

Sonal Gupta,^[a] Renuka Jain^[a] and Deepti Goyal^{[b]*}

Keywords:Biomass; carbohydrates; solid catalysts; 5-hydroxymethylfurfural (HMF); value-added chemicals.

In recent decades, the energy demand is ever increasing. Biomass energy is a viable option as an alternative due to reduced CO₂ emissions and depletion of fossil fuels at a faster rate. Therefore, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been focused on researchers to develop useful green fuels and other platform chemicals such as biofuels, commodity chemicals, and new bio-based materials. For the conversion of sugars, several methodologies have been investigated through chemocatalysis from plant-derived biomass feedstocks. This review critically overviewed the latest advancement regarding reaction conditions, product yields, and selectivity on the conversion of C₆-sugars into important chemicals like 5- hydroxymethylfurfural, levulinic acid, lactic acid, formic acid, glyceraldehyde, 1,3-dihydroxyacetone and furan-2,5-dicarboxylic acid, etc. This review describes green chemistry principles includes the main reactions used to convert renewable biomass into industrially important products that are applicable as raw materials with emphasis on preparative organic synthesis.

*Corresponding Author

E-Mail: deepti_skjain@yahoo.com

- [a] Department of Chemistry, Govt. College, Kota, Rajasthan, India- 324001
- [b] Department of Applied Chemistry, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, UP, India – 201312

INTRODUCTION

For the past few decades, the world is facing a lack of fossil fuel resources, which play an important role in our daily life by providing fuel, electricity and heating sources. Along with this, due to the increasing prices of petroleum oil and CO_2 emission, it is an urgent need to find some renewable energy sources like wind, solar and biomass.¹ Among these, biomass is the only renewable resource with fixed carbon, which is essential for the production of fuels and bio-based chemicals.² The annual production of carbohydrates is approximately 130 billion tons, due to which the biomass conversion into value-added products has a promising future.³⁻⁵

Figure 1. Main products of biomass conversion.

The major categories of biomass are shown in Scheme 1. Among these, lignocelluloses (cellulose, hemicellulose and lignin) are the most commonly available and utilized. The basic composition of lignocellulose is as follows: i) cellulose (40–60 %), ii) hemicellulose (20–40 %), lignin (10–24 %), and ashes (1-5 %).⁶ Cellulose and hemicellulose further degrade into sugars, which then convert into different value-added products. Ever since sugars are a rich and renewable feedstock, so in this review, we have covered only glucose and fructose as feedstock to convert them into value-added products. Different value-added products that can form by glucose and fructose are summarized in Scheme 1.

Several studies have been done on the use of homogeneous and heterogeneous catalysts for the conversion of sugars into value-added products. For the production of these chemicals, several homogeneous catalysts such as Lewis acids, organic acids, inorganic acids, salts, and others are widely used. However, these homogeneous catalysts are easily soluble in the reaction medium and thus enhance the rate of the reaction with high selectivity of the desired product. Despite this, these catalysts have some drawbacks as it is very difficult to separate them from the reaction mixture as well as they can't be recycled for long term use. In this context, the synthesis of recyclable and easily separable solid catalysts has received much attention for the conversion of sugar into value-added chemicals. In this regard, several solid catalysts like porous zeolites, metal oxides, SO₃H- carbon/silica, and supported metal catalysts are reported to show high catalytic activity towards the high conversion of sugar into valueadded products.⁷⁻¹⁰ Along with this, different Brønsted and Lewis acid catalysts such as metal-substituted zeolites, surface-modified metal oxides, and cation-exchange resins are also well reported to convert sugar into some industrially important chemicals like polyols, furans, and acids.

This review mainly focuses on the potential applications of several solid acid catalysts for the conversion of C_{6} -sugars into value-added chemicals.

