CHARACTERISATION OF ORDERED SEMIRINGS BY ORDERED IDEALS AND ORDERED h - IDEALS

Received August 2022, Revised October 2022, Accepted December 2022.

Abstract

The main aim of this paper is to study ordered regular semirings and ordered h regular semirings by the characteristics of ordered ideals and ordered h ideals it has been shown that each h-regular ordered semiring is ordered h-regular semiring but the converse is not followed. It has also been shown that each regular ordered semiring is ordered h -regular semiring but the converse is not followed. Main and important results relating to operator closure and h-regular ordered semirings are given.

Keywords:- regular ordered semirings, h-regular ordered semirings, ordered h-regular semirings and ordered h-ideals etc.
Mathematics Subject Classification: 16Y99, 16Y60

[^0]DOI: 10.53555/ecb/2023.12.2.052

Introduction

In 1935, Von Neumann proposed the concept of regularity in rings and demonstrated that if the semigroup (S, \cdot) is regular, then the ring $(S,+, \cdot)$ is likewise regular. In 1951,[2] Bourne demonstrated that a semiring $(S,+, \cdot)$ is also regularif $y \in S \exists a, b \in S$, such that $y+y a y=y b y$. Ideals are essential in the structure theory of semirings [3].In 2011, the term "ordered semiring" was defined by [5] as a semiring with a partially ordered set (S, \leq) such that \leq is consistent partial order relation with the operations + and \cdot of S.The idea of several left and right ordered ideals is defined in this essay. We have offered ordered ideals in a variety of ordered semirings including regular ordered semiring, h-regular ordered semiring, and ordered h-regular semiring. h-ideal theory was applied by Jianming Zhan and Xueling M A in [5]. We expanded the idea of h ideals in ordered semirings and their types and extended concept of h-ideals to demonstrate related results in different cases.

Preliminaries:

Note: When we say S is semiring than it is understood we are talking about $(S,+, \cdot)$.
Definition: $[3,7,15]$ A semiring $(S,+, \cdot)$ is structure having two bilateral operations + and \cdot such that additive reduct $(S,+)$ and multiplicative reduct (S, \cdot) are semigroups and the distributive laws hold:
that is $u(v+z)=u v+u z$ and $(u+v) z=u z+v z \forall u, v, z \in S$.
Examples: $(N,+, \cdot)$ and $(W,+, \cdot)$ are both semirings.
Definition: $[3,15]$ Suppose $I \neq \varphi$ and I be subset of $(S,+, \cdot)$ than I is left ideal or right ideal if following properties are satisfied.
(1) $a+b \in I \forall a, b \in I$.
(2) $S I \subseteq I$ or $I S \subseteq I$.
(3) If I is left and right ideal than I is an ideal of semiring S or two sided ideal of S.

Ordered Semiring

Note: Whenever we say S is an ordered semiring that means we are talking about ($S,+, \cdot, \leq$.
Definition:[7,15] An ordered semiring is algebraic system ($S,+, \cdot, \leq$) such that
$(S,+, \cdot)$ is a semiring,(S, \leq) is a partially ordered set and the relation \leq is compatible to the operations + and \cdot on S.
Note:- \leq is just a symbol which represents partial order relation on set.
Example: Let us take the semiring $(N,+, \cdot)$, where N is the set of $+v e$ integers. Defining the relation R on N by $p R q \Leftrightarrow q \leq p \forall p, q \in N$.
Then (N, R) is a poset (partially ordered set) so $(N,+, \cdot, R)$ is an ordered semiring.

Ordered \boldsymbol{h}-ideals in ordered semiring

Definition : [15] Let H, M be the non-void subsets of an ordered semiring S
then $(H]$ is defined as $(H]=\{g \in S: g \leq h\}$ for some $h \in H$
and $H M=\{h m: h \in H, m \in M\}$.
Definition: [7] Let $H \neq \varphi, H \subseteq S$ where S is ordered semiring, then the h-closure of H is denoted by \bar{H} and is defined as $\bar{H}=\left\{g \in S, \exists x_{1}, x_{2} \in H: g+x_{1}+h \leq x_{2}+h, h \in H\right\}$.

