

CHARACTERISATION OF ORDERED SEMIRINGS BY ORDERED IDEALS AND ORDERED *h*- IDEALS

Muddsar Yaseen Malik^{1*,} D. Sivakumar²

Received August 2022, Revised October 2022, Accepted December 2022,

Abstract

The main aim of this paper is to study ordered regular semirings and ordered h regular semirings by the characteristics of ordered ideals and ordered h ideals it has been shown that each h-regular ordered semiring is ordered h-regular semiring but the converse is not followed. It has also been shown that each regular ordered semiring is ordered h-regular semiring but the converse is not followed. Main and important results relating to operator closure and h-regular ordered semirings are given.

Keywords:- regular ordered semirings, h-regular ordered semirings, ordered h-regular semirings and ordered h-ideals etc.

Mathematics Subject Classification: 16Y99, 16Y60

^{1*}Ph.D Research Scholar,Department of Mathematics,Annamalai University, Annamalai Nagar,Chidambaram 608002,Tamilnadu,India. (E-mail:muddsarmalik807@gmail.com) ORCID: 0000-0001-9421-8470 2Professor, Department of Mathematics,Annamalai University, Annamalai Nagar,Chidambaram-608002,Tamilnadu,India. (E-mail:sivakumarmaths1965@gmail.com) ORCID: 0000-0002-1396-7849

*Correspondence Author:- Muddsar Yaseen Malik

*Ph.D Research Scholar, Department of Mathematics, Annamalai University, Annamalai Nagar, Chidambaram 608002, Tamilnadu, India. (E-mail:muddsarmalik807@gmail.com) ORCID: 0000-0001-9421-8470

DOI: 10.53555/ecb/2023.12.2.052

Introduction

In 1935, Von Neumann proposed the concept of regularity in rings and demonstrated that if the semigroup (S, \cdot) is regular, then the ring $(S, +, \cdot)$ is likewise regular. In 1951,[2] Bourne demonstrated that a semiring $(S, +, \cdot)$ is also regularif $y \in S \exists a, b \in S$, such that y + yay = yby. Ideals are essential in the structure theory of semirings [3].In 2011, the term "ordered semiring" was defined by [5] as a semiring with a partially ordered set (S, \leq) such that \leq is consistent partial order relation with the operations + and \cdot of S. The idea of several left and right ordered ideals is defined in this essay. We have offered ordered ideals in a variety of ordered semiring. *h*-ideal theory was applied by Jianming Zhan and Xueling M A in [5]. We expanded the idea of *h*-ideals in ordered semirings and their types and extended concept of *h*-ideals to demonstrate related results in different cases.

Preliminaries:

Note: When we say S is semiring than it is understood we are talking about $(S, +, \cdot)$.

Definition:[3,7,15] A semiring $(S, +, \cdot)$ is structure having two bilateral operations + and \cdot such that additive reduct (S, +) and multiplicative reduct (S, \cdot) are semigroups and the distributive laws hold: that is u(v + z) = uv + uz and $(u + v)z = uz + vz \forall u, v, z \in S$.

Examples: $(N, +, \cdot)$ and $(W, +, \cdot)$ are both semirings.

Definition: [3,15] Suppose I ≠ φ and I be subset of (S, +, ·) than I is left ideal or right ideal if following properties are satisfied.
(1) a + b ∈ I ∀ a, b ∈ I.
(2) SI ⊆ I or IS ⊆ I.
(3) If I is left and right ideal than I is an ideal of semiring S or two sided ideal of S.

Ordered Semiring

Note: Whenever we say *S* is an ordered semiring that means we are talking about $(S, +, \cdot, \leq)$.

Definition:[7,15] An ordered semiring is algebraic system $(S, +, \cdot, \leq)$ such that

 $(S, +, \cdot)$ is a semiring, (S, \leq) is a partially ordered set and the relation \leq is compatible to the operations + and \cdot on *S*.

Note: \leq is just a symbol which represents partial order relation on set.

Example: Let us take the semiring $(N, +, \cdot)$, where N is the set of +ve integers. Defining the relation R on N by $p R q \Leftrightarrow q \leq p \forall p, q \in N$.

