

D-dimer reference range in each trimester of Pregnancy-Need to detect Venous Thromboembolism of Pregnancy

¹Dr T. Chaturvedi, ²Dr S. Acharya, ³Dr V. Gupta, ⁴Dr R. Acharya

¹Final year PG Student, Department of Pathology Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun

²Professor and Head, Department of Pathology Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun

³Assosiate Professor, Department of Pathology Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun

⁴Professor, Department of Obstetrics and Gynaecology, SGRRIM&HS, Dehradun

Corresponding author:Dr V. Gupta

Abstract

This study carries significance as the medical literature has paucity of published reference ranges of maternal plasma D-dimer during all the trimesters of a normal pregnancy including the postpartum period in Southeast Asia in pregnant females.

INTRODUCTION:

Normal pregnancy is often referred to as a physiological hypercoagulability state. The changes include increased thrombotic activity, which is due to increase in the plasma coagulation factor activities. These mainly include Factor I, VII, VIII, IX, X and XII along with decrease in the concentration of the natural clotting inhibitor protein S and by intensified process of platelet adhesion and platelet aggregation. (1,2)

The high procoagulation activity during normal pregnancy (from conception until delivery), results in increased fibrin turnover (increased concentrations of D-dimer, a recognized marker of activation of fibrinolysis), ⁽³⁾ and thus increased D-dimer does not necessarily mean any existence of hyper fibrinolysis (as in non-pregnant state). ^(4,5,6)

Pregnancy puts women in a high-risk group for developing VTE especially in the puerperium with an estimated 20 times increase in relative risk. Approximately 80% of venous

thromboembolic events during pregnancy are deep venous thrombosis (most commonly in the left leg) and 20% are pulmonary emboli. (7-9)

The Wells Pre-test probability criteria for DVT and PE do not include pregnancy as a risk factor. Thus, VTE diagnosis in pregnancy/ puerperium is a great challenge for clinicians. (6)

None of the present diagnostic algorithms has been validated on pregnant women. Radiation imaging modalities like Computed tomography pulmonary angiogram (CTPA) and lung ventilation/perfusion scans (V/Q)along with Pre Test Probability and D-dimer values, which can be well used in non-pregnant statefor diagnosis of VTE, cannot be used in pregnancy due to

Therefore, can D-dimer values in each trimester and post-partum in normal pregnancy which are usually high above the usual threshold can be used to rule out presence of VTE?.Can D-dimer along with pre-test probability can be used as quick, non-invasive and a safe test for VTE in pregnancy with respect to the foetus.

This study carries significance as the medical literature has paucity of published reference ranges of maternal plasma D-dimer during all the trimesters of a normal pregnancy including the postpartum period in Southeast Asia in pregnant females.

Material & Method:

1. SUBJECT SELECTION:

increased risk of developmental damage to the fetus. (10)

Pregnant females aged between 20-35 years from 11 weeks- 13 weeks period of gestation were included in the study at the start after strictly implementing the exclusion criteria (Table 1)

Out of total 100 pregnant females, initially screened, 39 were selected, among them, 14 were lost to follow up (Due to COVID). Samples were collected from 25 booked pregnant who did not develop any complications during pregnancy or postpartum period.

2. SAMPLE DRAWN:

5 ml of whole blood was collected in 3.2% sodium citrate.

- A. First sample- At the time of booking (first trimester) 11-13 weeks.
- B. Second sample- Second trimester- 24-26 weeks.
- C. Third sample- Third trimester 34-36 weeks.
- D. Fourth sample- Four weeks postpartum.

The plasma stored at -70 °C was thawed at 37 °C in water bath. D dimer was then assayed on ACL Elite pro Automated analyser which works on the principle of Latex enhanced turbimetric immunoassay. The test was carried out as per the operating protocol by the manufacturer. The statistical analysis was done on SPSS version 21 software.