Definition : [7,15] Suppose S is ordered semiring, $H \neq \varphi$ and $H \subseteq S$ satisfying the given conditions:
(1) H is left ideal or right ideal of S.
(2) If $s \leq t$ for some $t \in H$, then $s \in H$.

Then H is a left ordered ideal or right ordered ideal. If H is both left ordered ideal and right ordered ideal of S than H is ordered ideal of S.

Example: Assume the an ordered semiring ($N,+, \cdot$), where N is the set of counting numbers. Defining the relation ρ on N by $s \rho \Leftrightarrow s \geq h \forall s, h \in N$.
Therefore $(N,+, \cdot, \rho)$ is a poset (partially ordered set). So $(N,+, \cdot, \rho)$ is an ordered semiring and ($2 N$] is ordered ideal in $(N,+, \cdot, \rho)$.

Definition: [7,4] Suppose H is a non-empty subset of semiring S then H is a left ordered h-ideal of S if the below conditions are satisfied:
(1) H is a left ordered ideal of S.
(2) If $e+a+t=b+t$ for some $a, b \in H, t \in H$ then $e \in H$.

In the same manner, right ordered h-ideal is defined if H is both a left ordered h-ideal and a right ordered h ideal of S then H is referred as ordered h-ideal of S.
Definition:[21] Suppose S is an ordered semiring if $\forall x \in S \exists$ some $t \in S$ such that $x \leq x t x$ than S is said to be regular ordered semiring.

Definition: [7, 21] Let S be an ordered semiring then $a \in S$ is referred to be an ordered h-regular if $a \in \overline{(a S a]}$. If every member of S is ordered h-regular,then S is an ordered h-regular semiring.

Example: Assume the an ordered semiring $(N,+, \cdot)$, where N is the set of counting numbers. Defining the relation ρ on N by $s \rho h \Leftrightarrow s \geq h \forall s, h \in N$.
Therefore $(N,+, \cdot, \rho)$ is a poset (partially ordered set). So $(N,+, \cdot, \rho)$ is an ordered semiring. Also having the property
$s+s h s+t \leq s h s+t \forall s, h \in N, t \in N$ therefore $(N,+, \cdot, \rho)$ is an ordered h-regular semiring. After the next definition example has been shown which is ordered h-regular semiring but not h-regular ordered semiring.

Definition : [7] Suppose S is an ordered semiring if for every $a \in S$ ヨ, $e, h, c \in S$ such that $a+a e a+c \leq a h a+c$. Then S is h-regular ordered semiring.

Example: Given below example shows that D is ordered h-regular but not $h-r e g u l a r ~ o r d e r e d . ~$
Let $D=\left\{d_{1}, d_{2}, d_{3}\right\}$. Define binary operation + and \cdot on D as follow:

+	d_{1}	d_{2}	d_{3}
d_{1}	d_{1}	d_{1}	d_{1}
d_{2}	d_{1}	d_{2}	d_{3}
d_{3}	d_{1}	d_{3}	d_{3}

\cdot	d_{1}	d_{2}	d_{3}
d_{1}	d_{2}	d_{2}	d_{2}
d_{2}	d_{2}	d_{2}	d_{2}
d_{3}	d_{2}	d_{2}	d_{2}

The relation is as $\leq=\left\{\left(d_{1}, d_{1}\right),\left(d_{2}, d_{2}\right),\left(d_{3}, d_{3}\right),\left(d_{1}, d_{2}\right),\left(d_{1}, d_{3}\right),\left(d_{2}, d_{3}\right)\right\}$
Than $(D,+, \cdot, \leq)$ is an ordered semiring.
Also $\forall a \in D$ following properties hold.
(1) $a+d_{1}+c \leq d_{2}+c, c \in D$. Where a and c are arbitrarily choosen.
(2) $d_{1}, d_{2} \in(a D a]$ i.e. $d_{1} \leq a d_{i} a$ and $d_{2} \leq a d_{i} a$, for some $a d_{i} a \in a D a$.Therefore D is an ordered $h-$ regular semiring. Where d_{i} is some elements of D.
On the other side $d_{3}+d_{3} a d_{3}+d_{2} \leq d_{3} c d_{3}+d_{2}$ doesn't have solution so D is not an h-regular ordered semiring.

