerous, particularly if 

they include a quaternary amine that blocks 

protein kinase C [52]. An innovative method to 

reduce the impact of a positive charge involved 

dispersing it by relocating it into an imidazolium 

heterocyclic ring, thus achieving delocalization 

[53] and pyridinium [54, 55]. 

 

2.4.2. Manufacturing Process: 

The method of producing liposomes that is 

widely used is the thin-film hydration technique 

(Fig. 7) [56–57]. Alternative methods, including 

backwards-phase evaporation, injection of 

ethanol, and emulsification agents, can also be 

utilised [57–59]. The process of thin-film 

hydration results in the formation of liposomes that 

possess multiple layers and have an average size 

measured in micrometres [42]. In order to achieve 

better medicament loading and encapsulation 

efficiency (EE%), liposomes need to be reduced 

in size to enhance their surface area to volume 

ratio, the particle size will be around 200 nm. 

 

To enhance the uniformity of prepared liposomes, 

lots of methods, such as extrusion, sonication 

(either through a probe or a bath), and freeze-

thaw cycling, have been applied to reduce their 

size distribution [59]. The manufacturing and 

formulation process of liposomes using the 

"Thin-layer Hydration Extrusion Method" as in 

(Fig. 7). 

 

 
Figure. 07. The process of formulation of liposomes used of thin-film hydration extrusion technique [57] 
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The attainment of a standardized multilamellar 

thin film, along with appropriate size 

minimization, can be achieved by optimizing 

several different parameters [43]. Rotation speed, 

pressure reduction, and temperature on rota-

evaporator can create well-encapsulated 

unilamellar liposomes [33,60]. 

 

2.4.3. Average Particle Size and Nanoparticles 

Distribution: 

The size of the particles plays a significant role in 

the subsequent in vivo use of liposomes. 

Typically, the size demanded falls between 20 

and 250 nanometers. The key critical quality 

attributes (CQAs) for all nanoformulations are the 

distribution of nanoparticles and their average 

size. The parameters significantly affect the drug 

release, targeting ability, drug loading capacity, 

and in-vivo distribution of nanoparticles [62]. To 

optimise biodistribution via EPR effects, 

nanocarriers should be 10–100 nm to avoid RES 

elimination and kidney removal [63, 64]. A small 

molecule's size implies a high surface area to 

volume proportion. The immediate release of 

sedatives occurs rapidly because the nanoparticles 

contain a larger concentration of drugs closer to 

their surface as compared to higher levels [65]. 

 

It's crucial to remember that to be effective in 

therapy, inhaled drug particles need to be less 

than 2 µm in size, making them best suited for 

settling in the pulmonary air sacs [66]. The size of 

liposomes affects their ability to be delivered 

through the skin. Liposomes smaller than 600 nm 

have easy penetration through the skin, while any 

liposomes exceeding 1000 nm are retained in the 

stratum corneum [67]. The PDI is a measure of 

the uniformity and distribution of nanoparticle 

dispersion. Liposomes that exhibit PDI values 

below 0.3 are indicative of uniformly distributed, 

stable, and dispersed structures [68, 69]. 

2.4.4. Zeta Potential (ZP): 

ZP measures the stability of nano-dispersions, and 

it indicates that neutral nanoparticles exhibit 

reduced stability, resulting in their tendency to 

adherence [70]. If the electrical charge surpasses 

+30 or falls below -30 mV, it implies 

exceptional stability due to the intense 

electrostatic repulsion [71]. The nano-system's ZP 

has an impact on their distribution throughout the 

body, their ability to engage with bodily tissues, 

and recognition by cells. 

 

Because of the negatively charged cell 

membrane, cationic liposomes have a higher 

cellular absorption than anionic liposomes [72]. 

Additionally, liposomes that have been charged 

possess the ability to effectively encapsulate 

drugs that possess charges that are opposite in 

polarity [73]. In order to attain the best possible 

stability, liposome formulations may incorporate 

fatty acids and hydrophilic polymers with varying 

characteristics [40]. 

