E®
Changing and Unchanging $\mathbf{d}^{\mathbf{d}}$ - distance for Edge Removal in Some Special Graphs
"T.Jackuline, "*Dr.J.Golden Ebenezer Jebamani, ,*** Dr. D. Premalatha
* Department of Mathematics, Sarah Tucker College and Research scholar (19221172092002) of PG \& Research Department of Mathematics, Rani Anna Government College for Women, Affiliated to Manonmaniam Sundaranar University, Tamilnadu, India.
* Department of Mathematics, Scad College of Engineering and Technology, Cheranmahadevi.
${ }^{* *}$ Head \& Assistant Professor, Department of Mathematics, Sarah Tucker College, Affiliated to ManonmaniamSundaranar University, Tamilnadu, India.
${ }^{* * *}$ Head \& Assosiate Professor, PG \& Research Department of Mathematics, Rani Anna Government College for Women , Affiliated to Manonmaniam Sundaranar University, Tamilnadu, India.

Abstract

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph. Let u and v be two vertices of a connected graph G. Then the d-length of a u-v path defined $\operatorname{as} d^{d}(u, v)=d(u, v)+\operatorname{deg}(u)+\operatorname{deg}(v)+$ $\operatorname{deg}(u) \operatorname{deg}(v)$, where $d(u, v)$ is the shortest distance between the vertices u and v. In this paper d^{d} - distance of edge removal in some special graphs are determined.

Keywords: distance, degree, d^{d}-distance, fan graph, star graph.

DOI: 10.48047/ecb/2023.12.si6.703

Introduction

Let $G(V, E)$ be a simple, connected graph where $V(G)$ is its vertex set and $E(G)$ is its edge set. The degree of any vertex v in G is the number of edges incident with v and is denoted by deg v . The minimum degree of a graph is denoted by $\delta(\mathrm{G})$ and the maximum degree of a graph G is denoted by $\Delta(G)$. A vertex of degree 0 is called an isolated vertex and a vertex of degree 1 is called a pendent vertex. The standard or usual distance $d(u, v)$ between u and v is the length of the shortest $u-v$ path in G. In this paper, $d^{d}-$ distance of some corona
relaed graphs are determined. In this paper, change or otherwise of the values of $\mathrm{d}^{\mathrm{d}}-$ distance when a edge is removed from a graph is studied.

2. Edge Removal

Definition 2.1: Let a graph $G(V, E)$ be a connected graph with d^{d} distance in graphs.

$$
\begin{aligned}
& E_{d^{d}}^{0}(\mathrm{G})=\left\{\mathrm{e} \in \mathrm{E}(\mathrm{G}): \mathrm{d}^{\mathrm{d}}(\mathrm{G})=\mathrm{d}^{\mathrm{d}}(\mathrm{G}-\mathrm{e})\right\} \\
& E_{d^{d}}^{+}(\mathrm{G})=\left\{\mathrm{e} \in \mathrm{E}(\mathrm{G}): \mathrm{d}^{\mathrm{d}}(\mathrm{G})<\mathrm{d}^{\mathrm{d}}(\mathrm{G}-\mathrm{e})\right\} \\
& \left.\left.E_{d^{d}}^{-}(\mathrm{G})=\left\{\mathrm{e} \in \mathrm{E}(\mathrm{G}): \mathrm{d}^{\mathrm{d}} \mathrm{G}\right)>\mathrm{d}^{\mathrm{d}} \mathrm{G}-\mathrm{e}\right)\right\}
\end{aligned}
$$