Theorem :Assume S is ordered semiring and let H and M are non-void subsets of S then
(1) $(\bar{H}] \subseteq \overline{(H]}$
(2) If $H \subseteq M$ then $\bar{H} \subseteq \bar{M}$
(3) $\overline{(H]} M \subseteq \overline{(H M]}$ and $H \overline{(M]} \subseteq \overline{(H M]}$

Proof: (1) Let $x \in(\bar{H}]$.Then $\exists h \in \bar{H}$ such that $x \leq h$. Since $h \in \bar{H}$, then there exist $a, b \in H$ such that $h+a+k \leq b+k, k \in H$.
It follows that $\quad x+a+k \leq h+a+k \leq b+k$.
Since $H \subseteq(H], a, b \in(H], k \in(H], x \in \overline{(H]}$ i.e $(\bar{H}] \subseteq \overline{(H]}$
(2) Assume $H \subseteq M$ and let $x \in \bar{H}$ than there exist $a, b \in H$ such that $x+a+k \leq b+k, k \in H$

By the supposition, we get $a, b, k \in M \Rightarrow x \in \bar{M}$, so $\bar{H} \subseteq \bar{M}$
(3) Let $x \in \overline{(H]}$ and $w \in M$.

So, there exist $u, v \in(H]$ such that $x+u+s \leq v+s, s \in$ (H].
So $x w+u w+s w \leq v w+s w$. Since $u, v, s \in(H], u \leq a$ and $v \leq c$ and $s \leq d$ for some $a, c, d \in H$.
So $u w \leq a w \in H M$ and $v w \leq c w \in H M$ and $s w \leq d w \in H M$.
$\Rightarrow x w \in \overline{(H M]}$. So $\overline{(H]} M \subseteq \overline{(H M]}$.
In the same way we get $\overline{H(M]} \subseteq \overline{(H M]}$.
Theorem: Suppose H and M are non-empty subsets of ordered semiring S
with $H+H \subseteq H$ and $M+M \subseteq M$.
(1) $H \subseteq(H] \subseteq \bar{H} \subseteq \overline{(H]}$
(2) $H+M \subseteq \bar{H}+\bar{M} \subseteq \overline{H+M}$
(3) $\overline{(H]}+\overline{(M]} \subseteq \overline{\overline{(H]}+\overline{(M]}}$
(4) $\overline{(H]}+\overline{(M]} \subseteq \overline{(H+M]}$

Proof: (1) Clearly $H \subseteq(H]$
Let $g \in(H]$ so by definition of operator ($] \exists p \in H$ such that $g \leq p$
This implies $g+p+p \leq p+p+p$ implies $g \in \bar{H} \Longrightarrow(H] \subseteq \bar{H}$.
Since $H \subseteq(H] \Longrightarrow \bar{H} \subseteq \overline{(H]}$.
(2) From part (1) we have $H \subseteq \bar{H}$ and $M \subseteq \bar{M}$ implies $H+M \subseteq \bar{H}+\bar{M}$

Now we show that $\bar{H}+\bar{M} \subseteq \overline{H+M}$
Suppose $g \in \bar{H}+\bar{M}$ so there exist $h \in \bar{H}$ and $m \in \bar{M}$ such that $g=h+m$.
Since $h \in \bar{H}$ and $m \in \bar{M}$ so by definition of h-closure $\exists p, q \in H$ and $r, s \in M$ such that $h+p+t \leq q+t$ where $t \in H$ and $m+r+u \leq s+u$ where $u \in M$.

Which implies $g+p+t+r+u=h+m+p+t+r+u$
Implies $\quad g+(p+r)+(t+u) \leq q+t+s+u$
Implies that $\quad=q+s+t+u$
Which means $\quad g+(p+r)+(t+u) \leq(q+s)+(t+u)$
As $(t+u) \in H+M$ then by definition of h-closure, we get $g \in \overline{H+M}$
Implies $\bar{H}+\bar{M} \subseteq \overline{H+M}$.
(3) Suppose $g \in \overline{(H]}+\overline{(M]}$, then there exist $p_{1} \in \overline{(H]}, q_{1} \in \overline{(M]}$,
such that $g=p_{1}+q_{1}$
Now $g+\left(p_{1}+q_{1}\right)+h=\left(p_{1}+q_{1}\right)+\left(p_{1}+q_{1}\right)+h$
Implies $g+\left(p_{1}+q_{1}\right)+h=\left(p_{1}+p_{1}\right)+\left(q_{1}+q_{1}\right)+h$
Since $p_{1}+p_{1} \in \overline{(H]}$ and $q_{1}+q_{1} \in \overline{(M]}$, then by definition of h-closure,
we get $g \in \overline{\overline{(H]}+\overline{(M]}} \Rightarrow \overline{(H]}+\overline{(M]} \subseteq \overline{\overline{(H]}+\overline{(M]}}$.
(4) Suppose $g \in \overline{(H]}+\overline{(M]}$, so there exist $p_{1} \in \overline{(H]}, q_{1} \in \overline{(H]}$, such that $g=p_{1}+q_{1}$.