RESULTS:

A total of 39 subject's blood samples were collected in 3.2 % sodium citrate vial for D- dimer in this study. 14 patients were lost to follow up and hence were excluded from the study. Samples from 25 patients (4 samples each) were tested for D dimer. Of these, samples from 8 pregnant women could not be included due to error message shown by machine. Thus 4 samples obtained at appropriate times collected from 17 pregnant women were finally available for the study. The following observations were noted.

- Therewasnosignificantcorrelationbetweenage of pregnant femalesandDdimerlevels.
 (Table 2)
- 2. Therewasno significant correlation between parity & Ddimerlevels. (Table 3)
- 3. Mean value of d-dimer in each trimester ofpregnancy and4 weekspost-partum(n=17) were 314.76 ng m/ml,370.29 ng m/ml,418.59 ngm/ml and 272.18 ng m/ml in 1st ,2nd,3rd trimester and 4 weeks post-partum respectively. (Table 4) The difference of D -

- dimer values were statistically different between the three trimesters and post-delivery 4 weeks.
- 4. Comparison of Mean and Reference ranges in current study and previous publications on D-dimer levels in Pregnancy. (Table 5)
- 5. Pattern of D-dimer values when cut off is kept at >500 ng/ml instead of 255 ng/ml as given in kit insert of reagent. (Table 6)
- 6. Comparison between D-dimer values in 17 subjects with normal pregnancy with pregnant cases with DVT.

Discussion: A normal pregnancy is characterized by changes in hemostasis towards hypercoagulationduetoalteredlevelsof coagulation factors, venous stasis and some vascular damage. Abnormalhemostasisleadstomorevenousthromboembolisminpregnantfemalesas compared tononpregnant women.

VTEdiagnosis in apregnant womenneeds following points to be considered.

1. Pregnant

cannotbeinvestigatedwithimagingmodalitiesduet oriskofexposureofthefetustoradiations,leadingtoi ncreasedriskofteratogenesisandcarcinogenesis.

2.

ThesignandsymptomsofDVTandPEoverlapwith physiologicalchanges of pregnancy (especially dyspnea and leg swelling) complicating the early clinical assessment.

3. Since D dimer levels increase with gestational age, its conventionalcutoffof500ng/ml(FEU)todiagnose VTEisoflimitedvalueinpregnantwomen.

Variousstudiesdone in normal pregnant propose a highercut offs of D-dimer, while others advocate use of gestational agespecific values.

For gestational age specific D-dimer, weregistered39pregnantwomenatthebeginningofthestudy., finally 4sampleseachfrom17womenwereevaluated for Ddimer levels.

The sample size was small in our study similar to two of the studies where subjects were 18 and 20 respectively,(11,12)

A study done on 24 pregnant women with expected normal pregnancy, compared the D-dimer levels with 10 non pregnantwomen and 33women with complicated pregnancy .(13)

However many studies with larger sample size were also conducted(Choi et al, Katerine et al, Mirjana et al, Yuji et al and WS Chan et al)(14,15,16,17).

In order to derive reference ranges for the pregnant population, we selected pregnant females in the age group of 20-35 years. There were two reasons for it, one this is the most common age of pregnancy in south east Asia .(18) and secondly the increaseofD-dimervalues with age 100% of the women >40 yrs had higher D dimer levels ascomparedto44% and 43% women aged 20 years and 30 years respectively.(12)

Few of studies are done for D-dimer levels in healthy pregnancies and our results as compared with theirsin table 5, All the studies, showed the D-dimer levels rising progressively in pregnancy, and a downfall later in post-partum period. The wide discrepancy between D-dimer values in different studies may be likely due to different assays and analyzers used, rather than geographic or ethnic differences.

According to

BritishCommitteeofStandardsinHematology guidelines
(19,20) thecutoffvaluetoexcludeVTEneedstobeconfirmedlocallyinminim
umof

200subjects in laboratory. However, this approach is not possible in

alllaboratories and thus the manufacturer cutoff may be used.

