Aquatic Weeds in the Ponds of Kanyakumari District, Tamilnadu, India.

Section A-Research paper

Aquatic Weeds in the Ponds of Kanyakumari District ,Tamilnadu, India. Reena R.L and David Samuel. P Department of Botany and Research Centre, NMCC Marthandam. (Affiliated to M.S University, Tirunelveli.) R.L.Reena (Research scholar), Department of Botany, Nesamony memorial Christian College Marthandam. Email:reenaveena1989@gmail.com Mobile number: 7598240972. Reg no. 12206 Dr.P.David Samuel, Assistant professor, Department of Botany, Nesamony Memorial Christian College Marthandam,

Abstarct:

The present study was conducted to find out aquatic weeds in the ponds of Kanyakumari district, Tamilnadu, India during the year 2020 to 2021. A total of 101 plant species belonging to 37 families and 49 genera were documented. Out of 101 species, about 46 Emergent Weeds followed by Submerged weeds (14), Free floating weeds (22) Rooted floating weeds (12), Temporary water situation weeds (7 species). The dominant aquatic weeds were *Eichhornia crassipes, Ipomoea carnea, Pistia stratiotes,* and *Salvinia molesta*. The invasive aquatic weeds were *Eichhornia crassipes, Ipomoea carnea, Pistia stratiotes,* Trapa natans, Typha angustifolia. The medicinal uses of aquatic weeds were *Eichhornia crassipes, Hydrilla verticillata, Ipomoea aquatica, Nelumbo nucifera, Typha angustifolia.* A number of weeds such as *Nelumpo nucifera, Ipomoea aquatica, Trapa natans, Typha angustifolia* are reported to have been used for edible use. Various recommendations and measures have been suggested to improve the biodiversity of aquatic weeds of the study areas.

Key Words: Aquatic weeds, Agriculture, Biodiversity, Dominant, Emergent, Floating, Submerged, Medicinal

Introduction:

The term aquatic weeds refers to a large variety of aquatic plants, ranging from large filamentous algae to emergent reeds and cattails, which interfere with one or the other use of the water resources in a water body (river, lake, reservoir, fish pond or paddy field). An aquatic weed is an unscrupulous growth of a plant that influences adverse physical demand or biological effects on a water body with its resultant economic and aesthetic losses (Gupta, 1979).

Aquatic weeds also pose significant threat to wetlands and related agricultural systems. Wetlands are generally rich in nutrients, have shallow water and normally support extensive

growth of a large variety of macrophytes. These macrophytes provide shelter, food, nesting and breeding sites for most of the waterfowls, fishes and also other aquatic biota. Hence they cannot be always considered as weeds. It is only when some plant species start growing in such large proportions that they reduce or eliminate the growth of other desirable plants affecting other biota and their normal utilization of the wetland, they become weeds. In most cases, such weed species are not the normal components of the wetland and often introduced from other areas (Chandran, 2009).

Weed menace is one of the persistent environmental problems faced globally. Even the most developed nations like USA and UK spend huge sum of resources not to eradicate but just to keep the spread of weed's under control. Rest of the nations throughout the world also continue with their efforts to control the weeds, especially the aquatic and wetland weeds, as they became major environmental nuisance for the water resources (Abbasi *et al.*, 1988)

Aquatic weeds change the flavor appearance and taste of drinking water. Aquatic weeds are a menace to fisheries too. Aquatic weeds on decomposition give offensive odors and pollute the atmosphere. Aquatic weeds also hamper transportation through the water. Weeds cause quicker wear and tear to farm implements Lancer and Krake (2002).

