

A. Sangoremi^[a] J. Godwin^[b], and B. A. Uzoukwu^[c]

Keywords: Extraction, nickel(II), 1-phenyl-3-methyl-4-trichloroacetyl-pyrazolone-5, effect of pH and sulphate ion

The extraction of Ni²⁺ from aqueous solutions of various concentrations of SO₄²⁻ ions in buffered media using 1-phenyl-l,3-methyl4-trichloroacetyl-pyrazolone-5 (HTCP) has been investigated. The synergistic effect of butanol on the extraction of the metal was also examined. Ni²⁺ was quantitatively extracted from solutions by HTCP only at high pH values (5 - 8) over the pH range 0 - 8 studied. However, addition of butanol resulted in a synergistic extraction of Ni²⁺ up to 97.78% over the range of pH 5.00 - 8.00 from aqueous buffer media containing 0.1M SO₄²⁻ ion concentration. Increased SO₄²⁻ ion concentration resulted in a slight decrease in the extraction of Ni²⁺ ion due to masking of the metal by the SO₄²⁻ ion. In addition, overall extraction was shifted to higher pH values for extraction into chloroform solution of the ligand for Ni²⁺ using butanol. The log K_{ex} and pH_{1/2} of the various extraction systems were determined.

Corresponding author

Émail <u>godwinj2012@gmail.com</u> Tel.: +2348033401456

- [a] Department of Pure and Industrial Chemistry, University of Port Harcourt, Choba, Port Harcourt, Rivers State. Nigeria, Email: <u>sangoremianthony@yahoo.com</u>
- [b] Department of Chemical Sciences, Niger Delta University, Wilberforce Island, PMB 71 Bayelsa State. Nigeria.
- [c] Department of Pure and Industrial Chemistry, University of Port Harcourt, Choba, Port Harcourt, Rivers State, Email: <u>uzoukwupob331@yahoo.co.uk</u>

Introduction

Studies have shown 4-acyl pyrazolone derivatives to be excellent metal extracting agents for various type of metals, ranging from lanthanides^{1,2}, actinides^{3,4} and other transition metals^{5,6}. These studies have shown that these ligands have the capability of extracting these metal ions at pH values lower than 2 to neutral as ion pair or adduct complexes⁸. Most of the 4-acyl pyrazolone derivatives studied have $pK_a > 4$ and in the quest to evaluate the performance of 4-acyl derivatives with lower pKa,

Umetani and Freiser⁸ successfully studied the quantitative extraction of some lanthanides with 1-phenyl-3-methyl-4trifluoroacetyl-pyrazolone-5 with pKa < 3 at pH values close 1-phenyl-3-methyl-4-trichloroacetyl-pyrazolone-5 to 1. (HTCP) with pK_a 3.02 shown in Figure 1 has also been reported to have been successfully used in the extraction of a range of metal ions.^{7,9,10} Almost all extraction studies with ligands have shown that various concentrations of different anions in the aqueous phase containing the metal ions play an important role in the percentage extraction of these metal ions^{5,7,9,10,11,12}, which can either be enhancing or masking the extraction of the metal ions. The effects have been utilized in optimizing extractions and separation of metal ions^{13,14}.In continuation of our studies on the extractions of metal ions ligand 1-phenyl-3-methyl-4-trichloroacetylwith the pyrazolone-5 (HTCP), we report the effect of various concentrations of sulphate ions on the extraction of Ni(II) ion in different buffered aqueous media.

Materials and Methods

Reagents and Apparatus

1-Phenyl-3-methyl-4-trichloroacetyl-pyrazolone-5 (HTCP) was synthesized by methods reported earlier.¹⁵ The ligand's purity after recrystallization from aqueous ethanol was established by elemental analysis for C, H and N; analysis of IR and NMR spectral data was performed at the Institute for Inorganic Chemistry Technology, University of Dresden, Germany.

