Design and Optimization of In-Situ Floating Gel Containing Femotidine using Factorial Design

Section A -Research paper

Design and Optimization of *In-*Situ Floating Gel Containing Femotidine using Factorial Design

Rishi Kumar^{*}, Dashrath singh

Department of Pharmacy, Mangalayatan University, Aligarh, Uttar Pradesh, India

*Author for correspondence: Rishi Kumar PhD Research Scholar, Department of Pharmacy, Mangalayatan University, Aligarh, Uttar Pradesh, India. Email: <u>rishi0807.saraswat@gmail.com</u>

Abstract

The present study was aimed at the development of stomach specific drug delivery systems using natural polymer. It concerns with the development and optimization of a formulation of *in-situ* gel of famotidine. The polymer used in the formulations is locust bean gum and sodium alginate. Nine different formulations were prepared by varying concentration of locust bean gum sols and calcium carbonate in demonized water where as the concentration of sodium alginate and trisodium citrate remain constant. The amount of drug is kept constant for all nine formulations. From the result we found that F6 formulation showed optimum drug release. The % drug release from the optimized formulation was found to be 98.9 % after 24 hr and viscosity 28.7 centipoises, thus batch F6 was selected as an optimized formulation because it shows more controlled release, which exhibited a drug content of 97.8 % and has a floating time of more than 24 hr. Stability study was done according to ICH guidelines. This study reports that the aqueous solutions of famotidine drug containing locust bean gum and sodium alginate forms *in-situ* gel in acidic environment as well layer formation occur on the mucous membrane of stomach.

Keywords: drug delivery; peptic ulcer; in situ; floating gel; locust bean gum

1. **Introduction** An innovative method of administering medication as a liquid dosage is in situ gel drug delivery. Nevertheless, obtains a prolonged drug release [1]. The sustained drug release, better patient compliance, convenience of administration, and lower frequency of administration are the benefits of in situ gel delivery systems [2]. Prior to being provided in the body, in situ gel delivery systems are in solution form; however, upon administration, they go through in situ gelation to create a gel [3]. When using a gastro-retentive in situ gelling method instead of a traditional liquid dosage form, the drug's bioavailability is increased. Because the gel created by

the in situ gelling technology is less dense than gastric fluids, it floats over the contents of the stomach, causing gastric retention of the dose form and enhancing gastric residency [4].

Famotidine is a white to pale yellow non-hygroscopic crystalline substance. It is very slightly soluble in water and practically insoluble in ethanol, acetone, ethylacetate, ethyl ether and acetone. It is freely soluble in glacial acetic acid [5]. Famotidine is a competitive histamine H-receptor antagonist (H2RA) that binds to the H-receptors located on the basolateral membrane of the parietal cell in the stomach, effectively blocking histamine actions [6]. Its pharmacologic activity results in the inhibition of gastric secretion by suppressing acid concentration and volume of gastric secretion. Famotidine inhibits both basal and nocturnal gastric acid secretion as well as reduces gastric volume, acidity, and secretion stimulated by food, caffeine, insulin, and pentagastrin.[7]

2. Material

Famotidine was obtained as gift sample from Cipla Ltd., Mumbai .Sodium alginate, Tri sodium citrate, Calcium Carbonate, Sodium bicarbonate, Locust bean gum (LBG) was procured from local shop of New Delhi.

3. Methods

Formulation

The weighed quantity of locust bean gum and sodium alginate solution heated at 60-70°C then added sodium citrate in above solution this solution cooled below 40°C. The calculated amount of drug, calcium carbonate or sodium bicarbonate to the above solution store the solution [8,9].

Optimization of formulation Factorial Design

Full Factorial Design was used to determine the effect of the independent variable (variable 1: concentration of cellulose and variable 2: concentration of acrylamide) over the drug loading (dependent variable) as shown in equation 8.1:

$$Y = b_0 + b_1 X_1 + b_2 X_2 + b_{12} X_1 X_2 + b_{11} X_{12} + b_{22} X_{22} \dots \text{Eq.-1}$$

Whereas: X₁ represents independent variable 1 (concentration of cellulose).