Example 2.2: Let $G=K_{1,3}$. Let v be non adjacent vertics and e be any edge of $G, G-e$
$=\mathrm{K}_{1,2} \cup \mathrm{~K}_{1}$ by defintion $\mathrm{d}^{\mathrm{d}}(\mathrm{G})=2+1+1+1=5$ and $\mathrm{d}^{\mathrm{d}}(\mathrm{G}-\mathrm{e})=2+1+1+1=5$.
Hence $d^{d}(G)=d^{d}(G-e)$.
Example 2.3 : Let $G=P_{5}$. Let $V(G)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{5}\right\}$ and v be v_{1} and $v_{5} . \quad d^{d}(G)$ = 7. Let $e=v_{3} v_{4}$ and $G-e=P_{3} \cup P_{2}, d^{d}(G-e)=d^{d}\left(P_{5}\right)+d^{d}\left(P_{7}\right)=5+4=9$. Hence d^{d} (G) $<\mathrm{d}^{\mathrm{d}}(\mathrm{G}-\mathrm{e})$.

Example 2.4: Consider the graphs $G=C_{3}$ and $G-e=P_{3}$. Let v be neighbhourhood vertex. By definition, $d^{d}(G)=1+2+2+4=9$ and $d^{d}(G-e)=1+1+2+2=6$.

Hence $d^{d}(G)>d^{d}(G-e)$.
The above examples 2.1,2.2 and 2.3 show that removal of a edge from a graph G may increase/ decrease/ does not affect $\mathrm{d}^{\mathrm{d}}(\mathrm{G})$.

Result 2.5: When $\mathrm{G}-\mathrm{e}=(\mathrm{G}-\mathrm{uv}) \cup \mathrm{K}_{1}$ has no $\mathrm{d}^{\mathrm{d}}-$ distance in graphs.
Result 2.6: If $G=P_{n}, n \geq 4$. Let e be any edge of G and u, v be end vertices. Then $d^{d}-$ distance does not exist.

Proof: u and v be end vertices of G and e be any edge. The graph $\mathrm{G}-\mathrm{e}=$ $P_{n-1 / 2} \cup P_{n-1 / 2}=P_{n / 2} \cup P_{n / 2}$. Hence $d^{d}-$ distance does not exists.

Theorem 2.7: Let $G=K_{n}$ be a complete graph of order $n, n \geq 3$ and $e=v_{n-1} v_{n}$. Then $\mathrm{e} \in E_{d_{d}}^{+}(\mathrm{G})$.

Proof: Let $V\left(K_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Let $e=V_{n-1} V_{n} . d^{d}$ of K_{n} is $1+(n-1)+(n-1)+$ $(n-1)^{2}=n^{2}$. In $K_{n}-e, d^{d}$ of $K_{n}-e$ is $2+(n-2)+(n-2)+(n-2)^{2}=n^{2}-2 n+2$.

Hence d^{d} of $\mathrm{K}_{\mathrm{n}}>\mathrm{d}^{\mathrm{d}}$ of $\mathrm{K}_{\mathrm{n}}-\mathrm{e}$. Therefore $\mathrm{e} \in E_{d_{d}}^{+}(\mathrm{G})$.
Theorem 2.8: Let $G=f_{n}$. Let $V(G)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and $u=v_{1}$ and $v=v_{n}$. Let $e=$ $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 2 \leq \mathrm{i} \leq \mathrm{n}-1$. Then $\mathrm{e} \in E_{d^{d}}^{0}(\mathrm{G})$.

Proof: $d^{d}(G)=d^{d}(u, v)=2+2+2+4=10 . \mathrm{G}-\mathrm{e}=\mathrm{f}_{\mathrm{i}} \cup \mathrm{f}_{\mathrm{n}-\mathrm{i}} . d^{d}(\mathrm{G}-\mathrm{e})=2+$ $2+2+4=10=d^{d}(G)$ Therefore $\mathrm{e} \in E_{d^{d}}^{0}(\mathrm{G})$.

Illustration : Let $\mathrm{G}=\mathrm{f}_{6}$ given in the following figure 1

Figure 1
$d^{d}\left(\mathrm{v}_{1}, \mathrm{v}_{6}\right)=\mathrm{d}\left(\mathrm{v}_{1}, \mathrm{v}_{6}\right)+\operatorname{deg} \mathrm{v}_{1}+\operatorname{deg} \mathrm{v}_{6}+\operatorname{deg} \mathrm{v}_{1} \operatorname{deg} \mathrm{v}_{6}=2+2+2+4=10$.