CONVERSION OF C6-SUGARS INTO VALUE-ADDED PRODUCTS OVER SOLID CATALYSTS

Synthesis of 5-hydroxymethyl-2-furaldehyde (HMF)

HMF is a vital platform chemical that can be further used to produce some important chemicals like polymer resins, solvents, and chemical intermediates.¹¹⁻¹³ It can also be converted into gasoline or diesel range fuels (C_9-C_{15}) .¹⁴ The synthesis of HMF can be done using acid-catalyzed dehydration of biomass. Several solid catalysts are reported to convert sugar into HMF, such as α -L-2rP₂O₇, L γ -ZrP, ZrO₂, TiO₂ and sulfonated carbon, etc.¹⁵⁻¹⁶ Thus formed HMF can further convert into levulinic acid (LA) in the presence of acids.¹⁷⁻¹⁹ The different solid catalysts used for the conversion of sugars into HMF are summarized in Table 1.

 Table 1. Conversion of C6-sugars into HMF Synthesis of levulinic acid (LA) (F=Fructose, G= glucose)

Catalyst	Sugar	Reaction conditions	Yield, %
H- Mordenite	F	165 °C/30 min	35 ²⁰
Steamed BEA	G	180 °C/180 min	4321
Sn-BEA/Amber-	G	130 °C/30 min	6322
lyst-70			
TiO ₂	G	200 °C/5 min	18.623
ZrO ₂	G	200 °C/5 min	1023
Nb ₂ O ₅	G	120 °C/180 min	1224
Amberlyst-15-HT	G	100 °C/180 min	42 ²⁵
Titanium	G	120 °C/180 min	14 ²⁶
nanotubes			
Ta ₂ O ₅	G	160 °C/140 min	58 ²⁷
Nb/CB-2-DP	G	170 °C/120 min	20^{28}
AlEt ₃	G	140 °C/6 h	51 ²⁹
Cr-NP	G	140 °C/6 h	49 ³⁰
γ- TiP	F	100 °C/30 min	35.3 ³¹
C- ZrP ₂ O ₇	F	100 °C/30 min	44.3 ³¹
rGO-SO ₃ H	G	180 °C/3 h	21.2132
TiO ₂	G	160 °C/6 h	3033

An other important platform chemical is Levulinic acid (LA), which can be further converted into some other chemicals like liquid fuels, spice, cosmetic, pharmaceutical, pesticide, and fungicide.³⁴ The production of levulinic acid is a two-step process. In the first step, sugar is converted into HMF, which further convert into LA by rehydration process in the presence of solid acids. Catalytic dehydration of C₆-sugars to LA over strong cation exchange resin is well reported in the literature. The results indicated that with fructose, the yield of LA was 74.6 % at 110 °C and with glucose, it was 70.7 % of yield at 145 °C.³⁵ The different solid acid catalysts used for the conversion of sugar into LA are summarized in Table 2.

Synthesis of formic acid (FA)

Formic acid is an important monocarboxylic acid and one of the glucose decomposition products. Due to which it counts as an interesting candidate for cellulose hydrolysis.

Table 2. Conversion of C_6 sugars into LA (F=Fructose, G= glucose)

Catalyst	Sugar	Reaction	Yield, %
		conditions	
Fe/HY Zeolite	G	180 °C/180 min	60 ³⁶
Ly ₂ HPW	G	130 °C/30 min	47.9 ³⁷
Anhydrous C2H2O4	G and F 180 °C/5 h		39.9 ³⁸
with Al(CF ₃ SO ₃) ₃			
$Al_2(SO_4)_3$	G	473 K/6 h	14.53 ³⁹
Nafion NR50	F	120 °C/24 h	4140
Sulfonated	G	200 °C/2 h	5041
graphene oxide			
CP-SO ₃ H-1.69	G	170 °C/10 h	28.5^{42}
Al- Zr oxide	G	180 °C/2 h	3.943
Zirconium	G	160 °C/3 h	14^{44}
Phosphate			
Amberlyst-70	G	160 °C/3 h	21.7^{44}
CrCl ₃ + HY Zeolite	G	160 °C/3 h	40^{45}
hybrid catalyst			

FA's broad applications include its use as a feed additive, for leather tanning, asdrilling fluid, as an acidifier, as a cleaning agent, or as an anti-icing substance for roads and airport runways.