Aquatic weeds are those unwanted plants growing in water and complete at least a part of their life cycle in water (Jay Varshney 2008). Aquatic weeds also remove phosphorus, nitrogen and other elements from the water column. Floating weeds causes other problems as well. Dense populations reduce the penetration of light and oxygen through the water column, and mosquitoes find breeding grounds in the stagnant water held by the rosette of plant. Water hyacinth is arguably the nation's worst floating weed, and managers throughout the southern eastern continue to battle this noxious species. The submerged weed hydrilla (Hydrilla *verticillata*) which has been called the world's 'worst weed' was also introduced intentionally as an aquarium plant in the 1950s. (Lyn G Getfys 2014) noxious weed cause a number of problems in aquatic ecosystems it crowds out native plants to form monocultures, which are poor habitat for aquatic wildlife and fish. Many herbicides are used to control submerged, emerged and floating aquatic weeds (Frank 1963). Aquatic weeds change the flavor appearance and taste of drinking water. Aquatic weeds are a menace to fisheries too. Aquatic weeds on decomposition give offensive odors and pollute the atmosphere. Aquatic weeds also hamper transportation through the water. Weeds cause quicker wear and tear to farm implements. The presence of weeds around our living and working places makes the surroundings dull (Lidia Lancar, 2002)

Materials and Methods:

Study area:

The Kanyakumari district region is blessed with a good number of fresh water ponds and dams harbouring a great variety of aquatic weeds. The present survey was carried out in select ponds of Kanyakumari district, Tamilnadu, India. The district lies between 77° 07'-77° 35 E, 08° 35'-08 ° 35'N, and it occupies an area of about 1672 sq.Km. A total of 40 ponds of Kanyakumari district were selected randomly The name of the ponds were Puthukulam, Ulavankulam, Parayadikulam, Nullikulam, Thayanankulam, Nedunkulam, Devikulam, Venkattukulam,

Chenkulam, Vallikulam, Kadayalmathukulam, Kurunkalloorkulam, Karamankulam, pasikulam, Upoorikulam, Palakulam, Alankulam, Kakachankulam, Edappurukulam, Perunkulam, Ettiyarkulam, Sasthankulam, Kottarakonathukulam, Chanikulam, Udappukulam, Pottakulam, Kaavikulam, Vanniyarkulam, Kanchirankulam, Annuvalthikulam, Puttakulam, Amalakulam, Kattukulam, Pachikulam, Kattikulam and Madathukulam.(Plate.1,2; Annexure:1)

Plate :1. Map Showing selected ponds in Kanyakumari District

Floristic study:

Frequent and regular field visits have been made in the study area with a view of document aquatic weed flora. Field surveys have been carried out in study area during 2020 to 2021, covering different seasons. During field trips voucher specimens of every species was collected in flowering and fruiting stages and detailed field notes were prepared on the spot. Special emphasize was given on data pertaining to habit, habitat association with other species. Collection and preservation were made as per the procedure given by (Jain and Rao, 1977), (Nayar *et al.*, 2014). Initially identification was provisionally done by using (Gamble- Fischer 1915-1936), (Charles Bryson *et al.*, 2009) Available monographs and relevant literature were also consulted for the same. The specimens were then poisoned with Mercuric Chloride in alcohol. Further process of pressing, mounting and labeling were done following the instructions given by (Jain and Rao, 1977). The mounted specimens were deposited in the Herbarium of Botany Department and Research Centre N.M.C.College Marthandam.

Aquatic Weeds in the Ponds of Kanyakumari District, Tamilnadu, India.