Then (N, R) is a poset (partially ordered set) so $(N, +, \cdot, R)$ is an ordered semiring.

Ordered *h*-ideals in ordered semiring

Definition : [15] Let H, M be the non-void subsets of an ordered semiring S then (H] is defined as $(H] = \{g \in S : g \le h\}$ for some $h \in H$ and $HM = \{hm : h \in H, m \in M\}$.

Definition: [7] Let $H \neq \varphi, H \subseteq S$ where S is ordered semiring, then the *h*-closure of H is denoted by \overline{H} and is defined as $\overline{H} = \{g \in S, \exists x_1, x_2 \in H : g + x_1 + h \leq x_2 + h, h \in H\}.$

Definition : [7,15] Suppose *S* is ordered semiring, $H \neq \varphi$ and $H \subseteq S$ satisfying the given conditions:

(1) H is left ideal or right ideal of S.

(2) If $s \le t$ for some $t \in H$, then $s \in H$.

Then *H* is a left ordered ideal or right ordered ideal. If *H* is both left ordered ideal and right ordered ideal of *S* than *H* is ordered ideal of *S*.

Example: Assume the an ordered semiring $(N, +, \cdot)$, where *N* is the set of counting numbers. Defining the relation ρ on *N* by $s \rho h \Leftrightarrow s \ge h \forall s, h \in N$.

Therefore $(N, +, \cdot, \rho)$ is a poset (partially ordered set). So $(N, +, \cdot, \rho)$ is an ordered semiring and (2N] is ordered ideal in $(N, +, \cdot, \rho)$.

Definition: [7,4] Suppose H is a non-empty subset of semiring S then H is a left ordered h-ideal of S if the below conditions are satisfied:

(1) H is a left ordered ideal of S.

(2) If e + a + t = b + t for some $a, b \in H$, $t \in H$ then $e \in H$.

In the same manner, right ordered h-ideal is defined if H is both a left ordered h-ideal and a right ordered h-ideal of S then H is referred as ordered h-ideal of S.

Definition:[21] Suppose *S* is an ordered semiring if $\forall x \in S \exists$ some $t \in S$ such that $x \leq xtx$ than *S* is said to be regular ordered semiring.

Definition: [7, 21] Let S be an ordered semiring then $a \in S$ is referred to be an ordered h-regular if $a \in \overline{(aSa]}$. If every member of S is ordered h-regular, then S is an ordered h-regular semiring.

Example: Assume the an ordered semiring $(N, +, \cdot)$, where *N* is the set of counting numbers. Defining the relation ρ on *N* by $s \rho h \Leftrightarrow s \ge h \forall s, h \in N$.

Therefore $(N, +, \cdot, \rho)$ is a poset (partially ordered set). So $(N, +, \cdot, \rho)$ is an ordered semiring. Also having the property

 $s + shs + t \le shs + t \forall s, h \in N, t \in N$ therefore $(N, +, \cdot, \rho)$ is an ordered *h*-regular semiring. After the next definition example has been shown which is ordered *h*-regular semiring but not *h*-regular ordered semiring.

Definition :[7] Suppose S is an ordered semiring if for every $a \in S \exists e, h, c \in S$ such that $a + aea + c \leq aha + c$. Then S is *h*-regular ordered semiring.

Example: Given below example shows that *D* is ordered *h*-regular but not h-regular ordered. Let $D = \{d_1, d_2, d_3\}$. Define binary operation + and \cdot on *D* as follow:

+	d_1	d_2	d_3
d_1	d_1	d_1	d_1
d_2	d_1	d_2	d_3
d_3	d_1	d_3	d_3

•	d_1	d_2	d_3
d_1	d_2	d_2	d_2
d_2	d_2	d_2	d_2
d_3	d_2	d_2	d_2

The relation is as $\leq = \{(d_1, d_1), (d_2, d_2), (d_3, d_3), (d_1, d_2), (d_1, d_3), (d_2, d_3)\}$ Than $(D, +, \cdot, \leq)$ is an ordered semiring.

Also $\forall a \in D$ following properties hold.

(1) $a + d_1 + c \le d_2 + c, c \in D$. Where a and c are arbitrarily choosen.