Along with this, it has also been used as a hydrogen source in direct formic acid fuel cells (DFAFC). Due to the high efficacy and safety of DFAFC, it is also considered as an alternative to methanol and hydrogen fuel cells. Therefore the conversion of Sugars into FA is of great importance. Some commonly used solid catalysts are given in Table 3, which are used to convert C_6 -sugars into FA.

Table 3. Conversion of C_6 sugars into Formic acid (F=Fructose, G= glucose)

Catalyst	Sugar	Reaction conditions	Yield, %
rGO-SO ₃ H	G	200 °C/3 h	14.1832
rGO-SO ₃ H	G	200 °C/4 h	10.3032
rGO-SO ₃ H	G	180 °C/3 h	13.0532
SAPO-5	G	100 °C/3 h	_46
CoAPO-5	G	100 °C/6 h	_46
SnAPO-5	G	100 °C/6 h	_46
HPA-5	G	90 °C/24 h	99 ⁴⁷
LiOH	G	Room temp./8 h	91.3 ⁴⁸

Synthesis of lactic acid

Lactic acid is an important renewable feedstock used for the preservation, coloring, and flavoring of food. Also, it can be used in the textile and pharmaceutical industries.⁴⁹ The synthesis of poly lactic acid (PLA) from lactic acid is also reported in the literature. Lactic acid show two enantiomeric forms, 1-(+) and d-(-), which affect the physicochemical properties of the polylactide polymer.⁵⁰

The conversion of glucose and fructose into racemic methyl lactate have been performed over Lewis acidic zeolites and zeotypes catalysts under optimized reaction conditions.⁵¹Table 4 summarizes the conversion of C_{6} -sugars into lactic acid and lactate over different solid catalysts.

Table 4. Conversion of C6 sugars into other Lactic acid and lactate.

Catalyst	Sugar	Reaction onditions	Product/yield in %
rGO-SO ₃ H	G	180°C/3 h	Lactic acid/5.5132
Sn-C-MCM-41	G	160°C/20 h	Lactate/1736
Sn- MWW	G	160°C/20 h	Lactate/4437
Sn- BEA	G	160°C/20 h	Lactate/4352
Sn- BEA	F	160°C/20 h	Lactate/4453

CONCLUSIONS AND FUTURE OPPORTUNITIES

In the recent scenario, renewable biomass plays an important role in the production of several value-added products such as biofuels, bioplastics and other fine chemicals. For conversion of this renewable biomass, particularly sugars, various solid catalysts like supported metal catalysts, micro and mesoporous materials, metal oxides, and sulfonated polymers are found efficient and environmentally friendly. Several Bronsted and Lewis acid catalysts for converting C6-sugars into value-added chemicals such as HMF, LA, FA and lactic acid are well reported in the literature. Though almost all the solid catalyst can be easily separated from the reaction mixture after completion of the reaction and reused in the next reaction cycle, efforts should be made for complete recovery of the catalysts without any loss in their catalytic efficiency. Along with this, under some reaction conditions, leaching of ions from the solid catalysts undergoes, which decreases the efficiency of the catalysts.

To overcome this problem, some novel catalytic materials of high stability should be designed, which will increase the percentage conversion of biomass into value-added products.

ACKNOWLEDGEMENT

We would like to record our appreciation to the Department of Chemistry, Government College, Kota, Rajasthan for all guidance and for providing laboratory facilities. Furthermore, we are thankful to CSIR, New Delhi, for financial support.