Section A-Research paper

Plate :2 Type of Weed infestation in ponds of Kanyakumari District

Result and Discussion

The Present study 101 plant species 49 genera belonging to 17 families were identified from the ponds. A total of 101 plant species belonging to 37 families and 49 genera were documented perennials comprised about 71% of the aquatic weeds in the study and annuals comprised 23% remaining are throughout the year. The family Potamogetonaceae, Poaceae has (6 species each) Salviniaceae has 5 species, Pontedericeae, Nymphaceae (4 species each) Typhaceae, Onagraceae Amaranthaceae, Characeae, Cyperaceae, (3 species each)Alismataceae Asteraceae, Hydrocharitaceae, Convolvulaceae, Araceae (2 species each) remaining 18 families are monospecific. (Figure.1). Out of 101 species, about 46 Emergent Weeds followed by Submerged weeds (14), Free floating weeds (22) Rooted floating weeds (12), Temporary water situation weeds (7 species). The dominant aquatic weeds were Eichhornia crassipes, Ipomoea carnea, Pistia stratiotes, and Salvinia molesta. The invasive aquatic weeds were Eichhornia crassipes, Ipomoea carnea, Pistia stratiotes, Trapa natans and Typha angustifolia. The medicinal uses of aquatic weeds were Eichhornia crassipes, Hydrilla verticillata, Ipomoea aquatica, Nelumbo nucifera and Typha angustifolia. A number of weeds such as Nelumpo nucifera, Ipomoea aquatica, Trapa natans and Typha angustifolia are reported to have been used for edible use (Plate.3).

Figure: 1. Habitatwise distribution of the aquatic weeds in the study area.

Water hyacinth (*Eichhornia crassipes*) and *Ipomoea carnea* are the two major problem weeds that are invading these ponds vigorously. *Ipomoea carnea* invades the edges and shallow are whereas the water hyacinth is spreading over a wider area. Together, these species are playing a major role in degrading and altering the natural habitat available to the aquatic ponds. (Labrada 1996) reported 140 aquatic weeds. *Eichhornia crassipes, Salvinia molesta, Nymphaea stellata, Nelumpo nucifera, Hydrilla verticillata, Vallisneria spriralis, Typha angustata, Chara, Nitella, Ipomoea sps..etc. Salvinia molesta, Hydrilla verticillata and Pistia stratiotes are primary aquatic weeds of the world (Gopal and Sharma 1981). (Siddhwartha <i>et al.,* 2015) reported 10 weed species .Among 3 common groups weeds, four species of floating, four species of emergent and two species of submerged. Recently *Alternanthera philoxeroides* has become a growing menace in water bodies in India (Susilkumar 2004).

Marsilea minuta

Plate:3 Aquatic Weeds of the Study area

Conclusion:

In the present investigation total of 101 plant species belonging to 37 families and 49 genera were

recorded. The dominant aquatic weeds were *Eichhornia crassipes*, *Ipomoea carnea*, *Pistia stratiotes*, and *Salvinia molesta*. Aquatic ecosystems are threatened globally due to their widespread resources which are utilized for human use. Immediate steps are to be taken for their conservation and sustainable utilization and various recommendations and measures have been suggested to improve the biodiversity of aquatic weeds of the study areas.

Reference:

Abbasi, SA Ramasamy, EV (2001) Solid waste management with earthworms'. Discovery publishing house, New Delhi pp 157.

Chandran,S (2009) Studies on the ecology distribution and utilitarian aspects of *Limnocharis flava* Buchenau an invasive aquatic weed in Kuttanad Wetland Ecosystem, Phd thesis Mg university, Kottayam.

Charles Bryson (2009) weed of south (Wormsloe Foundation Nature Book Ser.) University of Georgia Press June 25.

Frank P.A, Hodgson R.H and Coures R.D (1963) Evalution of herbicides applied to soil for control of aquatic weeds in irrigation canals weed sci :124-128.

Gamble J.S and Fischer, C.E.C. (1915-1935) Flora of the presidency of Madras Adlord and Sons Limited, London.

Gopal and Sharma K.P (1981) water hyacinth the most troublesome weeds of the word Hindasia Publisher, New Delhi pp 129-91.

Gupta, OP (1979) Aquatic weeds, their menace and control, Today and Tomorrows oublishers, New Delhi, pp 172-175.

Jain S.K and Rao R.R (1977). A hand book of field and herbarium methods. Today and Tomorrow publication, New Delhi.

Jay G Varshney, Susilkumar and Mistra J.J (2008) Proceeding of Taal 2007 the 12th world lake conference 1039-1045.

Labrada R (1996) Status of water hyacinth in developing countries. Food and agriculture organization of the United State room Itally pp 3-11.