In the present study, the manufacturer cut off value for VTE at 255ng/ml was exceeded in 76.5% of the patients in 1st trimester, 88.2% of the patients in 2nd trimester and 76.5 % of the patients in 3rd trimester and 53% (6-8 weeks post partum). If, the cut off is raised to >500ng/ml (as in non pregnant), it shows that 12% in first trimester, 18 % in second trimester, 35% in third trimester and 5% in post-partum have values >500ng/mlas in Table 6. These results showthat why manufacturers do not recommend to us the non-pregnant cut-off value of D-dimer in pregnant.

Two recent prospective studies (21,22) showed that when the cut off values of D-dimer were taken as < 500ng/ml, along with WellsPre test Probability (23) of low,

intermediate or unlikely in pregnant, the safety of D-dimer use to exclude VTE in pregnant patients holds great promises.

According to these studies at 3 months follow up for thromboembolic risk in low and intermediate risk cases (wells Pre Test Probability criteria) when D-dimer values were < 500 ng/ml, was just 2/981 and 1/312.

These observations were perfectly in line with the recent recommendations from the International Society of Thrombosis &Hemostasis, suggesting that the upper bound of the 3-month VTE risk should be below 2% in diagnostic strategies for VTE.(24) In our study, although we did notclinically categorize (wells criteria) still the exclusion criteria and follow up at 4 weeks and 12 weeks follow up showed that, all the 17 patients did not develop VTE.

As can be observed in table 5, there is no a consensus about the D-dimer values in different trimesters of pregnancy. On the other hand, a general trend of increasing D-dimer values with each trimester and fall post-partum is seen. When the D-dimer values

fromnormal pregnant females was compared with that of pregnant females with DVT (X). In this study, the pregnant females with DVT in first trimester had 7-7.6 times higher values of D-dimer than the mean D-dimer value in the first trimester normal pregnant females. When compared with the D-dimer values in second trimester in pregnant with DVT, it was 1.6-5.4 times higher than the values in second trimester normal pregnant females. Lastly, in third trimester the D-dimer values in the pregnant with DVT was 2-3.8 times higher than the normal pregnant females.

When we compared the D-dimer values obtained in our study with the values from pregnant females with DVT in different trimesters from the study (X), and statistically analyzed (unpaired t test)the values were statistically significant. Table 6.

Thus although we had a small sample size, still when compared with known cases the values are statistically significant.

Conclusion: Thus, a reference range of D-dimer for normal pregnant women is required before utilizing D-dimer test along with Pre Test Probability to diagnose and detect high risk events of VTE in pregnancy.

1. B.Brenner, "Haemostaticchangesinpregnancy," *ThrombosisResearch*, vol. 114, no. 5-6, pp. 409–

414,2004.

- 2. M.Hellgren, "Hemostasisduringnormalpregnancyan dpuerperium," *Seminars in Thrombosis and Hemostasis*, vol. 29, no.2,pp.125–130,2003.
- 3. P. B. Szecsi, M. Jorgensen, A. Klajnbard, M. R. Andersen, N. P.Colov,andS.Stender,"Haemostaticreferenceinterv alsinpregnancy,"*ThrombosisandHaemostasis*,vol.1 03,no.4,pp.718–727,2017.
- 4. <u>BellartJ,GilabertR,FontcubertaJ,etal.Fibrinolysischangesin</u> normalpregnancy. *JPerinatMed*. 1997;25(4):368–372.
- 5. <u>ChablozP,ReberG,BoehlenF,etal.TAFIantigenandD-dimer</u>
- levels during normal pregnancy and at delivery.Br J

 Haematol.2001;115(1):150–152.
 - 6. RCollObstetGynaecol.Reducingtheriskofvenousthr omboembolismduringpregnancyandthepuerperium(

Green-topGuidelineNo.37a).3rded.London.RCOG;2018.