REFERENCES

- ¹Fang, Q., Hanna, M. A., Experimental studies for levulinic acid production from whole kernel grain sorghum, *Bioresour*. *Technol.*, **2002**, *81(3)*, 187-193. https://doi.org/10.1016/S0960-8524(01)00144-4
- ²Girisuta, B., *Levulinic Acid from Lignocellulosic Biomass*, Ph. D. Thesis, University of Groningens, Netherlands, **2007**.
- ³Kang, S., Fu, J., Zhang, G., From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis, *Renew. Sustain.Energ. Rev.*, **2018**, *94*, 340-362. https://doi.org/10.1016/j.rser.2018.06.016.
- ⁴Nunes, L., Causer, T., Ciolkosz, D., Biomass for energy: A review on supply chain management models, *Renew. Sustain. Energ. Rev.*, **2020**, *120*, 109658. https://doi.org/10.1016/j.rser.2019.109658.

- ⁵Yusuf, A. A., Inambao, F. L., Characterization of Ugandan biomass wastes as the potential candidates towards bioenergy production, *Renew. Sustain. Energ. Rev.*, **2020**, *117*, 109477. https://doi.org/10.1016/j.rser.2019.109477.
- ⁶Mäki-Arvela, P., Holmbom, B., Salmi, T., Murzin, D. Y., Recent Progress in Synthesis of Fine and Specialty Chemicals from Wood and Other Biomass by Heterogeneous Catalytic Processes, *Catal. Rev.*, **2007**, *49*, 197–340. https://doi.org/10.1080/01614940701313127.
- ⁷Hovarth, I. T., Green chemistry, Acc. Chem. Res., 2002, 35685
- ⁸Bull, J. R., Green chemistry, Pure Appl. Chem., 2002, 721207
- ⁹Sheldon, R. A., Atom efficiency and catalysis in organic synthesis, *Pure Appl. Chem.*, **2000**, 72, 1233. https://doi.org/10.1351/pac200072071233.
- ¹⁰Yoshioka, M., Yokoi, T., Tatsumi, T., Development of the CONtype Aluminosilicate Zeolite and Its Catalytic Application for the MTO Reaction, ACS Catal., 2015, 5(7), 4268–4275. https://doi.org/10.1021/acscatal.5b00692.
- ¹¹Van Putten, R. J., Vander Waal, J. C., Rasrendra, C. B., Heeres, H. J., de Viers, J. G., Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources, *Chem. Rev.*, **2013**, *113*, 1499–1597. https://doi.org/10.1021/cr300182k.
- ¹²Dutta, S., De, S., Saha, B., A Brief Summary of the Synthesis of Polyester BuildingBlock Chemicals and Biofuels from 5-Hydroxymethylfurfural, *Chem. Plus. Chem.*, **2012**, 77, 259– 272. https://doi.org/10.1002/cplu.201100035.