Lidia Lancar and Kevin Krake (2002) aquatic weeds and their management. ICID.CIID International commission on irrigation and drainage

Lyn A Getfys (2014) aquatic weed management control methods. SRAC publication No 360 Southern Regional Aquaculture centre.

Nayar, T.S., Rasiya Beegam, A.R and Sibi, M (2014). Flowering plants the Western Ghats India.

Siddhwartha Kumar Baskar, Mir Mohammad Ali Md, Shafiqul Islam, Pappa Raj Shaha (2015). Aquatic weeds of Haor area in Koshoregonj district, Bangladesh: Availability, threats and management approaches. Int .J. Fisheries and Aquatic studies 2(6):151-156.

Suresh C.Jain (2018) Aquatic weeds and their management in India. J.N,Agriculture University campus Indore, Madhya Pradesh, India.

Susilkumar (2003) Annual progress report 2001-2001 of the project role of insects in suppression of problematic alligator weeds Alternanthera philoxiroids and testing of herbicides for its integrated management Funded by ICAR, new Delhi.

Name	Туре	Family	Life cycle
Alisma plantago L.	Emergent amphibious hydrophyte	Alismataceae	Perennial
Ammania octandra L.F	Emergent amphibious hydrophyte	Lythraceae	Annual
Aponogeton natans (L.) Engl. &K.Krause	Free floating hydrophyte	Aponogetonaceae	Annual
Azolla filiculoides Lam.	Free floating hydrophyte	Salviniaceae	Annual
Azolla imbricata Waxai.	Free floating hydrophyte	Salviniaceae	Annual
Azolla pinnata R.Br.	Free floating hydrophyte	Salviniaceae	Annual
Bergia capensis L.	Emergent amphibious hydrophyte	Elatinaceae	Perennial
Ceratophyllum demersum L.	Free floating hydrophyte	Ceratophyllaceae	Annual
Chara zeylanica L.	Submerged hydrophyte Characeae		Perennial
Commelina paludosa Blume.	Emergent amphibious hydrophyte Commelinacea		Perennial
Cyperus arenarius Retz.	Emergent amphibious hydrophyte	Cyperaceae	Perennial
Cyperus articulatus L.	Emergent amphibious hydrophyte	Cyperaceae	Perennial
Cyperus bulbosus Vahl.	Emergent amphibious hydrophyte	Cyperaceae	Perennial
Cyperus exaltatus Retz.	Emergent amphibious hydrophyte	Cyperaceae	Perennial
Cyperus squarrosus L.	Emergent amphibious hydrophyte	Cyperaceae	Perennial
Eichhornia crassipes (Mart.)Syn.	Free floating hydrophyte Pontedericeae		Perennial
<i>Eleocharis geniculata</i> (L.)Roem.&Schult	Emergent amphibious hydrophyte	Cyperaceae	Annual or perennial
Elodea canadensis Michx.	Rooted Submerged hyrophyte Hydrocharitaceae		Perennial
Eragrostis pilosa (L.)P.Beauv	Emergent amphibious	Poaceae	Perennial