Stock solutions of 0.05 M HTCP were prepared by dissolving appropriate amount of the ligand in CHCl₃. Stock solutions of 1.704×10^{-2} M (1,000 mg/L) of Ni(II) were prepared by dissolving appropriate mass of ammonium tetraoxosulphate(VI) nickel(II) hexahydrate (NiSO₄.(NH₄)₂SO₄.6H₂O) in 0.1 mL of 10 M HCl and making up to mark in a 50 ml volumetric flask with deionized water. Buffer solutions were prepared containing 0.01M, 0.1M and 1.0M SO42- ions with 0.1M HCl/0.1 M NaCl (pH 0.1-2.9), 0.1 M acetic acid/0.1 M NaCl (pH 3.0-3.5), 0.1 M acetic acid/0.1 M Na-acetate (pH 3.6-5.6), and 0.1 M KH₂PO₄/0.1 M NaOH (pH 5.7-8.0). pH of the buffered solutions were determined with a Labtech Digital pH meter. All experiments were performed at ionic strength of 0.1 M (NaClO₄).

Extraction Procedure

2 mL aliquot of a buffer solution containing 8.52×10^{-4} M (50 mg/L) of Ni(II) ions and the desired pH and concentration of SO₄²⁻ ions was prepared in a 10 ml extraction container. An equal volume (2 mL) of 0.05 M HTCP in CHCl₃ solution or 1.9 ml of 0.05 M HTCP in CHCl₃ solution made up to 2 ml by addition of 0.1 ml butanol and the mixture shaken mechanically for 30 minutes at room temperature of about 32°C. A shaking time of 30 minutes was found suitable enough for attaining the equilibration. For HTCP variation, the organic phase contained HTCP in CHCl₃ ranging from 1.25×10^{-2} M – 4.375×10^{-2} M, while for Ni²⁺ variation, the aqueous phase contained Ni²⁺ concentration in the range 12.5 mg/L – 37.5

mg/L. The phases were allowed to settle and separated. Concentration of Ni(II) ion in aqueous phase was determined with a Buck Scientific Atomic Absorption Spectrophotometer (AAS) 205. Ni(II) ion concentration extracted into the organic phase was determined by the difference between the concentration of Ni(II) ion in aqueous phase before and after the extraction. Distribution ratio *D* was calculated as the ratio of metal ion concentration in the organic phase (C_o) to that in the aqueous phase (*C*). Thus D = C_o/C .

Figure 1: Structure of 1-phenyl-3-methyl-4-trichloroacetylpyrazol-5-one (HTCP)

Results and Discussion

Effect of sulphate ions and pH on the extraction of Ni^{2+} from buffered solutions.

The studies show that, while there was marginal extractions of Ni²⁺ from pH of 2.07 for 0.01M SO₄²⁻, extractions at higher concentrations of SO₄²⁻ started at higher pH values (4.53 for 0.1M and 5.53 for 1.0M). Figure 2 show that the percentage extraction of 97.96% achieved for 0.01M SO₄²⁻ on the extraction of Ni²⁺ at pH 6.34 – 7.30 dropped gradually to 96.28% at pH 7.31 – 7.65 for 0.1 M SO₄²⁻ to 94.47% at pH 7.38 – 7.78 for 1.0 M SO₄²⁻.

Extraction data from Table 1 also show that the $pH_{1/2}$ shifted to higher pH values (5.20 \pm 0.1)[0.01M] < 6.20 \pm 0.1[0.1M] < 6.75 \pm 0.1[1.0M] and log K_{ex} decreased -9.37 \pm 0.83)[0.01M] > -10.95 \pm 0.48[0.1M] > -11.3 \pm 0.56. [1.0M] as the concentration of SO₄²⁻ increased. These findings are similar to results reported in other studies.^{7,9,16}

Figure 2a -2c showed that a slope of 2 was obtained for all the three (SO₄²⁻) concentrations 0.01M, 0.1M, 1.0M studied, indicating that 2 moles of protons were displaced during the extraction process by the interaction of Ni²⁺ with HTCP and combining these results with those from Figure 4 and 5, we can write the equation of reaction for the extraction process as follows;

 $Ni^{2+} + 2HTCP \qquad Ni(TCP)_2 + 2H^+ \qquad (1)$

The complex specie $Ni(TCP)_2$ extracted, shown in equation 1, is similar to what was reported earlier. ^{7,17,19}