Since $p_{1} \in \overline{(H]}$ and $q_{1} \in \overline{(H]}$
So by using definition of h-closure, $p, q \in(H]$ and $r, s \in$ (M] such that
$p_{1}+p+t \leq q+t, t \in(H]$
and $q_{1}+r+u \leq s+u, u \in(M]$.
Eur. Chem. Bull. 2023, 12(Regular Issue 02), 482-488

Now $g+p+r+t+u=p_{1}+q_{1}+p+r+t+u$.
. $g+p+r+t+u \leq q+s+t+u$.
Since $(p+r),(q+s) \in(H+M]$,
$g+(p+r)+(t+u) \leq q+s+(t+u)$.
This implies $g \in \overline{(H+M]} \Rightarrow \overline{(H]}+\overline{(M]} \subseteq \overline{(H+M]}$.

Theorem: Let S be an ordered semiring, then:
(1) Intersection of any family of left ordered h-ideals of S is a left ordered h-ideal.
(2) Intersection of any family of right ordered h-ideals of S is a right ordered h-ideal.
(3) Intersection of any family of ordered h-ideals of S is an ordered h-ideal.

Proof: (1) Let A_{n} be left ordered h-ideal of S forall $n \in I$, as $\bigcap_{n \in{ }_{I}} A_{n} \neq \phi$
Since A_{n} is a left ordered h-ideal, we get A_{n} is a left ordered ideal for all $n \in I$.
Then $\bigcap_{n \in I_{I}} A_{n}$ is left ordered ideal.
Consider there exist $g \in S$ and $r_{1}, r_{2} \in \bigcap_{n \in I_{I}} A_{n}, h \in \bigcap_{n \in I_{I}} A_{n}$ such that $g+r_{1}+h=r_{2}+h$.
Since $\bigcap_{n \in I} A_{n} \subseteq A_{n}$ for all $n \in I$ we get, $r_{1}, r_{2}, h \in A_{n}$.
Since A_{n} is a left ordered h-ideal and $r_{1}, r_{2} \in A_{n}, g+r_{1}+h=r_{2}+h, h \in A_{n} \forall n \in I$
So by using definition of left ordered h-ideal, we get $g \in A_{n} \quad \forall n \in I$
implies $g \in \bigcap_{n \in I_{I}} A_{n}$
Therefore $r_{1}, r_{2} \in \bigcap_{n \in I} A_{n}, g+r_{1}+h=r_{2}+h, h \in \bigcap_{n \in I} A_{n}$ implies $g \in \bigcap_{n \in{ }_{I}} A n$.
By definition of left ordered h-ideal, we get $\bigcap_{n \in{ }_{I}} A_{n}$ is a left ordered h-ideal of S.
(2) Let A_{n} be right ordered h-ideal of S for all $n \in I$, as $\bigcap_{n \in I_{I}} A_{n} \neq \phi$