Table 1: Aquatic weeds in the study area

	hydrophyte			
Eragrostis riparia	Emergent amphibious Poaceae		Perennial	
(Willd.)Nees	hydrophyte	1 000000	Terennia	
Eriocaulon thwaitesii Korn	Emergent amphibious	Eriocaulaceae	Perennial	
Entertain invaliesti Koni	hydrophyte	Littoeudideede	rerennur	
Eriochloa procera (Retz.)	Emergent amphibious	Poaceae	Perennial	
C.E.Hubb	hydrophyte	Toaceae	rerenniar	
Fimhristylis aestivalis Vahl	Emergent amphibious	Cyperaceae	Perennial	
	hydrophyte	Cyperaceae	rerennur	
Fimbristylis argentea	Emergent amphibious	Cyperaceae	Perennial	
(Rottb.)vahl	hydrophyte	Cyperaceae	rerenniar	
Fimbristylis cymosa P Br	Emergent amphibious	Cyperaceae	Derennial	
Timonstytis Cymosa R.DI.	hydrophyte	Cyperaceae	I cremitar	
Fimbristylis dipsacea	Emergent amphibious	Cyperaceae	Perennial	
(Rottb.)C.B.Clarke	hydrophyte	Cyperaceae	reiemilai	
Fimbristylis ferruginea	Emergent amphibious	Cyperaceae	Derennial	
(L.)Vahl	hydrophyte	Cyperaecae	I cicinnai	
Fimbristylis quinquangularis	Emergent amphibious	Cuperaceae	Derennial	
(Vahl)Kunth	hydrophyte	Cyperaceae	rerennar	
Hydrilla verticillata Royle.	Rooted Submerged hyrophyte	Hydrocharitaceae	Perennial	
Hydrocera triflora (L.)Wight	Emergent amphibious	Delegnine and	Denomial	
&Arn.	hydrophyte	Balsaminaceae	Perennial	
Hydrocharis morsus-ranae L.	Floating hydrophyte	Hydrocharitaceae	Annual	
Hydrocotyle umbellata L.	Floating hydrophyte	Hydrocotylaceae	Perennial	
Increase aquation loop	Pooted floating hydrophyte	Convoluniogogo	Throughout	
<i>Ipomoea aquanca</i> Jacq.	Rooted hoating hydrophyte	Convolvulaceae	the year	
Jussiacea repens L.	Floating hydrophyte	Onagraceae	Perennial	
Lemna minor L.	Free floating hydrophyte	Araceae	Perennial	
Lemna perpusilla Torr.	Free floating hydrophyte	Araceae	Perennial	
Leptochoa panicea	Emergent amphibious	Decesso	Domennial	
(Retz.)Ohwi	hydrophyte	Poaceae	Perennial	
Limnophila heterophylla	Submerged suspended	Dianta sin asaa	D 11	
(Roxb.)Benth	hydrophyte	Plantaginceae	Perennial	
Limmonhila indian (L) Duran	Emergent amphibious	Diantaginasas	Perennial	
Limnophila inalca (L.)Druce.	hydrophyte	Fiantaginceae		
Lindernia hyssopoides	Emergent amphibious	Lindomicana	Annual	
(L.)Haines	hydrophyte	Linderniaceae Annua		

<i>Ludwigia adscendens</i> (L.)H.Hara.	Rooted Submerged hyrophyte Onagraceae		Perennial
Ludwigia parviflora L.	Floating hydrophyte	Onagraceae	Perennial
Marsilea minuta L.	Temporary water situation hydrophyte	Marsileaceae	Throughout the year
Meteranthera limosa (SW)Wild.	Temporary water situation hydrophytePontedericeae		Perennial
Monochoria vaginalis Presi.	Temporary water situation hydrophyte	Pontedericeae	Annual
Myriophyllum spicatum L.	Rooted Submerged hyrophyte	Holorhagaceae	Perennial
Najas graminea Delile.	Submerged hydrophyte	Hydrocharitaceae	Perennial
Najas minor All.	Submerged hydrophyte	Najadaceae	Annual
Nelumpo alba L.	Rooted floating hydrophyte	Nymphaceae	Perennial
Nelumpo nucifera G.	Rooted floating hydrophyte	Nymphaceae	Perennial
Neptunia oleraceae Lour.	Floating hydrophyte	Fabaceae	Perennial
Nitella hyalina C.Agardh	Submerged hydrophyte	Characeae	Perennial
Nuphar lutea L.	Rooted floating hydrophyte	Rooted floating hydrophyte Nymphaceae	
Nymphaea alba L.	Rooted Submerged hyrophyte	Nymphaceae	Perennial
Nymphaea pubescens Willd.	Floating hydrophyte	Nymphaceae	Annual
Nymphoides hydrophylla	Emergent amphibious		
(Lour.)Kuntze	hydrophyte	Menyanthaceae	Perennial
<i>Nymphoides indica</i> (L.)Kuntze.	Floating hydrophyte	Menyanthaceae	Perennial
Ottelia alismoides (L.)Pers.	Submerged hydrophyte	Hydrocharitaceae	Perennial
Panicum maximum Jacq.	Emergent amphibious hydrophyte	Poaceae	Perennial
Panicum perpurascens Raddi.	Temporary water situation hydrophyte	Poaceae	Perennial
Parkinsonia aculeata L.	Emergent amphibious hydrophyte	Fabaceae	Perennial
Paspalidium flavidium (Retz.) A.Camus	Emergent amphibious hydrophyte	Poaceae	Throughout the year
Paspalum distichum L.	Emergent amphibious hydrophyte	gent amphibious Poaceae	
Paspalum fluitans Kunth.	Temporary water situation hydrophyte	Poaceae	Perennial
Persicaria amphibia (L.)Gray	Free floating hydrophyte	Polygonaceae	Perennial