- ¹³Buntara, T., Noel, S., Phua, P. H., Melián-Cabrera, I., de Vries, J. G., Heeres, H. J., From 5-Hydroxymethylfurfural (HMF) to Polymer Precursors: Catalyst Screening Studies on the Conversion of 1,2,6-hexanetriol to 1,6-hexanediol, *Topics Catal.*, **2012**, *55*, 612–619. https://doi.org/10.1007/s11244-012-9839-6
- ¹⁴Bohre, A., Saha, B., Abu-Omar, M. M., Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal–Acid Catalysts, *Chem. Sus. Chem.*, **2015**, *8*, 4022-4029. https://doi.org/10.1002/cssc.201501136.
- ¹⁵Watanabe, M., Aizawa, Y., Iida, T., Nishimura, R., Inomata, H., Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K: Relationship between reactivity and acid–base property determined by TPD measurement, *Appl. Catal. A. Gen.*, **2005**, 295, 150-156. https://doi.org/10.1016/j.apcata.2005.08.007.
- ¹⁶Kang, S., Ye, J., Zhang, Y., Chang, J., Preparation of biomass hydrochar derived sulfonated catalysts and their catalytic effects for 5-hydroxymethylfurfural production, *RSC Adv.*, **2013**, *3*, 7360-7366. https://doi.org/10.1039/c3ra23314f.
- ¹⁷Kang, S., Yu, J., Maintenance of a Highly Active Solid Acid Catalyst in Sugar Beet Molasses for Levulinic Acid Production, Sugar Tech., 2018, 20, 182-193.https://doi.org/10.1007/s12355-017-0543-5
- ¹⁸Xu, Y., Liu, G., Fu, J., Kang, S., Xiao, Y., Yang, P., Liao, W., Catalytic hydrolysis of cellulose to levulinic acid by partly replacing sulfuric acid with Nafion® NR50 catalyst, *Biomass Convers. Biorefin.*, **2019**, *9*, 609-616. https://doi.org/10.1007/s13399-019-00373-w
- ¹⁹Kang, S., Fu, J., Zhou, N., Liu, R., Peng, Z., Xu, Y., Concentrated levulinic acid production from sugarcane molasses, *Energ. Fuel*, **2018**, *32*, 3526-3531. https://doi.org/10.1021/acs.energyfuels.7b03987.
- ²⁰Rivalier, P., Duhamet, J., Moreau, C., Durand, R., Development of a continuous catalytic heterogeneous column reactor with simultaneous extraction of an intermediate product by an organic solvent circulating in countercurrent manner with the aqueous phase, *Catal. Today*, **1995**, *24*, 165–171. <u>https://doi.org/10.1016/0920-5861(95)00026-C</u>.
- ²¹Otomo, R., Yokoi, T., Kondo J. N., Tatsumi T., Dealuminated Beta zeolite as effective bifunctional catalyst for direct transformation of glucose to 5-hydroxymethylfurfural, *Appl. Cat. A: Gen.*, **2014**, 470, 318–326. https://doi.org/10.1016/j.apcata.2013.11.012.