Since A_{n} is a right ordered h-ideal, we get A_{n} is a right ordered ideal for all $n \in I$.
$\Rightarrow \bigcap_{n \in I} A_{n}$ is right ordered ideal.
Consider there exist $g \in S$ and $r_{1}, r_{2} \in \bigcap_{n \in{ }_{I}} A_{n}, h \in \bigcap_{n \in I} A_{n}$
such that $g+r_{1}+h=r_{2}+h$.
Since $\bigcap_{n \in I} A_{n} \subseteq A_{n}$ for all $n \in I$ we have $r_{1}, r_{2}, h \in A_{n}$.
As A_{n} is a right ordered h-ideal and $r_{1}, r_{2} \in A_{n}, g+r_{1}+h=r_{2}+h, h \in A_{n} \forall n \in I$
So by using definition of right ordered h-ideal, we get $g \in A_{n} \forall n \in I$
implies $g \in \bigcap_{n \in I_{I}} A_{n}$
Therefore $r_{1}, r_{2} \in \cap_{n \in I_{I}} A_{n}, g+r_{1}+h=r_{2}+h, h \in \bigcap_{n \in I_{I}} A_{n}$
implies $g \in \bigcap_{n \in I} A_{n}$.
By definition of right ordered h-ideal, we get $\bigcap_{n \in{ }_{I}} A_{n}$ is a right ordered h-ideal of S.
(3) From (1) and (2), we get $\bigcap_{n \in I} A_{n}$ is a left and right ordered h-ideal of S. Therefore, $\bigcap_{n \in} A_{n}$ is an ordered h-ideal of S. Hence proved.

Theorem:-Suppose S be an ordered semiring and H be left ideal or right ideal or ideal, then
following statements are equivalent: -
(1) H is left ordered h-ideal or right ordered h-ideal or ordered h-ideal of S.
(2) Assume $\mathrm{x} \in S, x+r_{1}+h \leq r_{2}+h$ for some $r_{1}, r_{2} \in H, h \in H$ then $x \in H$.
(3) $\bar{H}=H$

Proof: (1) implies (2) Assume H is a left ordered h-ideal.
Let $x \in S$ such that $x+r_{1}+h \leq r_{2}+h$ for some $r_{1}, r_{2} \in H, h \in H$ so by definition of left ordered h ideal, we obtain $x \in H$.
$(2) \Longrightarrow)(3)$
Assume (2) is true. Let $x \in \bar{H}$ then there exist $r_{1}, r_{2} \in H$ such that

$$
x+r_{1}+h \leq r_{2}+h, h \in H
$$

By (2), we obtain $x \in H$. So $\bar{H} \subseteq H$. Since $H \subseteq \bar{H}$, therefore $\bar{H}=H$.
(3) implies (1) Assume that $\bar{H}=H$. Let $x \in S$ be such that $x+r_{1}+h \leq r_{2}+h$ for

Some $r_{1}, r_{2} \in H, h \in H$ then $x \in \bar{H}$. Since $\bar{H}=H$, so $x \in \bar{H}=H$. Then $x \in H$.

Since $x+r_{1}+h \leq r_{2}+h$ for some $r_{1}, r_{2} \in H, h \in H$ then $x \in H$, so by definition of left ordered h ideal or right ordered h-ideal or ordered h-ideal, we obtain H is left ordered h-ideal or right ordered h-ideal or ordered h-ideal of S.

Theorem: Let S be an ordered semiring and H be a nonempty subset of S. Then following conditions hold.
(1) Assume H a left ideal, then $\overline{(H]}$ will be smallest left ordered h-ideal which contains H.
(2) Assume H a right ideal, then $\overline{(H]}$ will be smallest right ordered h-ideal which contains H.
(3) Assume H is an ideal, then $\overline{(H]}$ will be smallest ordered h-ideal which contains H.

Proof: Let H be a left ideal .We know $\overline{(H]}$ is closed under addition.
Let $x \in \overline{(H]}$ and $l \in H$, then by h-closure, there exist $r, w \in(H]$
such that $x+r+h \leq w+h, h \in(H]$
Hence $l x+l r+l h \leq l w+l h$.
So by using definition of (], we have $l h \in(H]$.
Since $(l r),(l w) \in(H], l x+(l r)+(l h) \leq(l w)+(l h),(l h) \in(H]:$
So by h-clousre, we obtain $l x \in \overline{(H]}$. Hence, $\overline{(H]}$ is a left ordered h-ideal.
It is known that $\overline{(H]}$ is a left ordered h-ideal which contains H.
Let J is a left ordered h-ideal which contains H. We will have $(H] \subseteq(J]=J$
then $\overline{(H]} \subseteq \bar{J}=J$
Hence, $\overline{(H]}$ will be smallest left ordered h-ideal which contains H.
(2) It is same as we did in part (1).
(3) with the help of part (1) and part (2), we have shown that $\overline{(H]}$ will be smallest left and right ordered h-ideal which contains H.
Hence $\overline{(H]}$ will be smallest ordered h-ideal which contains H.