(2) $d_1, d_2 \in (aDa]$ i.e. $d_1 \leq ad_i a$ and $d_2 \leq ad_i a$, for some $ad_i a \in aDa$. Therefore D is an ordered h-regular semiring. Where d_i is some elements of D.

On the other side $d_3 + d_3ad_3 + d_2 \le d_3cd_3 + d_2$ doesn't have solution so D is not an *h*-regular ordered semiring.

Theorem :Assume *S* is ordered semiring and let *H* and *M* are non-void subsets of *S* then *Eur. Chem. Bull.* **2023**, *12*(*Regular Issue 02*), *482-488*

(1) $(\overline{H}] \subseteq \overline{(H)}$ (2) If $H \subseteq M$ then $\overline{H} \subseteq \overline{M}$ (3) $\overline{(H)} M \subseteq \overline{(HM)}$ and $H\overline{(M)} \subseteq \overline{(HM)}$

Proof: (1) Let $x \in (\overline{H}]$. Then $\exists h \in \overline{H}$ such that $x \leq h$. Since $h \in \overline{H}$, then there exist $a, b \in H$ such that $h + a + k \leq b + k, k \in H$. It follows that $x + a + k \leq h + a + k \leq b + k$. Since $H \subseteq (H], a, b \in (H], k \in (H], x \in \overline{(H]}$ *i.e* $(\overline{H}] \subseteq \overline{(H)}$

(2) Assume $H \subseteq M$ and let $x \in \overline{H}$ than there exist $a, b \in H$ such that $x + a + k \leq b + k, k \in H$ By the supposition, we get $a, b, k \in M \implies x \in \overline{M}$, so $\overline{H} \subseteq \overline{M}$ (3) Let $x \in \overline{(H]}$ and $w \in M$. So, there exist $u, v \in (H]$ such that $x + u + s \leq v + s, s \in (H]$. So $xw + uw + sw \leq vw + sw$. Since $u, v, s \in (H]$, $u \leq a$ and $v \leq c$ and $s \leq d$ for some $a, c, d \in H$. So $uw \leq aw \in HM$ and $vw \leq cw \in HM$ and $sw \leq dw \in HM$. $\Rightarrow xw \in \overline{(HM]}$. So $\overline{(H]} M \subseteq \overline{(HM]}$. In the same way we get $H(\overline{M}) \subseteq \overline{(HM)}$.

Theorem: Suppose *H* and *M* are non-empty subsets of ordered semiring *S* with $H + H \subseteq H$ and $M + M \subseteq M$. (1) $H \subseteq (H] \subseteq \overline{H} \subseteq \overline{(H]}$ (2) $H + M \subseteq \overline{H} + \overline{M} \subseteq \overline{(H + M)}$ (3) $\overline{(H]} + \overline{(M]} \subseteq \overline{(H] + \overline{(M)}}$ (4) $\overline{(H]} + \overline{(M]} \subseteq \overline{(H + M)}$

Proof: (1) Clearly $H \subseteq (H]$ Let $g \in (H]$ so by definition of operator $(] \exists p \in H$ such that $g \leq p$ This implies $g + p + p \leq p + p + p$ implies $g \in \overline{H} \Longrightarrow (H] \subseteq \overline{H}$. Since $H \subseteq (H] \Longrightarrow \overline{H} \subseteq \overline{(H]}$. (2) From part (1) we have $H \subseteq \overline{H}$ and $M \subseteq \overline{M}$ implies $H + M \subseteq \overline{H} + \overline{M}$ Now we show that $\overline{H} + \overline{M} \subseteq \overline{H + M}$

Suppose $g \in \overline{H} + \overline{M}$ so there exist $h \in \overline{H}$ and $m \in \overline{M}$ such that g = h + m. Since $h \in \overline{H}$ and $m \in \overline{M}$ so by definition of *h*-closure $\exists p, q \in H$ and $r, s \in M$ such that $h + p + t \leq q + t$ where $t \in H$ and $m + r + u \leq s + u$ where $u \in M$.