The results imply that masking of Nickel II ion is enhanced as the sulphate (SO_4^{2-}) ion concentration of the solution increased. For 0.1M sulphate ion concentration, Ni²⁺

was not extracted at pH range (0-4.22). Similarly, for 1M sulphate ion concentration Ni²⁺ was unextractable up to pH 5.04. The implication is that Nickel may have formed stable and unextractable sulphato-Nickel complexes¹⁸ in solution as shown in equation 2:

$$Ni^{2+} + 2SO_4^{2-} \longrightarrow [Ni(SO_4)_2]^{2-}$$
(2)

Thus, the results indicated that the extraction of Ni^{2+} is more favourable at higher pHvalues with decrease in sulphate ion concentration in the buffered solution.

Figure 2: Extraction Plot of 50 mg/L Nickel (II) ion with Solution of 0.05M HTCP in CHCl₃ from Buffer Solutions containing (a) $0.01M \text{ SO4}^{2-}$ (b) $0.1M \text{ SO4}^{2-}$ (c) 1.0 M SO4^{2-} at 32^{0}C

Effect of Butanol as Synergist

This was studied in buffered solution containing 0.1M SO₄²⁻ to see the effect of the synergist in the extractions.

Figure 3 shows that quantitative percentage extraction increased to 97.78% from 96.28% acheived for 0.1M SO₄²⁻ without synergist. Table 1 also shows that the extraction parameters log K_{ex} (HTCP/CHCl₃BuOH -7.54 \pm 1.39 > HTCP/CHCl₃ -10.95 \pm 0.48 and log D (HTCP/CHCl₃BuOH 1.63 \pm 0.02 > HTCP/CHCl₃ 1.41 \pm 0.01) were higher than those obtained without synergist and shift of the pH_{1/2} value from 6.20 to 4.75 (a more acidic region) indicating that

extraction of Ni²⁺ at lower pH values is more effective in chloroform solutions containing butanol as a solvating agent as the distribution of Ni²⁺ into the organic HTCP/CHCl₃ was better. We also noted that, while there was no extractions from pH 0 – 4.22 in the absence of butanol as synergist, there was marginal extraction of Ni²⁺ from pH 2.07. Uzoukwu and Mbonu⁷ obtained similar results from their studies on the effect of chloride ion (Cl⁻) concentration in the extraction of Cu (II) and Ni (II) ions using 1-phenyl-3-methyl-4-trichloroacetyl pyrazolone-5. They attributed the improved distribution of Ni²⁺ in the presence of butanol to formation of adduct and proposed the extracted metal complex to be Ni(TCP)₂BuOH.

Figure 3: Extraction Plot of 50 mg/l Nickel (II) ion with Solution of 0.05M HTCP in CHCl₃/BuOH from Buffer Solutions containing $0.1M \text{ SO4}^{2-}$ at 32^{0}C

Figure 4: Ligand [HTCP] Variation at (a) pH 5.28 for solution containing $0.1M \text{ SO}_{4^{2+}}$ (b) pH 5.8 for solution containing $1.0M \text{ SO}_{4^{2-}}$ for extraction of 50 mg/l Nickel (II) ion at 32^{0}C

Figure 5: Metal $[Ni^{2+}]$ Variation at (a) pH 5.28 containing 0.1M SO₄² (b) pH 5.8 containing 1.0M SO₄²⁻ for extraction of Nickel (II) ions into 0.05M HTCP in CHCl₃ containing 0.1M SO₄²⁻ at 32^oC

Table 1. Extraction data for 8.52×10^{-4} M (50 mg/L) Ni²⁺ extraction in buffered aqueous media containing various concentrations of SO4²⁻ into organic phases containing 0.05 M HTCP/CHCl₃ and 0.05 M HTCP/CHCl₃/BuOH

Organic Phase	SO ₄ ²⁻ Concentration in Aqueous Phase		
HTCP/CHCl3	0.01M	0.1M	1.0M
pH _{1/2}	5.20 ± 0.1	6.20 ± 0.1	6.75 ± 0.1
Log D	1.68 ± 0.01	1.41 ± 0.01	1.23 ± 0.01
Log K _{ex}	$\textbf{-9.37} \pm 0.83$	$\textbf{-10.95} \pm 0.48$	-11.37 ±
			0.56
Organic Phase	0.01M	0.1M	1.0M
HTCP/CHCl ₃			
/BuOH			
pH1/2	-	4.75 ± 0.1	-
Log D	-	1.63 ± 0.02	-
Log K _{ex}	-	-7.54 ± 1.39	-