 

In terms of final product control, the following 

characteristics of a liposome drug formulation are 

frequently determined: To effectively encapsulate 

drugs, certain parameters must be considered, 

such as average diameter of particles, the amount 

of drug in relation to lipid content, polydispersity 

index, phase transition, residual solvent levels, 

and drug release both in vitro and in vivo [71]. 

Fluctuations in these characteristics have the 

potential to impact the excellence of the 

liposomal medical preparations, which could also 

cause the discharge of the medication from the 

liposomes. 

 

The QAs assessed for liposomes are listed in 

(Table 4), along with the techniques of analysis 

that are currently in use. 

 

Table 4. The quality attributes monitored for liposomal products 
The investigated property Methods Refs. 

Morphology UV-vis spectroscopy SpectrofluorimetryA combin ation of 

RMN, SAXS, and Freeze fracture technique followed by 

transmission electron microscopy is being employed. 

[71, 72 & 73] 

Net charge (Zeta Potential) PALS & ELS (Phase analysis and electrophoretic light 

scattering). 

[74] 

Particle Size Microscopy techniques (TEM, AFM, SEM) [74, 75] 

Encapsulation efficiency (EE%) Spectroscopy LC [76] 

In-Vitro Release Spectroscopy LC [76] 

In-Vivo Release Radiolabeling, fluorescence labelling, MRI, CT, MS. [76] 

 

2.4.5. Drug Content: 

Liposomal sedate substance may communicate in 

three ways: weight over volume (w/v); rate 

epitome proficiency (EE%, weight of medicate 

captured into the liposomes vs. the beginning sum 

of medicate utilised%); and medicate stacking 
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(DL%, the sum of sedate captured into the 

liposomes relative to the introductory weight of 

lipid utilised; drug-to-lipid proportion) [62, 74]. 

Liposomes with a higher EE% are capable of 

retaining elevated levels of the beneficial 

medicinal ingredient, leading to a reduction in 

production expenses. This improves 

pharmacokinetics and patient compliance [75]. 

 

Medicine's (lipidic) effectiveness can be 

influenced by factors such as drug-lipid ratio, 

phospholipid type, cholesterol proportion, and 

production process [76, 77]. As the lipid-to-drug 

ratio increases, so do the numerous nanovesicles 

that can entrap more hydrophilic medicines in 

their watery cores [78]. The presence of 

cholesterol and unsaturated lipids leads to the 

formation of additional crevices in the lipid 

bilayer, which results in the capture of a greater 

number of hydrophobic drugs [79, 80]. Repeated 

cycles of freezing and thawing have demonstrated 

an improvement in the energy efficiency 

percentage (EE%) [81]. Moreover, utilising 

remote loading methods has been demonstrated to 

enhance the encapsulation efficacy of ionizable 

medications as opposed to conventional passive 

loading approaches in liposomes [82, 83]. 

 

2.4.6. In-Vivo Stability: 

The way in which the surface of liposomes behave 

towards water can impact how they interact with 

various elements in the bloodstream [84]. The 

endurance of liposomes in vivo is attributed to 

these interactions. The endurance of liposomes 

inside an organism result in the extended release 

of drugs and better localization of drugs in the 

desired tissue [42]. As an illustration, 

hydrophobic nanoparticles possess a strong 

inclination to attach themselves to blood proteins, 

leading to their swift elimination from the 

circulation system [38]. 

 

The In-Vivo ponder of DOX stacked liposomes 

such as depicted within the given (Fig. 8) in 

underneath depiction. 

 

 
Figure. 08 Doxorubicin-loaded liposomes in chemotherapy/tumour treatment: In-Vitro and In-Vivo 

investigations 

 

Furthermore, when stealth liposomes are 

coated with hydrophilic polymers, they 

exhibitincreased stability in the body and stay in 

circulation for a longer duration, thereby 

enhancing the effectiveness of the drug enclosed 

within [70]. 

 

2.4.7. Drug Release Kinetics: 

To measure drug release from liposomes, 

dynamic dialysis monitors drug concentration in 

the recipient or originating solution. Initially, the 

medication is discharged from the liposomes and 

enters the donor solution within the dialysis bag. 

As a result, the medication is able to spread and 

move through the dialysis bag and ultimately 

reach the receiver solution [84, 85]. 