Which implies g + p + t + r + u = h + m + p + t + r + uImplies $g + (p + r) + (t + u) \le q + t + s + u$ Implies that = q + s + t + uWhich means $g + (p + r) + (t + u) \le (q + s) + (t + u)$ As $(t + u) \in H + M$ then by definition of *h*-closure, we get $g \in \overline{H + M}$ Implies $\overline{H} + \overline{M} \subseteq \overline{H + M}$.

(3) Suppose $g \in \overline{(H]} + \overline{(M]}$, then there exist $p_1 \in \overline{(H]}$, $q_1 \in \overline{(M]}$, such that $g = p_1 + q_1$ Now $g + (p_1 + q_1) + h = (p_1 + q_1) + (p_1 + q_1) + h$ Implies $g + (p_1 + q_1) + h = (p_1 + p_1) + (q_1 + q_1) + h$ Since $p_1 + p_1 \in \overline{(H]}$ and $q_1 + q_1 \in \overline{(M]}$, then by definition of *h*-closure, we get $g \in \overline{(H] + \overline{(M]}} \Longrightarrow \overline{(H]} + \overline{(M]} \subseteq \overline{(H] + \overline{(M]}}$.

(4) Suppose $g \in \overline{(H]} + \overline{(M]}$, so there exist $p_1 \in \overline{(H]}$, $q_1 \in \overline{(H]}$, such that $g = p_1 + q_1$. Since $p_1 \in \overline{(H]}$ and $q_1 \in \overline{(H]}$ So by using definition of *h*-closure, $p, q \in (H]$ and $r, s \in (M]$ such that $p_1 + p + t \leq q + t, t \in (H]$ and $q_1 + r + u \leq s + u, u \in (M]$. *Eur. Chem. Bull.* 2023, 12(Regular Issue 02), 482-488 Now $g + p + r + t + u = p_1 + q_1 + p + r + t + u$. . $g + p + r + t + u \le q + s + t + u$. Since (p + r), $(q + s) \in (H + M]$, $g + (p + r) + (t + u) \le q + s + (t + u)$. This implies $g \in \overline{(H + M]} \Rightarrow \overline{(H]} + \overline{(M]} \subseteq \overline{(H + M]}$.

Theorem: Let *S* be an ordered semiring, then:

(1) Intersection of any family of left ordered *h*-ideals of *S* is a left ordered *h*-ideal.

(2) Intersection of any family of right ordered h-ideals of S is a right ordered h-ideal.

(3) Intersection of any family of ordered h-ideals of S is an ordered h-ideal.

Proof: (1) Let A_n be left ordered *h*-ideal of *S* forall $n \in I$, as $\bigcap_{n \in I} A_n \neq \phi$ Since A_n is a left ordered *h*-ideal, we get A_n is a left ordered ideal for all $n \in I$. Then $\bigcap_{n \in I} A_n$ is left ordered ideal. Consider there exist $g \in S$ and $r_1, r_2 \in \bigcap_{n \in I} A_n$, $h \in \bigcap_{n \in I} A_n$ such that $g + r_1 + h = r_2 + h$. Since $\bigcap_{n \in I} A_n \subseteq A_n$ for all $n \in I$ we get, $r_1, r_2, h \in A_n$. Since A_n is a left ordered h-ideal and $r_1, r_2 \in A_n$, $g + r_1 + h = r_2 + h$, $h \in A_n \forall n \in I$ So by using definition of left ordered *h*-ideal, we get $g \in A_n \quad \forall n \in I$ implies $g \in \bigcap_{n \in I} A_n$ Therefore $r_1, r_2 \in \bigcap_{n \in I} A_n, g + r_1 + h = r_2 + h, h \in \bigcap_{n \in I} A_n$ implies $g \in \bigcap_{n \in I} An$. By definition of left ordered *h*-ideal, we get $\bigcap_{n \in I} A_n$ is a left ordered *h*-ideal of *S*. (2) Let A_n be right ordered *h*-ideal of *S* for all $n \in I$, as $\bigcap_{n \in I} A_n \neq \phi$ Since A_n is a right ordered *h*-ideal, we get A_n is a right ordered ideal for all $n \in I$. $\Rightarrow \bigcap_{n \in I} A_n$ is right ordered ideal. Consider there exist $g \in S$ and $r_1, r_2 \in \bigcap_{n \in I} A_n$, $h \in \bigcap_{n \in I} A_n$ such that $g + r_1 + h = r_2 + h$. Since $\bigcap_{n \in I} A_n \subseteq A_n$ for all $n \in I$ we have $r_1, r_2, h \in A_n$. As A_n is a right ordered h-ideal and r_1 , $r_2 \in A_n$, $g + r_1 + h = r_2 + h$, $h \in A_n \forall n \in I$ So by using definition of right ordered *h*-ideal, we get $g \in A_n \quad \forall n \in I$ implies $g \in \bigcap_{n \in I} A_n$ Therefore $r_1, r_2 \in \bigcap_{n \in I} A_n, g + r_1 + h = r_2 + h, h \in \bigcap_{n \in I} A_n$ implies $g \in \bigcap_{n \in I} A_n$. By definition of right ordered h-ideal, we get $\bigcap_{n \in I} A_n$ is a right ordered h-ideal of S.