X₂ represents independent variable 2 (concentration of acrylamide).

Y represents the dependent variable (drug loading).

 X_1Y represents the average result of changing the first variable at a time for low, medium, and high values.

```
Section A -Research paper
```

 X_2Y represents the average result of changing the second variable at a time for low, medium, and high values.

The interaction terms X_1X_2Y represent how the response changes when the two factors simultaneously change.

Polynomial terms (X_{11} and X_{22}) are included to investigate non-linearity.

Figure 1: Surface response curve to show the effect of independent variables (Concentration of polymer and concentration of calcium carbonate) over dependent variable (drug content)

Figure 2 :Contour plot to show the effect of independent variables (Concentration of polymer and concentration. of calcium carbonate) over dependent variable (drug content)

Pearson Correlation Test											
Y-Axis Variable concentration of polymer											
X-Axis Variable concentration of calcium carbonate											
Run Summary Section											
	Parameter			Value							
Y-Axis Variable				Concentra	Concentration of polymer						
X-Axis Variable				Concentra	tion of calcium	n carbonate					
Frequency Variable				None							
Sum of Frequencies				9	9						
Rows Processed				9	9						
Rows used in Estimation	ation			9	9						
Rows with X missin	g			0							
Rows with Frequence	y Missing			0							
			Column S	ummary Se	ction	•	•				
Variable	e	Co	unt	Mean	Standard	Minimum	Maximum				
					Deviation						
Conc. of polymer		9)	1.83	0.66	1.00	2.50				
Conc. of calcium can	bonate	9	Ð	1.00	0.43	0.50	1.50				
	Pear	son Co	rrelation	Confidence	Interval Secti	on					
		(Two-	Sided Co	nfidence Int	erval of p)						
Pearson	Count		R	Distribution	1	Normal Appro	ximation 95%				
Correlation			95% (Confidence li	imits	Confiden	ce limits				
			Lower	ι	J pper	Lower	Upper				
0.0000	9	-	-0.6319	0	.6319	-0.6641	0.6641				
	Pearson Con	relatio	n Test Sec	ction							
	(H0: ρ=(0)			1	1				
Alternative	Pearson		Count	Df	T-Value	P-Value	Reject H0 at				
Hypothesis	Correlatio	on					α=0.05?				
ρ≠0	0.000		9	7	0.0000	1.0000	No				
	2.5			•		٠					
of polymer (Sew/v)			•		•						
Conc	1.5 -										
	1.0	0.6	0.8 Conc	1.0 of calcium	1.2 carbonate (1	1.4 1. 6w/v)	6				

 Table 1: Correlation analysis using Pearson Correlation Test

Figure 3: Correlation plot to show the effect of independent variables

Design and Optimization of In-Situ Floating Gel Containing Femotidine using Factorial Design

Section A -Research paper

As shown in table 9.2, the Pearson correlation test reflects the null hypothesis at a 0.05% significant level. Pearson correlation test easily elicits the fact that both the independent variable significantly affects the drug loading.

Expected Mean Squares Section										
Source Term		Term Fix	ked Der	Denominator Term			Expected Square			
A: Conc. of polymer	2 Yes			S(AB)			S+bsA			
B: Conc. of calcium carbonate	2	Yes		S(AB)			S+asB			
AB	4	Yes		S(AB)			S+sAB			
S(AB)	0	No					S			
Analysis of Variance Table for Drug loading										
Source Term	DF	Sum of	Mean	F-Ratio	Pr	ob Level	Power			
		Squares	Square				(a=0.05)			
A: Conc. of polymer	2	12.92667	6.463333							
B: Conc. of calcium carbonate	2	22.48667	11.24333							
AB	4	5.846667	1.461667							
S	0	0								
Total (Adjusted)	8	41.26								
Total	9									

Table 3: MANOVA (Multivariate analysis of variance) analysis

⁽c)