Conclusion

The effect of various sulphate ion (SO_4^{2-}) concentrations on the extraction of Ni²⁺ using 0.05M HTCP/CHCl₃ studied show that the extraction of Ni²⁺ is masked slightly by anionic sulphate-Nickel complexes formed in solution at increasing sulphate ion concentration. Slope analysis showed that Ni²⁺ was extracted as Ni(TCP)₂. Extraction of Ni²⁺ was enhanced by the introduction of butanol as solvating agent due to formation of adduct Ni(TCP)₂BuOH.. The result also showed that the $pH_{\frac{1}{2}}$ value increased with increase in sulphate ion concentrations. This suggested that anionic sulphato complexes of Nickel II ion (Ni²⁺) formed in solution have some effect on the extent of extraction of Nickel from the buffer media and this effect is more pronounced as the concentration of sulphate ions in solution increased.

Acknowledgement

The authors wish to thank the University of Port Harcourt, Alexander von Humboldt Stiftung, Germany and Prof. Karsten Gloe for research assistance to BAU.

References

- ¹Chun-Hui, H., and Freiser, H., Solvent. Extr. Ion Exch. **1986**, 4(1), 41.
- ²Umetani, S., Kawase, Y., Le, Q. T. H., and Matsui, M, *J. Chem. Soc. Dalton Trans.*, **2000**, *16*, 2787.
- ³Yonezawa, C., and Choppin, G. R., J. Radioanal and Nucl Chem, Articles, **1989**, 134, 233.
- ⁴Thakur, P., Chakravortty, V., and Reddy, M. L. P., *Radiochim. Acta*, **1999**, 87, 121.
- ⁵ Godwin, J., and Uzoukwu, B. A., *IOSR-JAC*, **2012**. 1(3), 14.
- ⁶Kalagbor A. I., Uzoukwu B. A., and Chukwu U. J. *Nat. and Sci*, **2011**, *9*(*9*), 147.

- ⁷Uzoukwu, B. A., and Mbonu J. I., *Solvent. Extr. Ion Exch.* **2005**, 23, 750.
- ⁸Umetani, S., and Freiser, H., *Inorg. Chem.*, **1987**, *26*, 3179.
- ⁹Chukwu U. J., and Uzoukwu B. A., *Science Africa Journal*, **2008**, *7(1)*, 42.
- ¹⁰Chukwu U. J., and Uzoukwu, B. A., *Recent Pat. Mater. Sci.*

- ¹¹Godwin, J and Uzoukwu, B. A. Int. J. Chem. (Toronto, ON, Can.), 2012. 4(4), 105
- ¹²Godwin, J., Nwadire, F. C., and Uzoukwu, B. A. *Eur. Chem. Bull.* 2012, 1(7), 269.
- ¹³Okafor, E. C., and Uzoukwu, B. A., *Radiochim. Acta.* **1990**, *51*, 167.
- ¹⁴Atanassova M., and Dukov I. L., Sep. Purif. Technol. **2004**, 40(2), 171
- ¹⁵Jenson, B. S., Acta Chem. Scand. 1959, 13, 1668.
- ¹⁶Sambasiva, A. R., and Seshasayi, Y., J. Inorg Chem. 1978, 60, 1123.
- ¹⁷Uzoukwu, B. A., Basic Analytical Chemistry, 1st edition, Pam Unique Publishing Company Ltd, Port Harcourt, 1992.
- ¹⁸Cotton, F. A., and Wilkinson, G., Advances in Inorganic Chemistry, 5th edition, John Wiley and Sons Inc. USA, **1988**.
- ¹⁹Ogwuegbu M. O. C., and Oforka, N. C., *Hydrometallurgy*, **1994**, *34*, 359.

Received:	12.11.2012.
Accepted:	08.12.2012.

^{2010,} *3*(*2*), 146.