(3) From (1) and (2), we get $\bigcap_{n \in I} A_n$ is a left and right ordered *h*-ideal of *S*. Therefore, $\bigcap_{n \in I} A_n$ is an ordered *h*-ideal of *S*. Hence proved.

Theorem:-Suppose S be an ordered semiring and H be left ideal or right ideal or ideal, then following statements are equivalent: -

(1) *H* is left ordered *h*-ideal or right ordered *h*-ideal or ordered *h*-ideal of *S*.
(2) Assume x ∈ S, x + r₁ + h ≤ r₂ + h for some r₁, r₂ ∈ H, h ∈ H then x ∈ H.
(3) *H* = H
Proof: (1) implies (2) Assume H is a left ordered *h*-ideal.
Let x ∈ S such that x + r₁ + h ≤ r₂ + h for some r₁, r₂ ∈ H, h ∈ H so by definition of left ordered *h*-ideal, we obtain x ∈ H.
(2) ⇒) (3)
Assume (2) is true. Let x ∈ *H* then there exist r₁, r₂ ∈ H such that x + r₁ + h ≤ r₂ + h, h ∈ H.
By (2), we obtain x ∈ H. So *H* ⊆ H.Since H ⊆ *H*, therefore *H* = H.
(3) implies (1) Assume that *H* = H. Let x ∈ S be such that x + r₁ + h ≤ r₂ + h for

Some r_1 , $r_2 \in H$, $h \in H$ then $x \in \overline{H}$. Since $\overline{H} = H$, so $x \in \overline{H} = H$. Then $x \in H$.

Since $x + r_1 + h \le r_2 + h$ for some $r_1, r_2 \in H$, $h \in H$ then $x \in H$, so by definition of left ordered *h*-ideal or right ordered *h*-ideal or ordered *h*-ideal, we obtain *H* is left ordered *h*-ideal or right ordered *h*-ideal or ordered *h*-ideal or ordered *h*-ideal or solution of *S*.

Theorem: Let *S* be an ordered semiring and *H* be a nonempty subset of *S*. Then following conditions hold. (1) Assume *H* a left ideal, then $\overline{(H)}$ will be smallest left ordered *h*-ideal which contains *H*.

(2) Assume H a right ideal, then $\overline{(H)}$ will be smallest right ordered h-ideal which contains H.

(3) Assume *H* is an ideal, then $\overline{(H)}$ will be smallest ordered *h*-ideal which contains *H*.

Proof: Let *H* be a left ideal .We know $\overline{(H)}$ is closed under addition. Let $x \in \overline{(H)}$ and $l \in H$, then by *h*-closure, there exist $r, w \in (H)$ such that $x + r + h \leq w + h$, $h \in (H]$ $lx + lr + lh \leq lw + lh$. Hence So by using definition of (], we have $lh \in (H]$. Since (lr), $(lw) \in (H]$, $lx + (lr) + (lh) \le (lw) + (lh)$, $(lh) \in (H]$: So by h-clousre, we obtain $lx \in \overline{(H)}$. Hence, $\overline{(H)}$ is a left ordered h-ideal. It is known that $\overline{(H)}$ is a left ordered *h*-ideal which contains *H*. Let J is a left ordered h-ideal which contains H. We will have $(H] \subseteq (J] = J$ then $\overline{(H)} \subseteq \overline{I} = I$ Hence, $\overline{(H)}$ will be smallest left ordered *h*-ideal which contains *H*. (2) It is same as we did in part (1). (3) with the help of part (1) and part (2), we have shown that $\overline{(H)}$ will be smallest left and right ordered *h*-ideal which contains *H*. Hence $\overline{(H)}$ will be smallest ordered *h*-ideal which contains *H*.