- 7. Bates S. M., Jaeschke R., Stevens S. M., et al. Diagnosis of DVT:antithrombotictherapyandpreventionofthromb osis,9thed:Americancollegeofchestphysiciansevide nce-basedclinicalpracticeguidelines. *Chest*. 2012;**141**(2,s upplement):e351S–e418S.
- 8. BourjeilyG.,PaidasM.,KhalilH.,Rosene-MontellaK.,RodgerM.Pulmonary embolism in pregnancy. *The Lancet*. 2010; **375** (9713):500– 512.]
- 9. James A.H. Prevention and treatment of venous thromb oembolism in pregnancy. *Clinical Obstetrics and Gyne cology*. 2012;**55**(3):774–787.
- LinkinsLA, TakashLS. Review of Ddimertesting:
 Good, Badand Ugly. Int JLab Hematol. 2017;39(S1):98-103.
- Kline JA, Williams GW, Hernandez-Nino J. D-dimer concentrations in normal pregnancy: new diagnostic thresholds are needed. Clin Chem. 2005 May;51(5):825-9. doi: 10.1373/clinchem.2004.044883. Epub 2005 Mar 11.

PMID: 15764641.

12.Zaini R, Rehaili-Al-Amani,KufiaRahma.Evaluation of Plasma D-Dimer Concentration among normal and complicated

pregnancies, Saudi Arabia. International Journal of Women's shealth and Reproductive Sciences; Vol 7, no. 1,

January 2019, 17-23

13.Zaini R, Rehaili-Al-Amani, KufiaRahma. Evaluation of Plasma D-Dimer Concentration among normal and complicated pregnancies, Saudi Arabia. International Journal of Women's health and Reproductive Sciences; Vol 7, no. 1, January 2019, 17-23

- 14. Choi,H.,Krishnamoorthy,D.ThediagnosticutilityofDdimerandother clinical variables in pregnant and post-partum patients withsuspectedacutepulmonaryembolism. *IntJEmergMed* 11,10(2018).
- 15. Hedengran KK, Andersen MR, Stender S, Szecsi PB. Large D-Dimer Fluctuation in Normal Pregnancy: A Longitudinal Cohort Study of 4,117 Samples from 714 Healthy Danish Women. ObstetGynecol Int. 2016;2016:3561675. doi: 10.1155/2016/3561675. Epub 2016 Apr 17. PMID: 27190521; PMCID: PMC4852125.

16.

OritaY,HamadaT,TogamiS,DouchiT,KobayashiH.TheOptimalCut off Level of D-Dimer during Pregnancy to Exclude Deep VeinThrombosis, and the Association between D-Dimer and PostpartumHemorrhage in Cesarean Section Patients. Kurume Med J. 2021 Jul21;66(2):107-114

17. Chan WS, Lee A, Spencer FA, Chunilal S, Crowther M, Wu W,Johnston M, Rodger M, Ginsberg JS. D-dimer testing in pregnantpatients:towardsdeterminingthenext'level'inthediagnosis of deepveinthrombosis.JThrombHaemost.2010May;8(5):1004-11

- 18. Maternal Asian ethnicity and obstetric intrapartum intervention:a retrospective cohort study. Maya reddy et al.
- 19. AdamSS,KeyNS,GreenbergCS.D-dimerantigen:currentconceptsand

futureprospects.Blood.2009;113:2878–2887.

20.

Keeling DM, Mackie IJ, Moody A, et al. The diagnosis of deep veinthrough the control of the co

mbosis in symptomatic outpatients and the potential for clinical assessment and Ddimer assays to reduce the need for diagnostic imaging. Br J Haematol. 2004;124:15–25.

21.Righini M, Robert-Ebadi H, Elias A, et al.; CT-PE-Pregnancy Group. Diagnosis of pulmonary embolism during pregnancy: a multicenter prospective management outcome study. Ann Intern Med. 2018;169:766-773.

22. van der Pol LM, Tromeur C, Bistervels IM, et al. Pregnancy-adapted YEARS algorithm for diagnosis of suspected pulmonary embolism. N Engl J Med. 2019;380:1139-1149

23.

24 Dronkers CEA, van der Hulle T, Le Gal G, et al.; Subcommittee on Predictive and Diagnostic Variables in Thrombotic Disease. Towards a tailored diagnostic standard for future diagnostic studies in pulmonary embolism: communication from the SSC of the ISTH. J ThrombHaemost. 2017;15:1040-1043.