Phragmites australis	Emergent amphibious	Poaceae	Perennial
(Cav.)Trin. Ex Steud.	hydrophyte		
Phragmites communis Trin	Emergent amphibious hydrophyte	Poaceae	Perennial
Phragmites karka	Emergent amphibious	Doncono	Doronnial
(Retz.)Trin.ex Steud.	hydrophyte	Foaceae	Felelillai
Pistia stratiotes L.	Free floating hydrophyte	Araceae	Perennial
Polygonum glabrum Willd.	Emergent amphibious hydrophyte	Polygonaceae	Perennial
Pontederia cordata L.	Emergent amphibious hydrophyte	Pontedericeae	Perennial
Potamogeton crispus L.	Rooted Submerged hyrophyte	Potamogetonaceae	Perennial
Potamogeton natans L.	Submerged hydrophyte	Potamogetonaceae	Perennial
Potamogeton nodosus L.	Submerged hydrophyte	Potamogetonaceae	Perennial
Potamogeton pusillus L.	Submerged hydrophyte	Potamogetonaceae	Perennial
Pycreus flavescens (L.)	Emergent amphibious	Cuparagaga	Doronnial
P.Beauv.ex.Rchb	hydrophyte	Cyperaceae	retellinai
Rhynchosia minima (L.)DC.	Emergent amphibious hydrophyte	Fabaceae	Perennial
Rhynchospora corymbosa	Emergent amphibious	Cuperaceae	Perennial
(L.)Britton	hydrophyte	Cyperaceae	Felelillai
Sacciolepis indica (L.) Chase	Emergent amphibious hydrophyte	Poaceae	Perennial
Sagittaria guayanensis kunth.	Rooted floating hydrophyte	Alismataceae	Perennial
Salvinia auriculata (Mitch)Syn.	Free floating hydrophyte	Salvinaceae	Annual
Salvinia molesta D.Mitch	Free floating hydrophyte	Salvinaceae	Annual
Salvinia natans (L.)All.	Free floating hydrophyte	Salvinaceae	Annual
<i>Schoenoplectiella articulata</i> (L.) Lye	Emergent amphibious hydrophyte Cyperaceae		Perennial
<i>Spirodela polyhiza</i> (L.)Schlcid.	Free floatin7g hydrophyte	ree floatin7g hydrophyte Araceae	
Spirogyra porticalis Link,C.G.Nees	Submerged hydrophyte Chloraphyceae		Annual
Sporobolus indicus (L.)Rr.	Emergent amphibious hydrophyte	Poaceae	Perennial
<i>Stuckenia pectinata</i> (L.)Boerner.	Submerged hydrophyte	Potamogetonaceae	Perennial