Theorem: Let *S* be an ordered semiring. If *S* is an ordered *h*-regular than $H \cap M = \overline{(HM)} \forall$ right ordered *h*-ideals *H*, left ordered *h*-ideals *M* of *S*. **Proof:** Suppose *S* is an ordered *h*-regular semiring and *H* is right ordered *h*-ideal, *M* is left ordered *h*-ideal of *S*.Then, we have $HM \subseteq H$ and $HM \subseteq M$.Thus $(HM) \subseteq (H) = H$ and $(HM) \subseteq (M) = M$. $\Rightarrow \overline{(HM)} \subseteq \overline{H} = H$ and $\overline{(HM)} \subseteq \overline{M} = M$.Thus $H \cap M \supseteq \overline{(HM)}$...(A) Let $a \in H \cap M$. As *S* is an ordered *h*-regular $\exists b, c \in (aSa]$. such that $a + b + o \leq c + o$, $o \in (aSa]$. Since $b, c, o \in (aSa]$ then by definition of ($], \exists j, k, l \in S$ such that $b \leq aja$ $c \leq aka$, $o \leq ala$. Since *H* is a right ordered *h*-ideal, *M* is a left ordered *h*-ideal, we have $aja, aka, ala \in HM$ Since $b \leq aja \in HM$, $c \leq aka \in HM$, $o \leq ala \in HM$, so by using definition of (]. we have $b, c, o \in (HM]$ so $a \in \overline{(HM]} \Rightarrow H \cap M \subseteq \overline{(HM)}$...(B) From (A) and (B) $H \cap M = \overline{(HM)}$

Definition: Let *S* is an ordered semiring. Let $a \in S$ if $a \in \overline{(Sa^2)}$ then *a* is said to be left ordered *h*-regular and if $a \in \overline{(a^2S)}$ than *a* is said to be right ordered *h*-regular. If every element of *S* is left ordered *h*-regular (right ordered *h*-regular) than *S* is called left ordered *h*-regular (right ordered *h*-regular).

Theorem: Let *S* be left ordered *h*-regular semiring then (1) for all left ordered *h*-ideal *H* of *S*, $\overline{(H^2]} = H$ (2) $J \cap H = \overline{(JH)}$ for all left ordered *h*-ideal *H* and for all ordered *h*-ideal *J* of *S*. **Proof:** (1) Let *H* be left ordered *h*-ideal of *S*. Then, we obtain $\overline{(H^2)} \subseteq \overline{(H)} = H$ Assume $r \in H$. Since *S* is a left ordered *h*-regular, so $r \in \overline{(Sr^2]}$ We have $\overline{(Sr^2]} \subseteq \overline{(SH^2)} \subseteq \overline{(H^2]} \Longrightarrow r \in \overline{(H^2]}$. Hence $H \subseteq \overline{(H^2]} \Longrightarrow \overline{(H^2)} = H$. (2) Assume that *H* is left ordered *h*-ideal and *J* is ordered *h*-ideal of *S*. So we get $\overline{(JH)} \subseteq \overline{(J)} = J$ and $\overline{(JH)} \subseteq \overline{(H)} = H$. Therefore, $\overline{(JH)} \subseteq J \cap H$ Suppose $a \in J \cap H$ since *S* is left ordered *h*-regular. Which implies $a \in \overline{(Sa^2)} \subseteq \overline{(SJH)} \subseteq \overline{(JH)}$ implies $a \in \overline{(JH)}$. Hence, $J \cap H \subseteq \overline{(JH)}$ **

Eur. Chem. Bull. 2023, 12(Regular Issue 02), 482-488

*

Combining ** and * we get Thus $J \cap H = \overline{(JH)}$.