XX. Kovac M, Mikovic Z, Rakicevic L, Srzentic S, Mandic V, Djordjevic V, Radojkovic D, Elezovic I. The use of D-dimer with new cutoff can be useful in diagnosis of venous thromboembolism in pregnancy. Eur J ObstetGynecolReprod Biol. 2010 Jan;148(1):27-30. doi: 10.1016/j.ejogrb.2009.09.005. PMID: 19804940.23

Table 1: List of exclusion criteria for pregnant females to be included in final study group.

Sno	EXCLUSION CRITERIA AT	EXCLUSION CRITERIA
	THE TIME OF	DURING PRESENT
	REGISTRATION	PREGNANCY
1	Age < 20 years> 35 years	Gestational diabetes
2	Family or personal history of	Preeclampsia/ Eclampsia
	thromboembolic disorder	
3	Morbid obesity (BMI >40 Kg/m2)	Abruption placenta
4	Family or personal history of	. Cholestasis of pregnancy
	bleeding disorder	
5	Infection with fever (>38 C)	Acute fatty liver of pregnancy
6	History of Autoimmune disorders	Intrauterine growth restriction
7	History of liver or kidney disease	Still birth
8	If taking any anticoagulant (oral or	Inability to return to the
	parenteral)	hospital due to geographical
		inaccessibility
9	History of any recent surgery	
10	History of diabetes mellitus/	
	hypertension	
11	Previous obstetric complications	
	(still birth/ Intrauterine growth	
	restriction/ spontaneous abortion/	
	abruption placenta/ gestational	
	diabetes/ preeclampsia/ eclampsia).	

TABLE 2: DISTRIBUTION OF D DIMER ACCORDING TO AGEOFTHEPATIENTS (N=17)

	Agecategory	N	Mean	Std. Deviation	Minimum	Maximum	P value
1sttrime	20-25	5	257.60	74.718	135	319	
ster	20-23		237.00	74.710	133	317	
Stel	26-30	7	293.43	61.161	188	368	0.093
	31-35	5	401.80	155.938	255	577	
	Total	17	314.76	111.648	135	577	
2ndtrim	20-25	5	393.80	136.959	272	625	
ester	26-30	7	303.29	59.601	238	402	
	30-35	5	440.60	224.850	227	757	0.001
	Total	17	370.29	149.474	227	757	0.284
3rdtrime	20-25	5	524.80	204.390	194	733	
ster	26-30	7	332.57	96.005	205	520	
	30-35	5	432.80	295.913	204	929	0.007
	Total	17	418.59	206.438	194	929	0.295
4week	20-25	5	301.40	128.436	187	520	

postpar	26-30	7	231.00	43.882	183	293	
tum	30-35	5	300.60	96.996	231	470	
	Total	17	272.18	91.974	183	520	0.3 23

TABLE 3: DISTRIBUTION OF D DIMER ACCORDING TOPARITY

				1 - 1		T	1
			1 st	2 nd	3 rd	4	P
Parity			trimester	trimester	trimester	ks wee	value
						postpartum	
Nulliparou s	N		11	11	11	11	
	Mean		315.0000	401.9091	451.2727	273.2727	
	Std.Deviat	ion	95.05262	176.1524 6	236.0284 3	90.65329	
	Minimum		188.00	227.00	194.00	183.00	0.01
	Maximum		565.00	757.00	929.00	520.00	6
	Percentile s	25 th	267.0000	272.0000	283.0000	219.0000	
		50th (Median	310.0000	324.0000	349.0000	262.0000	
		75 th	319.0000	594.0000	637.0000	293.0000	
2 nd	N		6	6	6	6	
pregnancy							
	Mean		314.3333	312.3333	358.6667	270.1667	
	Std.Deviat	ion	147.7100 8	56.62744	135.2622 1	103.08330	