Another method for studying drug release 

kinetics is to use Franz cell diffusion between the 

donor and receptor compartments. Synthetic 

membranes mimic dynamic dialysis to monitor 

drug concentration during diffusion. The kinetics 

of medicaments that are released from liposomes 

are a vital characteristic for liposome formulation 

design and is regarded as a critical aspect in 

achieving optimal efficacy while minimising drug 

toxicity [85]. For optimal therapy, the drug 

delivery system must enter target cells via 

endocytosis or release the drug at the appropriate 

rate for a sufficient duration [86]. The liposome 

surface can be customised with targeting 

molecules to facilitate active drug delivery to 

specific areas [87]. 

These targeted ligands have the ability to 

specifically attach to particular receptors that are 

present in excess in malignant or unhealthy 

tissues. The various molecules, such as antibodies, 
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peptides, oligonucleotides, small carbohydrates, 

and small organic compounds, can act as ligands 

[88]. 

Liposomes can trigger drug release by including 

responsive ingredients in their makeup [89]. 

These additives create a disruptive impact on 

liposomes when they encounter certain stimuli, 

such as varying pH levels, light, temperature, or 

radiation [90, 91]. 

 

2.5. Liposomal product and process used in 

Design Space: 

For the successful execution of Quality by Design 

in liposome detailing, QTPP ought to be to begin 

with characterized, at that point to prepare and 

fabricating forms can be chosen and outlined to 

guarantee accomplishment of the pre-defined 

QTPP. The process of identifying CQAs and 

CPPs involves utilizing an experimental design 

that can effectively evaluate their impact on the 

CQAs [62]. The purpose of DS is to guarantee a 

superior product by exhibiting various 

formulation and/or process parameters [62,75]. 

DS includes product and process components. 

The product DS focuses on CQAs of the product, 

while the process DS centers on CPPs' related 

CQAs [92]. 

To prepare liposomes, one must carefully manage 

the compositions, substances, and production 

factors, thereby establishing a dependable 

procedure [32]. The DS methodology determined 

significant elements for lyophilized liposome 

critical quality attributes (CQAs), comprising the 

molar ratio of cholesterol, the proportion of PEG, 

the volume of cryoprotectant, and the quantity of 

extrusion cycles [32]. Particle size, drug 

entrapment, lyophilization, and phospholipid 

transition temperature affect QTPP. The 

effectiveness of using DS methodology was 

confirmed, indicating its significance in 

developing stable and top-notch lyophilized 

liposomes [32]. 

The DS approach was utilized on the extended-

circulation liposomes containing prednisolone, 

through the thin-film hydration-extrusion process. 

The formulation parameters which were chosen 

for this study were the ratio of PEG and drug 

concentration within the bilayer membrane. 

Meanwhile, the process parameters that were 

examined were the temperature, number of 

extrusion cycles, and rotation speed [33]. The 

technique of DS strategy was applied in order to 

enclose tenofovir within liposomes that displayed 

a high EE% [62]. For achieving optimal 

outcomes, it is recommended to tune the 

drug/chitosan concentration and the organic 

phase-to-aqueous phase ratio while adopting 

ethanol injection to enhance the DS of chitosan-

coated nanoliposomes [60]. The lots of Factors 

affect CQAs in DS strategy. Co-encapsulating 

drugs in liposome enhances attributes and 

variations may not improve product quality [37]. 

Liposome drying parameters are key CQAs to 

study for stable liposomes [93]. Control drying to 

optimize drug content, particle size, ZP, and 

moisture level after lyophilization [94]. A new 

system was created to freeze-dry liposomes 

containing pravastatin, using the solidification rate 

and temperature of the drying rack during the 

initial phase. The product's critical quality 

attributes (CQAs) were significantly impacted by 

both of the processing components [34]. 

 

2.6. The Control Strategy: 

The preparation processes and complex 

physicochemical properties of liposomes pose 

numerous objections for analytic and 

bioanalytical identifications despite their stability 

and effectiveness as a drug delivery system. The 

FDA guidelines specify that liposome drug 

products should have several critical quality 

attributes (CQAs) fully characterized (Table 5). 