Conclusion

The concepts of the ord. h- ideals in semirings and their key characteristics were

discussed. The ordered h-ideal features have been used to describe the classes of semirings like ordered h-regular. The concepts of the ordered h-ideals can be applied to non-associative structures like those in (13, 15, 20). Additionally, in semiring theory, ordered h-ideals can be extended for fuzzification.

References

- [1] Von Neumann, On regular rings, Proc. Natl. Acad. Sci. U.S.A., 22 (1935), 707.
- [2] S.Bourne, The Jacobson radical of a semiring, Proc. Natl. Acad. Sci. U.S.A., 37 (1951), 63.
- [3] J.S Golan, Semirings and a_ne equations over them: Theory and applications, Springer Science Business Media, 556 (2013).
- [4] X.Ma, Zhan, Soft intersection h-ideals of hemirings and its applications, Ital.J. Pur. Appl.Math., 32 (2014), 301308.
- [5] J.Zhan, N.Cagman, A.Sezgin Sezer, Applications of soft union sets to hemiringsvia SU-h-ideals, J. Intell. Fuzzy Syst., 26 (2014), 13631370.
- [6] M.M.Arslanov, N. Kehayopulu, "`A note on minimal and maximal ideals ofordered semigroups"',Lobachevskii J. Math., 11 (2002), 36.
- [7] Y.Cao, X. Xu, On minimal and maximal left ideals in ordered semigroups, Semigr. Forum, 60(2000), 202207.
- [8] V.N.Dixit, S.Dewan, A note on quasi and bi-ideals in ternary semigroups, Int.J. Math. Math.Sci., 18 (1995), 501508.
- [9] G.A. N.Ai Ping, Y.L.Jiang, On ordered ideals in ordered semirings, J. Math.Res. Exposition, 31(2011), 989996.
- [10] J.S.Han, H.S.Kim, J.Neggers, Semiring orders in a semiring, Appl. Math. Inf.Sci., 6 (2012) 99102.
- [11] K.Iizuka, On the Jacobson radical of a semiring, Tohoku Math. J., Second Ser., 11 (1959), 409421.
- [12] Y.B. Jun, M.A.Ozt urk, S. Z. Song, On fuzzy h-ideals in hemirings, Inf. Sci., 162 (2004), 211226.
- [13] J.Zhan, On properties of fuzzy left h-ideals in hemirings with t-norms, Int. J.Math. Math. Sci., 19(2005), 31273144.
- [14] J.Zhan, Fuzzy h-ideals of hemirings, Inf. Sci., 177 (2007), 876886.
- [15] S.Patchakhieo, B. Pibaljommee, "Characterizations of ordered k-regular semir-ings by ordered k-ideals", Asian-Eur. J. Math., 10 (2017), 1750020.
- [16] T.Shah, N.Kausar, I.Rehman, Intuitionistic fuzzy normal subrings over a non-associative ring, An. St. Univ. Ovidius Constanta, 20 (2012), 369386.
- [17] N.Kausar, B.Islam, M.Javaid, et al. Characterizations of non-associative ringsby the properties of their fuzzy ideals, J. Taibah Univ. Sci., 13 (2019), 820833.
- [18] N.Kausar, M.Alesemi, S.Salahuddin, et al. Characterizations of non-associativeordered semigroups by their intuitionistic fuzzy bi-ideals, discontinuity, Nonlin-earity, Complex., 9 (2020),257275.
- [19] M.Munir, A.Shaq, A generalization of bi ideals in semirings, Bull. Int. Math.Virt. Inst., 8 (2018),123133.
- [20] N.Kausar, M.Waqar, Characterizations of non-associative rings by their intuitionistic fuzzy bi-ideals, Eur. J. Pure Appl. Math., 12 (2019), 226250.
- [21] N.Kausar, Direct product of _nite intuitionistic anti fuzzy normal subrings over non-associativerings, Eur. J. Pure Appl. Math., 12 (2019), 622648.
- [22] N.Kausar, B.Islam, S.Amjad, et al. Intuitionistics fuzzy ideals with thresholds (α , β] in LA-rings, Eur. J. Pure Appl. Math., 9 (2019), 906943.