Minimur	n	135.00	238.00	205.00	183.00	
Maximu	n	577.00	390.00	559.00	470.00	0.28
Percentil s	e 25 th	225.0000	257.5000	234.2500	206.2500	1
	50th (Median)	280.5000	312.5000	335.0000	236.5000	
	75 th	412.7500	365.2500	495.2500	328.2500	
TestApplied-Friedm	antest					

Table 4: MEAN VALUE OF D-DIMER IN EACH TRIMESTER OFPREGNANCY AND4

WEEKSPOSTP	ARTUM(n	=17)			4week	
		1sttrime	2ndtrime	3rdtrime	postpa	P
		ster	ster	ster	rtum	value
Mean(ng/ml)		314.76	370.29	418.59	272.18	
Std.Deviation		111.648	149.474	206.438	91.974	
(ng/ml)						
Minimum		135	227	194	183	
(ng/ml)						0.005
Maximum(ng/ml)		577	757	929	520	
Percentiles	25 th	261.00	268.00	263.50	216.50	
	50th	302.00	321.00	344.00	245.00	
	(Median)					
		-3836			38	32

Table 5: Comparison of Mean and Reference ranges in current study and previous publications on D-dimer levels in Pregnancy. D-Dimer (ng/ml)

С	A 41	C ₄ 1	• ,	т 1	A .	1 et	2st	3st	C 0 1
Sn	Author	Study	instrumen	Journal	Age	1 st			6-8 weeks pos
О		population	t	/year	group	trimester/	trimester/	trimester	partum
						Range	Range	/ Range	
1		89	Instrumen	2009	18-40	222 (121-	326 (171-	475(206-	223(110-390)
	Mirjan		tation			474)	733)	890)	
	a et al		laboratory						
			(IL)						
2	Aldona	37	Enzyme	2020	25-44	376	688	1082	Not done
	et al		linked			(247-	(252-	(646-	
	(64)		fluorescen			505)	1124)	1168)	
			ce assay						
3	Nornat	101	ACL top	2019	18-48	481	1073	1533	Not included
	tasa		machine			(<1070)	(357-	(771-	
	(69)						1748)	2410)	
4	Tang	Metanalysi	variable	2018	18-44	570ng/ml	980ng/ml	1480ng/	790ng/ml (430
	et al	s (30				(430-710)	(750-	ml	1160)
		Studies,155					1210)	(1810-	ŕ
		14)					ĺ	1770)	
5	Our	18	ACL Elite	2022	20-35	314 ng/ml	370 ng/ml	418	223 ng/ml(216
	study		pro			(261-338)	(268-396)	ng/ml	287)
			_				<u> </u>	(263-	
								539)	

Table 6: Pattern of D-dimer values when cut off is kept at >500 ng/ml instead of 255 ng/mlas given in kit insert of reagent.

Cut off	1 ST	1 ST	1 ST	Po
value	Trim	Trim	Trim	st
of D-	ester	ester	ester	par
dimer				tu
				m
>255ng	76%	88.2	76%	53
m/ml		%		%
>500	12%	18%	35%	5%
ng/ml				

Table 7: Comparison between D-dimer values in 17 subjects with normal pregnancy with pregnant cases with DVT.

	1 st trimester								
group	Group I (OUR VALUES) (1st trimester)	Group II (Confirmed cases of DVT in preg ±) Marjana et al(1st trimester	t	df	95% Confidence Interval	P value			
N	17	10	30.36	25	-1369 to -	<.0001			

Mean± SD	313.76 ± 111.64	1596 ± 95			1195.28		
SEM	27.07	30					
	1	2 nd tri	meste	r			
N	17	10	5.52	25	-1318.42 to -601.57	<.0001	
Mean± SD	370 ± 149.47	1330±700			-001.37		
SEM	36.25	221.36					
		3 RD Tr	imest	er		1	
N	17	10	6.64	25	-966.09 to - 508.72	<.0001	
Mean± SD	418.6±206.43	1156 ±374			300.72	<.0001	
SEM	50	118.27					