Figure 4: MANOVA plot to show the effect of (a) independent variables (concentration of polymer) over the dependent variable (drug content), (b) independent variable (concentration of calcium carbonate) over dependent variable (drug content), (c) independent variables (concentration of polymer and concentration of calcium carbonate) over the dependent variable (drug content)

The outcome of the MANOVA analysis figure 9.4 showed a non-linear correlation between the

individual independent variable and drug loading

Descriptive Statistics Section											
Vari	able		Count	Mean		Minimum			Maximum		
Concentration of polymer			9	1.833333		1		2.5			
Conc. of calcium carbonate			9	1		0.5		1.5			
Drug content			9	94.93333		91.2			97.8		
			Sequ	ential ANOVA S	Section						
Source	Sequenti	al df	Sum	Sum Mean		-Ratio Prob Level		Incremental R-			
			Square	Square				Squared			
Regression	5		39.57631	7.915262	14.10	0.	0.026968		0.959193		
Linear	2		27.29309	13.64655	24.32	0.	0.014006		0.661490		
Quadratic	2		8.120238	4.060119	7.23	0.	071169		0.196807		
Lin x Lin	1		4.162976	4.162976	7.42	0.	072334	0.100896			
Total Error	3	3		0.5612302				0.040807			
			·	ANOVA Section	n						
Factor Df		Df	Last Sum-	Mean Square	ean Square F-Ratio Prob		Prob Lev	el	Term R-		
			Squares						Squared		
Conc. of polymer		3	17.08964	5.696548	10.1	5	0.044349		0.414194		
Conc. of calcium of	carbonate	3	26.64964	8.883214	15.8	33	0.024149		0.645895		
Total Error		3	1.68369	0.5612302					0.040807		

 Table 4: Response surface regression analysis

Design and Optimization of In-Situ Floating Gel Containing Femotidine using Factorial Design

Section A -Research paper

Estimation Section										
Paramete	er	Last	Regression	n Standard	T-Ratio	Prob Level	R-Squared			
		df	Coefficien	t Error						
Intercept		1	95.0246							
Conc. of polymer		1	10.00476	3.847829	2.60	0.080368	0.091959			
Conc. of calcium carbonate		1	-10.93571	4.644058	-2.35	0.099872	0.075424			
Conc. of polymer'	^2	1	-2.622222	1.078904	-2.43	0.093292	0.080350			
Conc. of calcium		1	6.2	2.118925	2.93	0.061198	0.116457			
carbonate^2										
Conc. of polymer*	[*] conc. of	1	-2.671429	0.9808715	-2.72	0.072334	0.100896			
calcium carbonate										
			Optimu	m Solution Sectio	n					
Paramete	er		Maxir	num Exponent		Optimum Value				
Conc. of polymer				2	18336.83					
Conc. of calcium carbonate				2		3951				
			Opti	Optimization Details						
Function at Optimum					-9.783	3116E+08				
Number of Function Evaluations						501				
Maximum Functio	ons Evaluatio	ons				500				
			Re	sidual Section						
Formulation Experimental Drug				edicted Drug load	ing	Residual dr	ug loading			
	loa	ding								
F1	91	1.2		91.17619		0.02380952				
F2	92	2.4		92.23333		0.1666667				
F3	96	96.2		96.39047		-0.1904762				
F4	93.6			94.07738		-0.477381				
F5	95.1			94.46667		0.6333333				
F6	97.8			97.95596		-0.1559524				
F7	F7 96.4			95.94643		0.4535714				
F8	94	4.2		95		-0.8				
F9	F9 97.5			97.15357		0.3464286				

Figure 5:(a) Probability plot, (b) contour plot to show the effect of independent variables (conc. of polymer, conc. of calcium carbonate) over the dependent variable (drug content)

To identify the difference between experimental drug content and the prediction value of drug content, response surface regression analysis was carried out. The finding of the study showed significantly very less difference between these values. The outcome of the MANOVA analysis is also supported by the result of the response surface regression analysis [10,11,12, 13,14].