 

Table 5. Basic quality qualities (CQAs) required for full liposome medicate item characterization 

CQAs Measured Indicator(s) Ref. 

Lipid content and substituents - Determine lipid assay 

- Composition determination 

[95–101] 

[102,103] 

Drug content Uniformity - Assay Encapsulation efficiency [99-112] 

Liposome surface morphology, size &  shape - Determination of shape and size 

- Lamellarity 

- Average particle size and polydispersity indices 

[113–115] 

[116-119] 

Liposome surface charge - Zeta potential [120–126] 

Drug Release - In-Vitro drug release [130-135] 

 

2.6.1. Lipid Content Identification and 

Quantification: 

The quality of the extreme item is influenced by 

the source of lipids conjointly by the nature of the 

lipids: manufactured, semi-synthetic or normal. 

Liposomes are primarily composed of 

phospholipids as their main lipid constituent. The 

identification of lipids can be through nuclear 
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magnetic resonance (NMR) technology. The 

distinctive 31P shifts in phospholipids enable 31P- 

NMR to distinguish between various types of 

phospholipids [95]. The employment of 1H and 
13C NMR aids in elucidating the chemical 

makeup of alkyl chains and polar head groups in 

lipids at a molecular level. Typically, NMR 

analysis necessitates the use of costly equipment 

[96]. 

 

The combination of liquid chromatography and 

mass spectrometry is widely used to identify and 

profile lipids [134-136]. Sophisticated methods of 

ionization, such as electrospray ionization (ESI), 

can provide exact outcomes for lipid molecular 

weight determination with the assistance of MS, a 

powerful and efficient instrument [137]. Raman 

spectroscopy is a valuable tool for identifying and 

analyzing the vibrational movements of the 

carbon skeleton in lipids. The distinctive features 

of these substances are their vibrations in the C-C 

backbone range (1000-1150 cm-1) as well as their 

stretching of C-H bonds (2700-2900 cm-1) [137-

139]. 

 

The utilization of liquid chromatography 

methodologies has been extensive in the precise 

measurement of lipid levels [139]. Initially, 

liposomes are required to undergo disruption using 

organic solvents, followed by chromatographic 

separation. There are various means to detect and 

measure lipids, which include UV, refractive 

index (RI), evaporative light scattering detector 

(ELSD), and charged aerosol detector [97, 98, 

99]. Utilising RP-HPLC with UV and ELSD 

detectors, six different liposomal arrangements 

were assessed for their phospholipids and 

cholesterol content [100]. Lipid investigations 

have also been conducted using gas 

chromatography (GC) [102]. Before conducting 

GC analysis, it is necessary to convert lipid fatty 

acids into methyl esters that can easily evaporate 

[140]. In recent times, lipid analysis has been 

carried out using the supercritical fluid 

chromatography (SFC) technique as well [103, 

141]. Numerous colorimetric techniques have been 

identified to assess phospholipid formation. The 

mixture of molybdate and phosphorus produces a 

shade in the blue range. The identification of 

bilayer membranes is often facilitated by using 

diphenylhexatriene (DPH). 

 

Additionally, the utilization of DPH fluorescence 

detection has elevated the detection limits for 

phospholipid concentration [101]. Furthermore, 

various kits are available in the market that 

measures unsaturated phospholipids by utilizing 

the sulfo-phospho-vanillin reaction [102] or based 

on enzymatic assay [109,114]. 

 

2.6.2. Liposomes Magnitude and 

Morphological Identifications at their 

Receptor (TNF): 

The analysis of particle size and shape can be 

conducted through the utilization of electron 

microscopy techniques, including SEM and TEM 

[113]. Cryo-TEM obviates the need for drying by 

instantaneously freezing the liquid specimen, 

resulting in negligible effects from the drying 

process. The development of Cryo-TEM aims to 

offer detailed structural information and high-

resolution morphology concerning the 

encapsulation mechanisms and lipid layers (Fig. 

9) [114,145]. The destructive preparation process 

makes SEM inappropriate for imaging liposomes, 

as it has the ability to pass through particle 

surfaces. Furthermore, the application of atomic 

fluorescent microscopy (AFM) has been 

employed to investigate the geometric 

characteristics of liposomes in a three-

dimensional space [115]. 