- ²²Gallo, J. M. R., Alonso, D. M., Mellmer, M. A., Dumesic, J. A., Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents, *Green Chem.*, **2013**, *15*, 85–90. https://doi.org/10.1039/C2GC36536G.
- ²³Qi, X., Watanabe, M., Aida, T. M., Smith Jr., R. L., Catalytical conversion of fructose and glucose into 5hydroxymethylfurfural in hot compressed water by microwave heating, *Catal. Commun.*, **2008**, *9*, 2244–2249. https://doi.org/10.1016/j.catcom.2008.04.025.
- ²⁴Nakajima, K., Baba, Y., Noma, R., Kitano, M., Kondo, J. N., Hayashi, S., Hara, M., Nb₂O₅.nH₂O as a Heterogeneous Catalyst with Water-Tolerant Lewis Acid Sites, *J. Am. Chem. Soc.*, **2011**, *133*, 4224–4227. https://doi.org/10.1021/ja110482r.
- ²⁵Takagaki, A., Ohara, M., Nishimura, S., Ebitani, K., A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides, *Chem. Commun.*, **2009**, 6276-6278. https://doi.org/10.1039/b914087e.
- ²⁶Kitano, M., Nakajima, K., Kondo, J. N., Hayashi, S., Hara, M., Protonated Titanate Nanotubes as Solid Acid Catalyst, *J. Am. Chem. Soc.*, **2010**, *132*, 6622–6623. https://doi.org/10.1021/ja100435w.
- ²⁷Yang, F., Liu, Q., Yue, M., Bai, X., Du, Y., Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5hydroxymethylfurfural, *Chem. Commun.*, **2011**, *47*, 4469– 4471. https://doi.org/10.1039/c0cc05138a.
- ²⁸Xiong, H., Wang, T., Shanks, B. H., Datye, A. K., Tuning the Location of Niobia/Carbon Composites in a Biphasic Reaction: Dehydration of D-Glucose to 5-Hydroxymethylfurfural, *Catal. Lett.*, **2013**, *143*, 509–516. https://doi.org/10.1007/s10562-013-1004-8.
- ²⁹Liu, D., Chen, E. Y.-X., Ubiquitous aluminum alkyls and alkoxides as effective catalysts for glucose to HMF conversion in ionic liquids, *Appl. Catal. A. Gen.*, **2012**, 435-436, 78-85. https://doi.org/10.1016/j.apcata.2012.05.035.
- ³⁰He, J., Zhang, Y., Chen, E. Y.-X., Chromium(0) Nanoparticles as Effective Catalyst for the Conversion of Glucose into 5-Hydroxymethylfurfural, *Chem. Sus. Chem.*, **2013**, *6*, 61–64. https://doi.org/10.1002/nadc.201390022.
- ³¹Benvenuti, F., Carlini, C., Patrono, P., Galletti, A. M. R., Sbrana, G., Massucci, M. A., Galli, P., Heterogeneous zirconium and titanium catalysts for the selective synthesis of 5hydroxymethyl-2-furaldehyde from carbohydrates, *Appl. Catal. A. Gen.*, **2000**, *193*, 147–153. https://doi.org/10.1016/S0926-860X(99)00424-X.
- ³²Jiang, Z., Yan, Li., Conversion of Glucose to Valuable Platform Chemicals over Graphene Solid Acid Catalyst, *Chin. J. Chem. Phys.*, **2015**, 28, 2. https://doi.org/10.1063/1674-0068/28/cjcp1412211
- ³³Lanziano, C. S., Rodriguez, F., Rabelo, S. C., Guirardello, R., daSilvae, V. T., Rodella, C. B., Catalytic Conversion of Glucose Using TiO₂ Catalysts, *Chem. Eng. Trans.*, **2014**, *37*, 589-594. https://doi.org/10.3303/CET1437099
- ³⁴Morone, A., Apte, M., Pandey, R. A., Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications, *Renew. Sustain. Energ. Rev.*, **2015**, *51*, 548-565. https://doi.org/10.1016/j.rser.2015.06.032.
- ³⁵Pyo, S., Glaser, S. J., Rehnberg, N., Hatti-Kaul, R., Clean Production of Levulinic Acid from Fructose and Glucose in Salt Water by Heterogeneous Catalytic Dehydration, ACS Omega, 2020, 5(24), 14275–14282. https://doi.org/10.1021/acsomega.9b04406.
- ³⁶Ramli, N. A. S., Amin, N. A. S., Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: Characterization and catalytic performance, *Appl. Catal. B. Environ.*, **2014**, *128*, 490-498. https://doi.org/10.1016/j.fuproc.2014.08.011.