4. Results

Drug Release:

The amount of drug release is an important parameter for controlled release formulation. The drug release of formulations F1- F9 was found to be 98.3, 94.51, 97.82, 98.34, 96.78, 98.94, 98.92, 98.88 and 92.73 % respectively; the drug release of formulation F6 was maximum while F2 was minimum .The drug release data of all the formulations is depicted in Table 9.5 shows that varying concentration of polymer (LBG) was responsible drug release of famotidine from *in-situ* gel [15,16,17].

Time	Cumulative drug release (%)									
(min)	F1	F2	F3	F4	F5	F6	F7	F8	F9	
0	0	0	0	0	0	0	0	0	0	
15	23.88	23.71	28.11	28.47	27.58	30.65	31.56	31.41	23.71	
	±	±	±	±	±	±	±	±	±	
	0.62	0.53	0.57	0.29	0.28	0.54	0.56	0.43	0.47	
30	28.99	27.23	32.52	33.04	32.69	44.33	44.18	44.64	26.88	
	±	±	±	±	±	±	±	±	±	
	0.99	0.86	0.82	0.64	0.78	0.76	0.85	0.80	0.82	
45	33.74	28.82	36.74	38.33	36.57	47.68	46.92	53.61	31.11	
	±	±	±	±	±	±	±	±	±	
<u> </u>	1.16	1.24	1.10	1.32	1.30	1.06	1.04	1.03	1.28	
60	31.12	34.10	40.97	40.09	42.20	56.80	56.04	55.74	36.22	
	±	± 170	±	±	± 150	± 1.45	± 154	± 1.50	± 1.50	
	1.61	1./8	1.45	1.69	1.58	1.45	1.54	1.52	1.59	
90	38.15	37.09	53.48	53.13	52.24	60.29	59.23	60.75	37.27	
	±	±	±	±	±	土	±	土	土	
	1.72	2.11	1.88	1.81	1.84	1.99	1.88	1.89	1.89	
120	39.56	39.74	59.11	58.76	59.11	66.84	67.14	67.29	39.21	
	±	±	±	±	±	<u>+</u>	±	±	±	
	2.04	2.57	2.02	2.00	2.02	2.01	2.10	2.07	2.09	
135	43.61	60.42	86.48	85.71	85.78	89.95	90.55	90.09	61.58	
	±	±	±	±	±	±	±	±	±	
	2.15	2.64	2.43	2.38	2.43	2.34	2.35	2.28	2.35	
150	61.83	61.58	86.59	85.78	86.59	90.92	91.68	91.53	61.83	
	±	±	±	±	±	±	±	±	±	
1.65	2.56	3.01	2.64	2.52	2.67	2.63	2.64	2.43	2.64	
165	61.93	62.63	88.53	87.65	87.47	92.38	93.75	93.89	63.16	
	270^{\pm}	± 2.49	± 1 % 1	± 2 95	± 2 26	2 °6	$\frac{\pm}{200}$	$\frac{\pm}{282}$	$\frac{\pm}{2.08}$	
180	63.52	5.40 63.87	2.02	2.03	3.30 88.71	2.80	2.99	2.85	63.34	
160	+	- 05.87	00.00 +	+	+	-	+	94.90	- 05.54	
	3 05	376	$3\overline{28}$	354	3 36	$3\frac{1}{16}$	$3\dot{4}8$	342	$3\frac{1}{36}$	
210	64.04	64.05	89.59	89.41	88.88	95.26	95.42	95.42	63.87	
210	+	+	+	+	+	+	+	+	+	
	3.78	3.91	3.64	3.89	3.53	3.65	3.84	3.83	3.89	
240	64.93	64.22	90.12	90.12	89.23	96.94	96.18	97.69	64.22	
	±	±	±	±	±	±	±	±	±	
	4.13	4.23	4.43	4.38	3.99	3.87	4.30	4.30	4.31	
300	65.10	64.39	91.17	90.47	89.41	97.24	96.64	98.31	64.57	
	±	±	±	±	<u>+</u>	<u>+</u>	±	±	±	
	4.89	4.58	4.74	4.61	4.43	4.23	4.72	4.76	4.76	
360	65.45	65.10	91.87	90.82	89.59	97.92	96.94	98.46	64.75	
	±	±	±	±	±	±	±	±	±	
	5.34	5.12	5.52	5.16	5.10	4.95	5.12	5.11	5.32	
1440	98.30	94.15	97.82	98.34	96.78	98.94	98.92	98.88	92.75	
	±	<u>±</u>	±	±	<u>+</u>	±	±	±	±	
	6.24	6.43	6.13	6.06	6.35	5.64	5.93	5.88	5.87	