Trapa bispinosa Roxb.	Floating hydrophyte Trapaceae		Perennial
Trapa natans L.	Emergent amphibious hydrophyte	Trapaceae	Perennial
Typha latifolia L.	Emergent amphibious hydrophyte	Typhaceae	Perennial
Typha angustata L.	Emergent amphibious hydrophyte	Typhaceae	Perennial
Typha orientalis C.Presl.	Emergent amphibious hydrophyte	Typhaceae	Perennial
Utriculari stellaris L.f	Submerged suspended hydrophyte	Lentibulariac eae	Annual
Utricularia aurea Lour.	Submerged suspended hydrophyte	Lentibulariaceae	Annual
Utricularia flexuosa Vahl.	Rooted Submerged hyrophyte	Lentibulariaceae	Perennial
Vallisneria natans (Lour.)H.Hara	Submerged hydrophyte	Hydrocharitaceae	Perennial
Vallisneria spiralis L.	Submerged hydrophyte	Hydrocharitaceae	Perennial
Waltheria indica L.	Emergent amphibious hydrophyte Malvaceae		Perennial
<i>Wolffia globasa</i> (Roxb)Hartog &Plas	Floating hydrophyte	Araceae	Perennial
Zannichellia palustris L.	Rooted floating hydrophyte	Zannichelliaceae	Perennial

Fig .2. Type of aquatic weeds in the study area

Fig 3: Familes of the aquatic weeds in the study area.

Water hyacinth (*Eichhornia crassipes*) and *Ipomoea carnea* are the two major problem weeds that are invading these ponds vigorously. *Ipomoea carnea* invades the edges and shallow are whereas the water hyacinth is spreading over a wider area. Together, these species are playing a major role in degrading and altering the natural habitat available to the aquatic ponds. (Labrada 1996) reported 140 aquatic weeds. *Eichhornia crassipes, Salvinia molesta, Nymphaea stellata, Nelumpo nucifera, Hydrilla verticillata, Vallisneria spriralis, Typha angustata, Chara, Nitella, Ipomoea sps..etc. Salvinia molesta, Hydrilla verticillata and Pistia stratiotes are primary aquatic weeds of the world (Gopal and Sharma 1981). (Siddhwartha <i>et al.,* 2015) reported 10 weed species .Among 3 common groups weeds, 4 species of floating, 4 species of emergent and 2 species of submerged. Recently *Alternanthera philoxeroides* has become a growing menace in water bodies in India (Susilkumar 2004).

Conclusion:

In the present investigation total of 101 plant species belonging to 37 families and 49 genera were recorded. The dominant aquatic weeds were *Eichhornia crassipe, Ipomoea carnea, Pistia stratiotes,* and *Salvinia molesta*. Aquatic ecosystems are threatened globally due to their widespread resources which are utilized for human use. Immediate steps are to be taken for their conservation and sustainable utilization and various recommendations and measures have been suggested to improve the biodiversity of aquatic weeds of the study areas.

Reference:

Charles Bryson (2009) weed of south (Wormsloe Foundation Nature Book Ser.) University of Georgia Press June 25.

Frank P.A, Hodgson R.H and Coures R.D (1963) Evalution of berbicides applied to soil for control of aquatic weeds in irrigation canals weed sci :124-128.

Gamble J.S and Fischer, C.E.C. (1915-1935) Flora of the presidency of Madras Adlord and Sons Limited, London.

Gopal and Sharma K.P (1981) water hyacinth the most troublesome weeds of the word Hindasia Publisher, New Delhi pp 129-91.

Gupta, OP (1979), 'Aquatic weeds, their menace and control, Today and Tomorrows oublishers, New Delhi, pp 172-175.

Jain S.K and Rao R.R (1977). A hand book of field and herbarium methods. Today and Tomorrow publication, New Delhi.

Jay G Varshney, Susilkumar and Mistra J.J (2008) Proceeding of Taal 2007 the 12th world lake conference 1039-1045.

Labrada R (1996) Status of water hyacinth in developing countries. Food and agriculture organization of the United State room Itally pp 3-11.

Lidia Lancar and Kevin Krake (2002) aquatic weeds and their management. ICID.CIID International commission on irrigation and drainage

Lyn A Getfys (2014) aquatic weed management control methods. SRAC publication No 360 Southern Regional Aquaculture centre.

Nayar, T.S, Rasiya Beegam, A.R and Sibi, M (2014). Flowering plants the Western Ghats India.