Theorem: Let S be an ordered semiring. If S is an ordered h-regular than
$H \cap M=\overline{(H M]} \forall$ right ordered h-ideals H, left ordered h-ideals M of S.
Proof: Suppose S is an ordered h-regular semiring and H is right ordered h-ideal, M is left ordered h-ideal of S.Then, we have $H M \subseteq H$ and $H M \subseteq M$.Thus $(H M] \subseteq(H]=H$ and $(H M] \subseteq(M]=M$.
$\Longrightarrow \overline{(H M]} \subseteq \bar{H}=H$ and $\overline{(H M]} \subseteq \bar{M}=M$.Thus $H \cap M \supseteq \overline{(H M]}$
Let $a \in H \cap M$. As S is an ordered h-regular $\exists b, c \in$ ($a S a]$.
such that $a+b+o \leq c+o, o \in$ ($a S a]$.
Since $b, c, o \in(a S a]$ then by definition of (]$, \exists j, k, l \in S$ such that $b \leq a j a$ $c \leq a k a, o \leq a l a$.
Since H is a right ordered h-ideal, M is a left ordered h-ideal, we have aja, aka, ala $\in H M$
Since $b \leq a j a \in H M, c \leq a k a \in H M, o \leq a l a \in H M$, so by using definition of (].
we have $b, c, o \in(H M]$ so $a \in \overline{(H M]} \Rightarrow H \cap M \subseteq \overline{(H M]}$
From (A) and (B) $H \cap M=\overline{(H M]}$

Definition: Let S is an ordered semiring. Let $a \in S$ if $a \in \overline{\left(S a^{2}\right]}$ then a is said to be left ordered h-regular and if $a \in \overline{\left(a^{2} S\right]}$ than a is said to be right ordered h-regular.If every element of S is left ordered h-regular (right ordered h-regular) than S is called left ordered h-regular (right ordered h-regular).

Theorem: Let S be left ordered h-regular semiring then
(1) for all left ordered h-ideal H of $S, \overline{\left(H^{2}\right]}=H$
(2) $J \cap H=\overline{(J H]}$ for all left ordered h-ideal H and for all ordered h-ideal J of S.

Proof: (1) Let H be left ordered h-ideal of S.Then, we obtain $\overline{\left(H^{2}\right]} \subseteq \overline{(H]}=H$
Assume $r \in H$. Since S is a left ordered h-regular, so $r \in \overline{\left(S r^{2}\right]}$
We have $\overline{\left(S r^{2}\right]} \subseteq \overline{\left(S H^{2}\right]} \subseteq \overline{\left(H^{2}\right]} \Rightarrow r \in \overline{\left(H^{2}\right]}$. Hence $H \subseteq \overline{\left(H^{2}\right]} \Rightarrow \overline{\left(H^{2}\right]}=H$.
(2) Assume that H is left ordered h-ideal and J is ordered h-ideal of S.

So we get $\overline{(J H]} \subseteq \overline{(J]}=J$ and $\overline{(J H]} \subseteq \overline{(H]}=H$.Therefore, $\overline{(J H]} \subseteq J \cap H . \ldots$ *
Suppose $a \in J \cap H$ since S is left ordered h-regular.
Which implies $a \in \overline{\left(S a^{2}\right]} \subseteq \overline{(S J H]} \subseteq \overline{(J H]}$ implies $a \in \overline{(J H]}$.
Hence, $J \cap H \subseteq \overline{(J H]} \ldots \quad * *$

Combining ** and * we get
Thus $J \cap H=\overline{(J H]}$.

Conclusion

The concepts of the ord. h - ideals in semirings and their key characteristics were
discussed. The ordered h-ideal features have been used to describe the classes of semirings like ordered h regular. The concepts of the ordered h-ideals can be applied to non-associative structures like those in (13, 15 , 20). Additionally, in semiring theory, ordered h-ideals can be extended for fuzzifcation.