Table 5: Drug release study

5. Conclusion

To identify the difference between experimental drug release and prediction value of drug release, response surface regression analysis was carried out. Finding of the study showed significantly very less difference between these values. Outcome of the MANOVA analysis is also supported the result of response surface regression analysis. Whole study is done to get an optimized formulation which shows more controlled release of drug from locust bean gum *insitu* floating gel. The % drug release from the optimized formulation was found to be 98.94 after 24 hrs. Thus batch F6 was selected for further study.

References

- Nagarwal RC, Srinatha A, Pandit JK. In situ forming formulation: Development, evaluation, and optimization using 3³ factorial design. AAPS Pharm Sci Tech. 2009; 10:977-84.
- Vyas J, Ghedia T, Gajjar V, Christian V, Upadhyay U. A review on novel in situ polymeric drug delivery system. Int J Pharm Res Development. 2011; 3:53-9.
- 3. Rathod H, Patel V, Modasiya M. In situ gel as a novel approach of gastroretentive drug delivery. Int J Pharm Life Sci. 2010; 1:440-7.
- 4. Talke PO, Solanki DR. Dose-response study of oral famotidine for reduction of gastric acidity and volume in outpatients and inpatients. AnesthAnalg. 1993; 77(6):1143-49
- 5. Berlin RG, Clineschmidt BV, Majka JA. Famotidine: An appraisal of its mode of action and safety. Am J Med. 1986; 81(4B):8-12.
- 6. Miyata K, Kamato T, Nishida A, Honda K. Studies on the mechanism for the gastric mucosal protection by famotidine in rats. Jpn J Pharmacol. 1991; 55(2):211-22.
- 7. Attwood D, Kubo W, Miyazaki S. Comparison of *in-situ* gelling formulations for the oral delivery of cimetidine. International Journal of Pharmaceutics. 2001; 220:161-168.
- Aakash SP, Manoj SD. In-situ Oral gel in advancement in PUD: A review. International Journal of Pharmaceutical and Medical Sciences. 2012; 1(1):51-78.
- 9. Shozo M, Wataru K. Oral sustained delivery of the ophylline using *in-situ* gelation of sodium alginate. Journal of Controlled Release. 2000; 67:275-280.
- 10. Brahma NS, Kwon HK. Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. Journal of controlled Release. 2000; 63:235-259.

- Maharjan M, Subedi G. Formulation and evaluation of floating in situ gel of ranitidine using natural polymers. International Journal of Pharmacy and Pharmaceutical Science. 2014; 6(10):6-14.
- Lewis GA, Mathieu D. Pharmaceutical experimental design. Drugs and Pharmaceutical Sciences.1st ed. New York: Marcel Dekker. 1999; 235-241
- Lahoti SR, Syed I, Sabina M. An Overview of gastroretentive drug delivery system research. International Journal of Pharmacy. 2011; 50-57.
- 14. Rathod H, Patel V. Modasia M. In situ gel as a novel approach of gastro retentive drug delivery: A review. International Journal of Pharmacy and Life Sciences. 2010; 440-447.
- 15. Branch SK. Guidelines from the International Conference on Harmonization. Journal of Pharmaceutical and Biomedical Analysis. 2005; 38:798-805.
- Solanki A. Preparation, characterization and stability study of acelofenac. Indian Journal of Pharmaceutical Research. 2014; 237-246.
- 17. Branch SK. Guidelines from the International Conference on Harmonization, Journal of Pharmaceutical and Biomedical Analysis. 2005; 38:798-805.

.