Siddhwartha Kumar Baskar, Mir Mohammad Ali Md, Shafiqul Islam, Pappa Raj Shaha (2015). Aquatic weeds of Haor area in Koshoregonj district, Bangladesh: Availability, threats and management approaches. Int. J. Fisheries and Aquatic studies 2(6):151-156.

Suresh C.Jain 2018 Aquatic weeds and their management in India. J.N,Agriculture University campus Indore, Madhya Pradesh, India.

Susilkumar (2003) Annual progress report 2001-2001 of the project role of insects in suppression of problematic alligator weeds *Alternanthera philoxiroids* and testing of herbicides for its integrated management Funded by ICAR, new Delhi.

S.No	Taluk	Site	Locality	Latitude	Longitude
1	Agastheeswaram	P1	Ochenkulam	8.1659°	77.3833° E
				Ν	
2		P2	Nagakuzhikulam	8.1366°	77.3497°E
				Ν	
3		P3	Nadakulam	8.12909°	77.3640 [°] E
				Ν	
4	1	P4	Pammalkulam	8.5659°	77.3833°E
				Ν	

Annexure:1 Location of Ponds Selected for Present Investigation

5		P5	Zillikulam	8.5186 ° N	77.3000 ∘E
6		P6	Karumpattukulam	8.1009° N	77.5362° E
7		P7	Kadankulam	8.1009 ° N	77.5362 ° E
8		P8	Nallikulam	8.2059 ° N	77.3159 ° E
9		P9	Nullikulam	8.5659 ° N	77.3833 ° E
10		P10	Ananthankulam	8.5659 N	77.3833 ° E
11	Kalkulam	P11	Chekkaravilaikulam	8.1832 ° N	77.3192° E
12		P12	Thayankulam	8.2225 [°] N	77.3535 [°] E
13		P13	Periyarkulam	8.1786 ° N	77.2561 ° E
14		P14	Chittankulam	8.1774 ° N	77.3410 E
15		P15	Kuzhikulam	8.2396 ° N	77.3066° E
16	Killiyoor	P16	Chirukulam	8.2489 N	77.4086 E
17		P17	Manchadikulam	8.2456 ° N	77.3156 ° E
18		P18	Narakkulam	8.2370 ° N	77.2493 ° E
19		P19	Pottakulam	8.2456 ° N	77.3156 ° E
20		P20	Karukuzhikulam	8.18312 ° N	77.3192 ° E

21		P21	Vilavacherikulam	8.2312 ° N	77.5060 ° E
22		P22	Chekkadikulam	8.3301 ° N	77.4161 ° E
23		P23	Puthukulam	8.2454 ° N	77.4903 ° E
24		P24	Kattukulam	8.2312 ° N	77.5060 ° E
25		P25	Periakulam	8.2211° N	77.5162 ° E
26		P26	Krishnakulam	8.2111° N	77.5062° E
27		P27	Uthukulam	8.2312 ° N	77.5060 ° E
28		P28	Malayankulam	8.2454 N	77.4903 E
29		P29	Pottanerikulam	8.2749 N	77.4042 E
30		P30	Udayankulam	8.2595 N	77.4272 E
31	Thiruvattar	P31	Puthukulam	8.3997 N	77.2586 E
32		P32	Puliyorkulam	8.3949 N	77.2580 E
33		P33	Kotturukulam	8.3662 ° N	77.2434 ° E
34		P34	Devikulam	8.3446 ° N	77.2376 ° E
35		P35	Palakkulam	8.3310 ° N	77.2219 ° E
36	Vilavancode	P36	Kakachankulam	8.3560 ° N	77.2190 ° E
37		P37	Edappurukulam	8.4033 ° N	77.1902 ° E

38	P38	Perunkulam	8.3129 ° N	77.2048 [°] E
39	P39	Nedunkulam	8.3129 ° N	77.2048 ° E
40	P40	Thattankulam	8.3560 ° N	77.2190 ° E