 

 
Figure. 09 Cryo-TEM figure of liposomes and attachment with TNF receptor [140-142] 

 

The using 31P-NMR, is mainly possible to assess 

the lamellarity of liposomes advancement [116]. 

Uni-liposomes show narrow spectral lines, while 

multi-liposomes have broader peaks due to 
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limited molecular movements across lipid layers 

[117]. Dynamic light scattering (DLS) has been 

utilized for determining the size distribution of 

nanoparticles. DLS is now the usual approach for 

quantitatively analyzing the size distributions of 

nanoparticles [118]. DLS measures fluctuations 

in scattered light from moving particles. Accurate 

hydrodynamic size measurement in DLS analysis 

requires predetermined temperature, viscosity, 

and refractive index values due to sample 

variation [119]. The Doxorubicin (DOX) loaded 

liposome mainly shows the treatment use into the 

chemotherapy by the attachment with TNF 

receptor widely for the treatment (Fig. 09) as 

below: 

2.6.3. Nanoparticle Surface Charge (Zeta 

Potential, ZP): 

The surface electric charges of liposomes are 

mainly influenced by the polar heads of the 

phospholipids, as well as by tertiary amines or 

carboxylate groups, which carry a negative 

charge [120,121]. One essential element necessary 

for strong liposome connection, adherence, and 

longevity of nanoparticles. The electrophoretic 

mobility of particles can be used to determine the 

value of ZP mainly including such as phase 

analysis light scattering (PALS) or electrophoretic 

light scattering (ELS) technique [122] which 

shown in the given (Fig. 10) as below: 

 

 
Figure. 10 The representation of zeta potential determination using PALS AND ELS Techniques 

 

To measure accurately, property pre-establishment 

(i.e., phase characteristics, refractive index, 

viscosity) and temperature should be considered. 

Maintaining ZP values within the range of ±30 

mV ensures the stability of nanosuspensions 

[123]. 

 

Various methods, such as the use of fluorescent 

markers, can be employed to ascertain the surface 

potential of liposomes [124], electron 

paramagnetic resonance (EPMR) [125] and 

harmonic generation from optical analyses [126]. 

 

2.6.4. Physical and Chemical Stability of 

Liposome: 

To ensure excellent product quality, it is 

necessary to evaluate the durability (physical) and 

chemical composition of liposome formulations 

[147]. Sophisticated techniques like spectroscopy 

and dynamic light scattering (DLS) can be 

employed to evaluate liposome fusion and 

aggregation, respectively. Liposome disruption, on 

the other hand, can be ascertained using 

chromatographic methods outfitted with 

appropriate detectors [142]. 

The primary methods used to study liposomal 

fusion are differential scanning calorimetry 

(DSC) and assays that measure the mixing of 

lipids through fluorescence [127]. The 

phenomenon of liposome aggregation can be 

visualised through the use of microscopic 

techniques and measured through UV-visible 

spectroscopy or DLS analysis [128]. The rate of 

lipid degradation is subject to a variety of factors, 

including the nature of the lipids, the storage 

temperature, the type of buffering agents 

employed, and the prevailing pH levels. Various 

chromatographic methods can be utilised to 

isolate and gauge the precursor lipid types and 

their broken-down forms [129]. 

 

2.6.5. In-Vitro Drug Release of Drug Loaded 

Liposome: 

The various in vitro release analysis methods to 

predict in vivo behaviours of liposome 

formulations and their development [130]. The 

various techniques fall into distinct 

categorizations, including sampling and 

separation (SS), dialysis membrane (DM), and 

continuous flow (CF). The procedure employed 

by the SS method involves placing samples in 

release media, extracting the drug from liposomes 
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through either ultracentrifugation or filtration, 

and determining the drug's quantity through 

measurement [131]. The utilisation of this 

approach has led to the observation of suboptimal 

ultracentrifugation or filtration techniques in the 

separation of nanoparticles that are smaller than 

one micrometre. In vitro drug release for most 

nano formulations is often studied using DM. The 

principal DM procedures involve the use of either 

regular or tube dialysis, as well as reverse dialysis 

[132]. The nano-formulations are contained 

within the dialysis sac, enabling both release and 

separation to occur in tandem, with the added 

ability to measure the amount of drug that has 

been released. Consider the dialysis layer's 

characteristics and edge, the test and solvent 

volume, and the combining methods for applying 

this strategy [134]. The in-vitro study of 

liposomes in DOX-loaded loaded used in 

chemotherapy and diagnosis, as shown in Figure. 