- ³⁷Sun, Z., Wang, S., Wang, X., Jiang, Z., Lysine functional heteropolyacid nanospheres as bifunctional acid–base catalysts for cascade conversion of glucose to levulinic acid, *Fuel*, **2016**, *164*, 262-266. https://doi.org/10.1016/j.fuel.2015.10.014.
- ³⁸Fu, J., Yang, F., Mo, J., Zhuang, J., Lu, X., Lysine functional heteropolyacid nanospheres as bifunctional acid–base catalysts for cascade conversion of glucose to levulinic acid, *Bioresources*, **2015**, *10*(1), 1346-1356. https://doi.org/10.15376/biores.10.1.1346-1356.
- ³⁹Tan, J., Liu, Q., Chen, L., Wang, T., Ma, L., Chen, G., Efficient production of ethyl levulinate from cassava over Al₂(SO₄)₃ catalyst in ethanol–water system, *J. Energy Chem.*, **2016**, 26(1), 115-120. https://doi.org/10.1016/j.jechem.2016.08.004
- ⁴⁰Son, P. A., Nishimura, S., Ebitani, K., Synthesis of levulinic acid from fructose using Amberlyst-15 as a solid acid catalyst, *React. Kinet. Mech. Cat.*, **2012**, *106*, 185–192. https://doi.org/10.1007/s11144-012-0429-1.
- ⁴¹Upare, P. P., Yoon, J. W., Kim, M. Y., Kang, H. Y., Hwang, D. W., Hwang, Y. K., Kung, H. H., Chang, J. S., Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts, *Green Chem.*, **2013**, *15*, 2935–2943. https://doi.org/10.1039/c3gc40353j.
- ⁴²Zuo, Y., Zhang, Y., Fu, Y., Catalytic Conversion of Cellulose into Levulinic Acid by a Sulfonated Chloromethyl Polystyrene Solid Acid Catalyst, *Chem. Cat. Chem.*, **2014**, *6*, 753–757. https://doi.org/10.1002/cctc.201300956.
- ⁴³Zeng, W., Cheng, D. G., Chen, F., Zhan, X., Catalytic Conversion of Glucose on Al–Zr Mixed Oxides in Hot Compressed Water, *Catal.Lett.*,**2009**, *133*, 221–226. https://doi.org/10.1007/s10562-009-0160-3.
- ⁴⁴Weingarten, R., Conner, W. C., Huber, G. W., Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst, *Energy Environ. Sci.*,2012, 5, 7559–7574. https://doi.org/10.1039/c2ee21593d.
- ⁴⁵Ya'aini, N., Amin, S. N. A., Endud, S., Characterization and performance of hybrid catalysts for levulinic acid production from glucose, *Micropor. Mesopor. Mat.*, **2013**, *171*, 14–23. https://doi.org/10.1016/j.micromeso.2013.01.002.
- ⁴⁶Ayele, L., Dadi, G., Mamo, W., Chebude, Y., Diaz, I., Glucose oxidation to formic acid and methyl formate in perfect selectivity, *Bull. Chem. Soc. Ethiop.*, **2014**, *28(1)*, 45-52. https://doi.org/10.4314/bcse.v28i1.6.
- ⁴⁷Maerten, S., Kumpidet, C., Voß, D., Bukowski, A., Wasserscheid P., Albert, J., Conversion of Glucose into Platform Chemicals using Aluminophosphates (SAPO-5 and MeAPO-5) in [BMIM]Cl Ionic Liquid, *Green Chem.*, **2020**, *22*, 4311-4320. https://doi.org/10.1039/D0GC01169J.
- ⁴⁸Wang, C., Chen, X., Qi, M., Wu, J., Gözaydn, G., Yan, N., Zhong, H., Jin, F., Glucose oxidation to formic acid and methyl formate in perfect selectivity, *Green Chem.*, **2019**, *21*, 6089-6096. https://doi.org/10.1039/C9GC02201E.
- ⁴⁹Akerberg, C., Zacchi, G., Room Temperature, Near-Quantitative Conversion of Glucose into Formic Acid, *Bioresour. Technol.*, **2000**, 75, 119-126. https://doi.org/10.1016/S0960-8524(00)00057-2.
- ⁵⁰Narayanan, N., Roychoudhury, P. K., Srivastava, A., An economic evaluation of the fermentative production of lactic acid from wheat flour, *Electron. J. Biotechnol.*, **2004**, 7(2), 167–178.https://doi.org/10.1016/S0960-8524(00)00057-2
- ⁵¹Taarning, E., Saravanamurugan, S., Holm, M. S., Xiong, J., West, R. M., Christensen, C. H., Zeolite Catalysed isomerisation of triose sugars, *Chem. Sus. Chem.*, 2009, 2(7), 625-627. <u>https://doi.org/10.1002/cssc.200900099</u>.

- ⁵²West, R. M., Holm, M. S., Saravanamurugan, S., Xiong, J., Beversdorf, Z., Taarning, E., Christensen, C. H., Zeolite-Catalyzed Isomerization of Triose Sugars, *J. Catal.*, **2010**,269(1),122-130. <u>https://doi.org/10.1016/j.jcat.2009.10.023</u>.
- ⁵³Zhuang, J., Li, X., Liu, Y., Zeolite H-USY for the production of lactic acid and methyl lactate from C₃-sugars, *Adv. Mat. Res.*, **2012**,550-553,234-237. https://doi.org/10.4028/www.scientific.net/AMR.550-

https://doi.org/10.4028/www.scientific.net/AMR.550-553.234

> Received: 14.12.2020. Accepted: 03.01.2021.