Let $G-v_{2} v_{3}=H . H$ is given in the following figure 2

Figure 2

$$
d^{d}\left(\mathrm{G}-\mathrm{v}_{2} \mathrm{v}_{3}=\mathrm{H}\right)=\mathrm{d}\left(\mathrm{v}_{1}, \mathrm{v}_{6}\right)+\operatorname{deg} \mathrm{v}_{1}+\operatorname{deg} \mathrm{v}_{6}+\operatorname{deg} \mathrm{v}_{1} \operatorname{deg}_{\mathrm{v}}^{6}=2+2+2+4=10 .
$$

Therefore $d^{d}\left(\mathrm{G}-\mathrm{v}_{2} \mathrm{v}_{3}=\mathrm{H}\right)=10=d^{d}(\mathrm{G})$.
Theorem 2.9: Let $G=J_{n}, n \geq 1$ be a jewel graph. Let $E(G)=\{u x, u y, v x, v y, x y$, $\left.\mathrm{uv}_{\mathrm{i}}, \mathrm{vv}_{\mathrm{i}},: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$. Let $\mathrm{e}=\mathrm{xy}$. Then $\mathrm{e} \in E_{d^{d}}^{-}(\mathrm{G})$.

Proof: Let $V(G)=\left\{u, x, v, y, v_{i}: 1 \leq i \leq n\right\}$ and $E(G)=\left\{u x, u y, v x, v y, x y, u v_{i}, u v_{n}\right.$, $\left.\mathrm{vv}_{\mathrm{i}}, \mathrm{vv}_{\mathrm{n}}, \mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$. Let $\mathrm{u}=\mathrm{x}$ and $\mathrm{v}=\mathrm{y} \cdot d^{d}(G=(u, v))=1+3+3+9=$ 16. Let $\mathrm{e}=$ xy. $d^{d}(G-\mathrm{e})=2+2+2+4=10$. Hence $d^{d}(G)>d^{d}(G-e)$. Hence $\mathrm{e} \in E_{d^{d}}^{-}(\mathrm{G})$.

Illustration : Let $G=J_{2}$ and $G-x y$ are given in the figure 3 and 4

Figure 3

$$
d^{d}(G)=1+3+3+9=16
$$

Figure 4
$d^{d}(G-\mathrm{e})=2+2+2+4=10$. Therefore $\gamma_{d u}(G)>\gamma_{d u}(G-x y)$.

Conclusion:

Many researchers are concentrating various distance concepts in graphs. We
introduced $d^{d}-$ disance in graps. In this paper we disccuss about d^{d}-distance in join two graphs.

References:

[1]F. Buckley and F. Harary, Distance in graphs, Addison- Wesley, Longman, 1990.
[2]G. Chartrand and P. Zang, Introduction to Graph Theory, Tata McGraw-Hill, (2006).
[3] K.M. Kathiresan and G.Marimuthu, Superior distance in graphs, J. Combin. Comput., 61(2007)73-80.
[4] D. A. Mojdeh and A. N. Ghameshlou, Domination in Jahangir Graph $J_{2, m}$, Int. J. Contemp. Math. Sciences, Vol. 2, 2007, no. 24, 1193 - 1199
[5] Paulraj Joseph.J and Arumugam.S, Domination and Connectivity in Graphs, International Journal of Management and Systems, Vol.8, No.3, 233 - 236, 1992.
[6]Paulraj Joseph.J and Arumugam.S, Domination and Colouring in Graphs, International Journal of Management and Systems, Vol.8, No.1, 37 - 44, 1997.
[7]Paulraj Joseph.J and Mahadevan.G, Complementary Connected Domination Number and Chromatic Number of a Graph, Acta Science Indica, Vol.XXXIM, No.2, 847 - 854, 2006.