References

[1] Von Neumann, On regular rings, Proc. Natl. Acad. Sci. U.S.A., 22 (1935), 707.
[2] S.Bourne, The Jacobson radical of a semiring, Proc. Natl. Acad. Sci. U.S.A., 37 (1951), 63.
[3] J.S Golan, Semirings and a_ne equations over them: Theory and applications, Springer Science Business Media, 556 (2013).
[4] X.Ma, Zhan, Soft intersection h-ideals of hemirings and its applications, Ital.J. Pur. Appl.Math., 32 (2014), 301308.
[5] J.Zhan, N.Cagman, A.Sezgin Sezer, Applications of soft union sets to hemiringsvia SU-h-ideals,J. Intell. Fuzzy Syst., 26 (2014), 13631370.
[6] M.M.Arslanov, N. Kehayopulu, "'A note on minimal and maximal ideals ofordered semigroups"',Lobachevskii J. Math., 11 (2002), 36.
[7] Y.Cao, X. Xu, On minimal and maximal left ideals in ordered semigroups,Semigr. Forum, 60(2000), 202207.
[8] V.N.Dixit, S.Dewan, A note on quasi and bi-ideals in ternary semigroups, Int.J. Math. Math.Sci., 18 (1995), 501508.
[9] G.A. N.Ai Ping, Y.L.Jiang, On ordered ideals in ordered semirings, J. Math.Res. Exposition, 31(2011), 989996.
[10] J.S.Han, H.S.Kim, J.Neggers, Semiring orders in a semiring, Appl. Math. Inf.Sci., 6 (2012) 99102.
[11] K.Iizuka, On the Jacobson radical of a semiring, Tohoku Math. J., Second Ser., 11 (1959), 409421.
[12] Y.B. Jun, M.A.Ozt urk, S. Z. Song, On fuzzy h-ideals in hemirings, Inf. Sci.,162 (2004), 211226.
[13] J.Zhan, On properties of fuzzy left h-ideals in hemirings with t-norms, Int. J.Math. Math. Sci., 19(2005), 31273144.
[14] J.Zhan, Fuzzy h-ideals of hemirings, Inf. Sci., 177 (2007), 876886.
[15] S.Patchakhieo, B. Pibaljommee, "'Characterizations of ordered k-regular semir-ings by ordered k-ideals"', Asian-Eur. J. Math., 10 (2017), 1750020.
[16] T.Shah, N.Kausar, I.Rehman, Intuitionistic fuzzy normal subrings over a non-associative ring,An. St. Univ. Ovidius Constanta, 20 (2012), 369386.
[17] N.Kausar, B.Islam, M.Javaid, et al. Characterizations of non-associative ringsby the properties of their fuzzy ideals, J. Taibah Univ. Sci., 13 (2019), 820833.
[18] N.Kausar, M.Alesemi, S.Salahuddin, et al. Characterizations of non-associativeordered semigroups by their intuitionistic fuzzy bi-ideals, discontinuity, Nonlin-earity, Complex., 9 (2020),257275.
[19] M.Munir, A.Shaq, A generalization of bi ideals in semirings, Bull. Int. Math.Virt. Inst., 8 (2018),123133.
[20] N.Kausar, M.Waqar, Characterizations of non-associative rings by their intuitionistic fuzzy bi-ideals, Eur.
J. Pure Appl. Math., 12 (2019), 226250.
[21] N.Kausar, Direct product of_nite intuitionistic anti fuzzy normal subrings over non-associativerings, Eur. J. Pure Appl. Math., 12 (2019), 622648.
[22] N.Kausar, B.Islam, S.Amjad, et al. Intuitionistics fuzzy ideals with thresholds (α, β] in LA-rings,Eur. J. Pure Appl. Math., 9 (2019), 906943.

[^0]: ${ }^{1 *}$ Ph.D Research Scholar,Department of Mathematics,Annamalai University, Annamalai Nagar,Chidambaram 608002,Tamilnadu,India. (E-mail:muddsarmalik807@gmail.com) ORCID: 0000-0001-9421-8470
 2Professor, Department of Mathematics,Annamalai University, Annamalai Nagar,Chidambaram608002,Tamilnadu,India. (E-mail:sivakumarmaths1965@gmail.com) ORCID: 0000-0002-1396-7849
 *Correspondence Author:- Muddsar Yaseen Malik
 *Ph.D Research Scholar,Department of Mathematics,Annamalai University, Annamalai Nagar,Chidambaram 608002,Tamilnadu,India. (E-mail:muddsarmalik807@gmail.com) ORCID: 0000-0001-9421-8470