08) respectively. 

 

2.6.6. Liposomes Safety and Toxicity: 

Liposomes' biocompatibility, degradability and 

ease of fabrication have spurred their widespread 

adoption. Liposomes are employed as a viable 

technique for drug transportation may present 

safety issues that are linked to the concentration, 

type and charge of the lipid involved. Liposomes 

can stimulate the immune system of the patient, 

which may cause the drugs to accumulate in the 

mononuclear phagocytic system, thereby exerting 

an impact on the liver and spleen functions [128]. 

 

The numerous strategies mainly established to 

enhance drug security and cut down on the 

harmful effects of nanocarriers. One such method 

is to enhance drug encapsulation efficiency in 

liposomes, resulting in decreased lipid 

concentration needed for optimal therapeutic 

dosage [129]. The size, shape, lipid content, 

electrical charge, and percentage of cholesterol 

present in liposomes have a significant impact on 

their level of toxicity. Although liposomes are 

generally considered safe, their potential harm is 

dependent on factors such as type, dosage, 

presentation time, and surface properties [134]. 

 

 
 

Hence, a meticulous configuration of these 

variables will enhance the load-bearing potential 

of liposomes and lower their harmful effects 

[130]. Newly approved liposomes have reduced 

immune effects. The optimal design of a blend 

comprising of lipids and polymers needs to be 

developed. As a result, it is recommended to 

reduce the type and number of materials used for 

liposome functionalization [132-135]. 

 

3. Results:  

The results study of formulation of doxorubicin 

(DOX) loaded liposome in the treatment of 

chemotherapy widely. Liposomes mainly 

formulated with the help of QbD an experiment 

(DoE) and the physical technique thin-film 

hydration extrusion. Some of the components in 

this chemotherapy treatment involves HLA or 

MHC antigens for humans, as well as elements 

such as cell-adhesion molecules, cytokine 

receptors, growth factor receptors, and Fas/Fas-

ligand molecules. The using of QbD, (DoE) DOX 

drug loaded liposome widely attached with the 

receptors of well-known characteristics are CD95 

(APO-1/Fas), TNF receptor 1 (TNFRI), TRAIL-

R1, and TRAIL-R2. On the other hand, the 

function of DR3 is still not fully understood. 

 

4. Conclusion and Current Challenges: 

The involvement of QbD in the production of 

medicament formulations has emerged as a 

sophisticated method for the pharmaceutical 

sector to guarantee the potency and wellbeing of 

pharmaceutical goods, especially various dosage 

forms, including nanoparticles of high quality. 

Economical nanomedicines are a promising 

method for targeted drug delivery (TDD) with 

minimum side effects, but they cannot yet reach 

their full potential. Nano-medications are still in 

the preliminary stages of preparation and 

enlargement. Lately, nanomedicines have 

encountered numerous obstacles, primarily 

concerns with their structural stability and a 

limited comprehension of the manufacturing and 
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formulation procedures. 

 

Liposomes have surfaced as drug delivery 

systems that are both environmentally friendly and 

compatible with living organisms, and have 

exhibited significant efficacy in pharmaceutical 

applications in clinical settings. The various 

liposomal preparations mainly differ in 

morphology, size, materials, layout, and 

manufacturing methods. As a result, when 

compared to typical dosage forms, the use of a QbD 

technique in producing liposomes is crucial and 

complex. Consider using QbD to identify item 

properties and process parameters for quality 

liposomal products developed successfully. 

Implementing QbD is crucial in guaranteeing the 

formulated liposomes have their intended 

therapeutic and safety profiles, as well as 

achieving optimisation of their final product 

attributes. 
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